BR 9230191 INIS-37-- 2958

ESTUDO TEÓRICO-EXPERIMENTAL DOS EFEITOS NÃO TÉRMICOS DA RADIAÇÃO LASER POLARIZADA EM TECIDOS VIVOS

MARTHA SIMÕES RIBEIRO

Dissertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Tecnologia Nuclear.

à

Orientador: Dr. Jorge Humberto Nicola

SÃO PAULO 1991

À minha família pela constante dedicação e carinho; propiciando condições para que eu conseguisse atingir meus objetivos.

COMISCÃO NACIONAL DE ENERGIA RUCLEAR/SP - IPER

Ao Cláudio, pelo amor compartilhado e por seu apoio em todos os momentos.

AGRADECIMENTOS

Agradeço primeiramente ao Dr. Jorge Humberto Nicola e a Dra. Ester Maria D. Nicola, por terem me dado a oportunidade de conhecer esse mundo fascinante de aplicações da tísica na medicina:

A maninha Márcia, minha companheira de pesquisa, pelas boas aulas de medicina:

Ao William. Maria, Roberto e Rosana do Núcleo de Cirurgia e Medicina Experimental da FCM/UNICAMP, por fazerem com que uma física entendesse de biologia e pelas boas risadas que resultaram disso;

Ao pessoal do laboratório GDAL: ao Mário, pelas datilografias quando necessárias; ao Nelson e ao Edson, pelas peças da montagem experimental; ao Palmeira, pelas dicas sobre o computador e a Marinalva. Leide, Wagner. Venê e Paulão, pelo companheirismo;

Ao Jonge e ao Neder do Centro de Comunicação da UNICAMP, pelo trabalho fotográfico;

A Cláudia e a Marina da Secretaria de Pós-Graduação do IPEN, pela amizade com que sempre me trataram e pelos constantes " quebra-galhos ":

A Valéria, por estar sempre ao meu lado, desde as posas épodas da graduação, com sua amizade, cartinho e aposo:

A Coniso, polos conselhos, dicas, carinno o emizente desde a epoca da Iniciação Científica:

A Ignez e a Lene, pelos bons almoços compartilitados:

A FAPESP, pelo apoio financeiro;

A todos que, de uma forma ou de outra, contribuiram para a realização deste trabalho, muito obrigada !

<u>ÍNDICE</u>

P	ágine
Resumo	1
"Abstract"	2
Introdução	З
Capítulo i: Polarização da Luz	7
1.1- Natureza da luz emitida por fontes	7
1.2-Coerência espacial e coerência temporal: um	
modelo simplificado	9
1.3- Definição de luz polarizada e não-polarizada:	
polarização linear, circular e elíptica	12
1.3.a- Polarização linear	18
1.3.b- Polarização circular	19
1.3.c- Polarização elíptica	21
1.4- Produção de luz polarizada	23
1.4.a- Polarização por absorção	24
1.4.b- Polarização por reflexão	25
1.4.c- Polarização através de cristais birrefringentes	27
Capítulo 2: Efeitos da Luz Coerente e Polarizada em uma	
Superfície Microscopicamente Rugosa	29
Capítulo 3: Membranas Biológicas	46
Capítulo 4: Modelo Físico Tentativo para Explicação dos	
Efeitos Não-Térmicos da Radiação Laser Polarizada	57
Capítulo 5: Procedimento Experimental	68
5.1- Fontes de Luz	67
5.2- Determinação dos Parâmetros Biológicos	72
5.3- Irradiação das Lesões e Resultados	74

ŝ

and a second second second second

;	5.4- Registro Fotográfico	84
	Discussão e Comentários	103
	Referências	105
	•	

•

.

.

and the second second

.

.

KH-SUND

* ISSTUDO TIKÓNI CO-ISLIPISKI MONTAL, DOG DEPETOS NÃO-TÉRMI COS DA HADI AÇÃO LASER POLARIZADA EN TICIDOS VIVOS "

NAKIWA SINDES KINEIKO

la experimentos anteriores realizados en nosso laboratório, obteve-se como resultado que luz com alto grau de coerência desencadeia efeitos diferenciados en relação à luz não-coerente. No presente trabalho tivemos como objetivo fundamental analisar os efeitos não-térmicos da radiação laser polarizada em tecidos biológicos, efeitos estes obtidos com luz laser de baixa potência.

O procedimento teórico consistiu em procurar um modelo simples que associe o efeito da Juz polarizada com tecidos micromeopicamente ruyosos usando conceitos físicos bem estabelecidos. Esperimentalmente, nós criamos lesões artificiais em dorso de animuis usando Na líquido (mátodo escolhido por não interforir nos processos bioquímicos de tecidos animais) e para a irradiação das lesões, utilizamos um laser de He-Ne acoplado a um sistema úptico. A densidade de energia utilizada foi 1,0 J/cm².

Nossos resultados mostram que o grau de polarização da luz irradiante é um fator importante na cicatrização de lesões.

AHSTRACT

and and the California and International and a state of the second state of the second state of the second state

" THEORETICAL-EXPERIMENTAL STUDY OF THE NON-THEORAL EFFECTS OF THE POLARIZED LASSR RADIATION IN LIVING TISSUES "

HARTHA STNOTS REFERENCE

Proliminary results obtained in our laboratory showed that light with a high degree of coherence unchains different offects with respect to the non-coherent light. In the present research we had as a fundamental objective to analyze the non-thermal effects of the laser polarized light in biological tissues. These effects were performed with low power laser output.

The theoretical procedure consisted in looking for a simple model which connects the effect of light polarized with microscopically rough tissues using well estabilished physical concepts. Experimentally, we created artificial wounds on the back of animals using liquid nitrogen (this method was chosen because it does not interfere in the biochemistry of the animal tissue). For the wound irradiation we have utilized a He-Ne attached to an optical system. The energy density was 1.0 J/cm^{R} .

Our results show that the degree of polarization of the irradialing light is an important factor in the wound healing.

INTRODUÇÃO

a for a starby starby and a start and

O atual ritmo de evolução do conhecimento científico torna-se responsável pelo desenvolvimento das atividades interdisciplinares entre as ciências naturais, tais como a física, a química e a biologia. Considerando-se especificamente a física e a biologia, observa-se que a interação entre elas se dá em vários níveis, pois a física não só proporciona métodos de instrumentação e investigação dos materiais e processos biológicos, como também serve para formular modelos que possam explicar, pelo menos em parte, os enredados recursos de que os organismos dispõem para a sua atividade biológica.

A medicina também se adapta a esta interdisciplinariedade, já que possui ligação íntima com a biologia. Enquanto os papéis da química e da biologia são relativamente bem compreendidos na medicina, o papel da física geralmente não é tão óbvio. embora a Física Médica já seja uma área de ampla exploração científica.

Atualmente, é crescente o uso do laser como instrumento médico, constituindo uma área ativa de pesquisa tanto a nível nacional como internacional. As primeiras aplicações do laser na área biomédica surgiram como consequência natural de suas próprias características, como colimação, monocromaticidade, variabilidade de potência e coerência. Além de sua utilização em áreas como a biologia celular, no estudo espectroscópico de macromoléculas. o laser tem utilidade em diversos campos da medicina, como por exemplo, na oncologia, oftalmologia, etc. Mas, de um modo gerai, é na cirurgia que o laser mostrou maiores vantagens. Diminuição de

sangramento, menor risco de contaminação, entre outros fatores, são comuns a todos os lasers, desde que este tenha boa absorção pelo tecido. Isto ocorre em virtude das altas densidades de energia utilizadas, responsáveis pelos chamados efeitos térmicos, onde a energia dos fótons absorvidos pelo tecido, vai se transformar em calor.

Já o laser de He-Ne, por exemplo, tem efeito cirúrgico pouco significativo, devido ao fato de sua absorção pelo tecido, água ou sangue ser pouco intensa, bem como o fato desses lasers apresentarem, em geral, baixa potência de saída. Hoje em dia porém, esse tipo de laser tem sido utilizado na medicina sem conotação cirúrgica. Neste caso se atribui o efeito comumente chamado de "bioestimulação laser ". Bioestimulação é um termo genérico aplicado a qualquer estímulo, agente ou ação que produza uma resposta fisiológica com aumento da atividade funcional. Os lasers de baixa potência são usados para propósitos terapéuticos e o relato de casos em que existem respostas fisiológicas, tais como supressão de dor e aceleração de cicatrização de feridas são imensos [1-16]. Os lasers mais usados para este fim são os de He-Ne e Arseneto de Gálio-Alumínio. Sob o ponto de vista físico, é útil definir tal possível ação dos lasers de baixa potência de efeitos não-térmicos.

Dos estudos feitos até agora, sabe-se que a irradiação de um tecido vivo com lasers de baixa potência provoca. a nível biológico funcional, um aumento na síntese de proteínas pela célula (8-9), além de mudança na distribuição de cargas elétricas na membrana celular [18]. Os efeitos macroscópicos observados vão de aceleração de cicatrização à analgesia [1-16]. Entretanto, é importante

l I

1:

ressaltar que a existência desses efeitos aparece numa ampla faixa de densidade de energia $(0,05-5,0j/cm^2)$ e para vários comprimentos de onda (He-Ne,rubi,COs). As experiências são realizadas tanto com animais de experimentação (7-11,13,14) como cum culturas de células "in vitro" (4,7,17-20).

9

ġ

]₽ _}

: •

Da busca bibliográfica encontrou-se dois trabalhos [17,21] que chamaram a atenção por se referirem ao possível efeito da coerência da luz laser e , por esse motivo, recentemente através de trabalho de mestrado orientado em nosso laboratório [16], mostrou-se que luz com alto grau de coerência, desencadeia efeitos diferenciados em relação a luz não-coerente. Nesse trabalho, observou-se que a cicatrização de lesões produzidas artificialmente em ratos, apresentavam aceleração quando irradiadas com luz laser em comparação com aquelas irradiadas com luz de coerência diminuída.

Neste modelo [16], não se levou em consideração possíveis efeitos da polarização da luz, entretanto, Hester e seus colaboradores [4] tratam de comparação dos efeitos iaser × iuz térmica, considerando também a polarização. Consta que, com iuz térmica polarizada, eles conseguiram 80% de eficiência na imunossupressão de linfócitos humanos quando comparada àqueies irradiados com laser de He-Ne polarizado. Com luz não-polarizada, o efeito na destruição da capacidade de defesa dos linfócitos no organismo (imunossupressão) foi de 0.74%.

Da literatura conseguida, observamos que alguns autores [5-6] questionam o fenômeno da bioestimulação laser. Greguss [5], por exemplo, em seu artigo afirma que os resultados observados na cicatrização de feridas não são específicos do laser. Acreditamos, portanto, que continuar nessa linha de pesquisa é

importante, não só para aumentar o acervo de conhecimentos científicos, mas também para dar segurança científica aos usuários do laser.

an an 1976 an ann an 1976 a 1977 anns an 1977 anns an anns an 1979 anns an 1977 anns an 1977 anns an 1977 anns An 1979 a' Chuir anns a' Chuir anns an 1979 ann

Com esse objetivo, dividimos a apresentação desta monografia em vários capítulos. No primeiro, revisamos o conceito físico de polarização da luz, assim como mostraremos meios de se obter iuz polarizada [37-40]. No segundo capítulo, apresentamos com algumas modificações apropriadas, a teoria para a deposição inomogênea de energia numa superfície com micro-rugosidades de vários tipos de materiais não-biológicos, quando iluminadas com luz laser polarizada (27-34). No capítulo três, resumimos alguns aspectos essenciais sobre membranas biológicas, que do nosso ponto de vista, justificam a idéis de relacionar um modelo físico como o do capítulo dois, com uma célula animal (42-45). O restante do trabalho é dividido entre apresentar um modelo físico tentativo - na explicação dos efeitos não-térmicos da chadração reser polarizada. bem como discutir o procedimento experimental e os resultados obtidos.

CAPÍTULO 1

POLARIZAÇÃO DA LUZ

1.1- NATUREZA DA LUZ EMITIDA POR FONTES

Ì

Numa fonte de luz térmica, tai como uma lâmpada de filamento de tungstênio, os átomos individuais irradiam por um ourto espaço de tempo, sendo que os pulsos são emitidos em interveios aleatórios: os eixos dos dipolos correspondentes também têm orientações aleatórias, dando luz não-polarizada. O campo eletromagnético em qualquer ponto "P" iluminado pela fonte terá, então, um valor vetorial instantâneo resultante, que varia aleatoriamente na direção e na fase de oscilação. Mesmo passando por um polarizador, a componente do campo elétrico em "P" ainda varia aleatoriamente na fase. Esse é o caso de uma ionte incoerente.

Contrariamente no laser, a emissão de fótons e estimulada con ondas eletromagnéticas confinadas em uma cavidade ressonance, constituindo um Sistema Fabry-Perot. Sob essas condições, o campo eletromagnético associado com cada fóton emitido está em fase com a onda estimulante. Em consequência, os campos de digoio associados com átomos diferentes na fonte sempre vibram em fase com o campo que estimula a emissão, e a luz que deixa a cavidade o faz em trens de onda contínuos.

Numa fonte de luz coerente ideal, as fases estão sempre relacionadas em diferentes pontos do espaço e tempo. Numa fonte de luz incoerente, por outro lado, os átomos excitados emitem espontaneamente. Assim, as fases dos diferentes trens de onda de diferentes átomos em qualquer instante de tempo, bem como as fases dos trens de onda de um mesmo átomo em instantes de tempo diferentes, estão aleatoriamente relacionadas umas às outras. É nesse sentido, ou seja, de "coerência de fase", que os termos "coerente" e "incoerente" são aplicados ao laser e às fontes de luz térmicas, respectivamente.

ŝ

1.2- COERÊNCIA ESPACIAL E COERÈNCIA TENPORAL: UN MODELO SIMPLIFICADO

.

ı

and the state of the second second

O conceito mais útil para entender coerência é pensarmos em correlação. Correlação no tempo é prevermos um evento ou ação baseados no conhecimento de um evento anterior. Freqüentemente, tal correlação depende das relações causa e efeito entre os eventos. Podemos também pensar em correlação no espaço. Um bom exemplo para entendermos coerência é mostrado na figura 1.1 abaixo. Se conhecermos a localização exata de um "soldadinho", é altamente provável que saibamos encontrar outro. Qualquer parada militar fornece um bom exemplo de todos os graus de coerência, tanto no espaço como no tempo.

Coerência Incoerência figura 1.1: Com coerência completa, a localização de um "soldadinho" nos permite saber a localização exata de tudos os outros (20).

Se a luz de uma fonte é completamente coerente tanto no espaço como no tempo, há uma correlação completa entre as variações do campo elétrico da luz em qualquer ponto do espaço e àquelas em outro ponto qualquer. Tendo-se medido o campo elétrico em ambos os

Э

pontos, pode-se dizer com exatidão em quaiquer tempo posterior. quai o comportamento do campo elétrico no segundo ponto simplesmente conhecendo-se o campo no primeiro ponto. A chave está na forma que a amplitude do campo elétrico assume sob condições de completa coerência.

A amplitude do campo elétrico tem a forma:

3

Service Services

and a mapping

E(x,y,z,t) = A(x,y,z)cos[wt+∂(x,y,z)]
1.1
onde ∂(x,y,z) é a parte da fase que varia no espaço. As variações no campo em qualquer ponto no espaço são sempre senoidais com freqüência angular "w". se a luz for monocromática. Conhecendo "A"
• "∂" como funções da posição, especificamos "E" para todos os pontos no espaço e para qualquer tempo "t", como exige uma onda de luz completamente coerente. Para qualquer onda eletromagnetica (OEM), podemos introduzir os conceitos de coerência espacial e temporal.

Para definirmos coerência espacial, vamos considerar cois pontos Pi e Pz , que no tempo t=0, estão situados sobre um mesmo plano e sejam Ei(t) e Ea(t) os campos elétricos correspondentes nestes pontos. Por definição, a diferença entre as fases dos dois campos no tempo t=0 é zero. Se esta diferença permanecte zero ou é muito pequena em qualquer tempo t>0, nós dizemos que ha uma coerência espacial perfeita entre os dois pontos. À mesuda que a dimensão da fonte aumenta, diminui o grau de coerência, que se torna parcial, até um nível em que Ps e Pz são incoerentes. Na prática, para qualquer ponto Ps, o ponto Pz deve estar dentro de alguma área finita ao redor de Ps, se quisermos ter uma boa correiação de fase. Neste caso, para qualquer ponto P, poue-se introduzir uma área apropriada definida como área de coerência

1-2

Se(P).

Para definir coerência temporal, nós agora consideramos o campo elétrico da OEN em um dado ponto P nos tempos t e ter. Se, para um dado tempo de atraso τ , a diferença de fase entre os valores dos dois campos perminece a mesma para qualquer tempo t, nós dizemos que há coerência temporal no decorrer de um tempo τ . Se isso ocorre para qualquer valor de τ , a OEN tem tempo de coerência perfeito. Se isso ocorre para um tempo de atraso τ , tal que $0\langle \tau \langle \tau_o \rangle$, a onda tem coerência temporal parcial, com um tempo de coerência igual a τ_a .

É importante notar que os dois conceitos de coerência, temporal e espacial, são na verdade independentes um do outro. Existem ondas que têm coerência espacial perfeita mas coerência temporal limitada (ou vice-versa). No caso específico do laser, apesar de geralmente serem considerados fontes de luz coerente, o grau de coerência vai depender do modo em que o laser é operado. Um laser "single mode" tem coerência temporal virtualmente infinita, devido à pequena largura de seu espectro. Por outro iado, um laser multimodo pode ter largura espectral quase tão grande quanto a da emissão fluorescente da qual se deriva.

A área de coerência espacial de um laser "single mode" cobre o feixe inteiro. Mas, quando o laser oscila em mais de um modo transverso, a coerência espacial é radicalmente alterada. Podemos associar cada modo com um conjunto diferente de átomos que radiam. Os modos são, assim, incoerentes um em relação ao outro.

11

and the second second second

3.3- 1441112ção de luz polarizada e não-polarizada: polarização Linear, circular e elíptica

Como podemos associar a un foixe de Jue un dipolo obétrico perpendicular a direção de propagação da onda, podemos definir Jue polarizada em função do comportamento deste dipolo no plano de vibração. En qualquer pento no espaço e em qualquer instante de tempo, o campo elétrico de uma enda de Jue aponta em uma direção particular e pode ser apropriadamente descrito polo vetor \vec{E} . Este vetor é perpendicular ao vetor de propagação \vec{K} , que descreve a direção de viagem da enda, e à direção instantânea do campo magnético da enda, \vec{H} . Em ótica, especificamenta da luz.

Assim, luz polarizada é luz cujas ondas são caracterizadas por campos clétricos altamento orientados, ou seja, os campos elétricos vibram numa determinada direção e têm um padrão simples de vibração. Exemplo de luz polarizada é mostrado na figura 1.2 a seguir. A luz se propaga ao longo do eixo z num sistema de coordonadas cuja orientação positiva está para o lado direito.

and an a 🕈 and a character of the contracter and an a contracter of the contracter

13

figura 1.2: Padrão instantâneo (coluna à esquenda) e padrão seccional (coluna à direita) de um feixe que é polarizado (37); a-) linearmente e horizontalmente; b-) linearmente e verticalmente; c-) circular para a direita; d-) circular para a esquerda. Quando as vibrações elétricas são horizontais. diz-se que a luz é linearmente polarizada na horizontal. O desenno à esquerda da figura 1.2. mostra o padrão instantâneo do trem de onda. 1210 é, ele mostra como o trem deve aparecer em uma fotografia instantânea tirada com uma câmera que age extremamente rápido. O desenno à direita mostra o padrão seccionai, que corresponde ao tempo de exposição fotográfico tirado com uma câmera colocada em uma seção transversa ao feixe, isto é, situada sobre a linha do feixe e dirigida um linha reta à fonte de luz. Claro que amoso os tipos de padrões estão em sentido fictício. Já que não é possível ver ou fotografar as ondas como elas são, mas, eles são pem aceitos como modelos.

a de la compañía de l

Landra Property and the second second

Quando as vibrações elétricas são verticais, o podrão seccional é indicado por uma pequena lirha vertical e diz-se que a luz é linearmente polarizada na vertical.

Para alguns feixes, o padrão instantâneo é um hélice « o padrão seccional, um círculo: dizemos que tal feixe é circularmente polarizado. Neste caso, há duas possibilidades: o hélice pode estar para o lado direito ou para o lado esquerdo. A onda de luz que tem um padrão helicoidal para o lado direito é chamada luz circularmente polarizada para a direita - por conveniência. é representada por um círculo traçado no sentido horário. Para o lado esquerdo, diz-se que a luz é circularmente polarizada para a esquerda sendo representada por um círculo traçado no sentido anti-horário.

Alguns feixes têm um padrão instantâneo que parecem um héirce "achatado" e um padrão seccional que é elíptico. Tais feixes tão chamados de elipticamente polarizados, éstes também podem estar

)

A figura 1.3, mostra o padrão seccional de alguns (*1×** polarizados.


```
figura 1.3: Padrão seccional de um reixe polarizado (37):

a-) linearmente e horizontalmente;

b-) linearmente e verticalmente;

c-) circular para a direita;

d-) circular para a esquerda;

e-) linearmente a 20°;

f-) linearmente a 45°;

g-) elipticamente à direita a 43°.
```

A luz do sol ou a luz emitida de fontes comuns, tal como de bulbos incandescentes, são exemplos de luz não-polarizada, pois o vetor campo elétrico associado com ondas dessas fontes não tem direção preferida de orientação; a orientação muda rapidamente no tempo, primeiro apontando numa direção, depois em outra, meste caso, a polarização instantânea flutua de uma maneira alestoris, devido ao fato que um átomo emite radiação num tempo da orienm de 10⁻⁹ segundos e se um átomo emite radiação num tempo da orienm de 10⁻⁹ segundos e se um átomo emite uma determinada polarização e outro átomo emite luz com uma polarização diference, a polarização mudará a cada 10⁻⁹ segundos. A melhor detinição para luz não-polarizada ou luz alestos iamente polarizada é que, a luz não-polarizada não exibe preferência para o padrão de vibração (padrão seccional). Em outras palavras, quando mão se pode achar preponderância de qualquer direção de vibração sobre qualquer outra direção, diz-se que a luz é não-polarizada.

The second s

Podemos esquematizar luz não-polarizada conforme as figuras i.4.a ou i.4.b. Na figura i.4.a. os planos de vibração estão aleatoriamente orientados em relação a direção de propagaçação. Na figura i.4.b. a onda não-polarizada é vista domo duas dense plano-polarizadas com uma diferença de fase aleatoris. A deiente que dos eixos x e y em relação a direção de propagação é completamente arbitrária.

₽×.,

.

-

:

1. 3. a- POLARIZAÇÃO LINEAR:

Considerenos uma onda plana eletromagnética, para a qual os campos elétrico \vec{E} e o mágnético \vec{H} são dados pelas expressões: $\vec{E} = \vec{E} \vec{0} \exp i(\vec{K}, \vec{r} - \omega t)$ 1.2 $\vec{H} = \vec{H} \vec{0} \exp i(\vec{K}, \vec{r} - \omega t)$ 1.3

 \vec{K} representa o vetor de propagação da onda. $\vec{r} \neq 0$ vetor posição e w a freqüência angular temporal da onda (os campum elétrico e magnético variam harmonicamente no tempo e são perpendiculares um ao outro, ambos perpendiculares a \vec{K}).

Se as amplitudes Eo e Ho são vetores reals constantes. difemis que a onda é linearmente polarizada ou plano-polarizada (polarização em um plano). Como já mencionamos, é tradicional em ótica designar a direção do campo elétrico como a direção de polarização. A figura 1.5 mostra um diagrama dos campos em um plano, de uma onda linearmente polarizada.

figura 1.5: Campos em uma onda plana linearmente polarizada (39).

1. 3. 5- POLARIZAÇÃO CIRCULAR:

1

) Э

)))

2

•

2

5

y ł

5

5

)

Escreverenos agora, a representação real para uma onda eletromagnética. Considerences o caso especial de duas ondas linearmente polarizadas de mesma amplitude Eo, polarizadas em ângulos retos uma em relação a outra. Suponhamos que as ondas tenham uma diferença de fase de N-2. Para representar estas ondas nós escolhemos os eixos tais que os vetores elétricos das duas ondas estejam nas direções x e y, respectivamente. Então, os campos elétricos são escritos como:

مىرىمىيە ئارىرىيەت ئەيمەر ھەچ خەرچە ئىلىد بىلىدى بارى ھەر بىر مەستەمەرە بارىرىيە مەرەپ بەرىپەردىيە

- \hat{i} Eo cos(Kz ωt) 1.4
- j Eo sen(Kz wt) 1.5

O campo elétrico total $\overline{\Xi}$ \neq a soma vetorial das duas componentes do campo, isto é:

$$E^{*} = Eo \left(1 \cos(Kz - \omega t) + j \sin(Kz - \omega t) \right)$$
 1.6

A expressão acima é uma solução perfeitamente boa da equação de onda. Ela pode ser interpretada como uma única onda na qual o vetor elétrico em um dado ponto. É constante em magnitude, mas rota com uma frequência angular ω . Dizemos que este tipo de onda é circularmente polarizada. Um desenho mostrando os campos elétrico e magnético associados de ondas circularmente polarizadas é mostrado na figura 1.6.

Os sinais dos termos na expressão 1.8 foram escolhidos tai que a equação represente uma onda na qual o sentido de rotação do vetor elétrico em um dado ponto no espaço esteja no sentido horário quando visto contra a direção de propagação. Neste caso, dizemos que a onda é circularmente polarizada para a direita. Se o sinal do segundo termo for mudado, o sentido de rotação estaria no sentido anti-horário quando visto contra a direção de propagação e a onda seria circularmente polarizada para a esquerda (esta convenção é comum mas não é universal).

ารกันไฟอันหมด สนุนทร์ (1962) ซึ่งได้มี 1972) รัฐสมุทธินักที่ได้ และกับการกับการกันทรง (1982) เป็นหมดเป็นแนะเหต

Voltando à notação complexa, o campo elétrico para uma onda circularmente polarizada pode ser escrito como: $\vec{E}^{*} = \hat{1}$ Eo exp i(Kz - ω t) + \hat{j} Eo exp i(Kz - ω t ± $\pi/2$) 1.7 ou, umando a indentidade exp i $\pi/2$ = i, podemos escrever: $\vec{E}^{*} = Eo (\hat{1} \stackrel{+}{=} i \hat{j})$ exp i(Kz - ω t) 1.8

Nesta expressão, o sinal negativo deve ser usado para representar polarização circular para a direita, e o sinal positivo, para a esquerda.

1. 3. c- POLARIZAÇÃO ELÍPTICA

. . .

t....

•

:

9 3)

> > ļ

۰.

• •

---- سەت بىچە يەت سەتو

Se as componentes ruais do campo não são de mesma amplitude, digamos:

î Eo	2036(Kz - wt) 1.	. 9
ĵ Eo	ien(Kz - wt) 1.3	10
onde	Eo = Eo', o vetor elétrico resultante, em um dado ponto :	no
espa	o, rota e também muda em magnitude, de tal maneira que o veto	or
resu	tante descreve uma elipse, como mostrámos na figura 1.7. Nes	L•
CASO	dizemos que a onda é elipticamente polarizada.	

É algunas vezes conveniente, empregar um vetor de amplitude complexa ϵ_0 definido como:

A onda correspondente é:

 $\overline{\mathbf{E}}^{+} = \mathbf{e}_{\alpha} \exp \mathbf{i}(\mathbf{K}\mathbf{z} - \mathbf{\omega}\mathbf{t})$

.

A expressão 1.12 pode representar qualquer tipo de polarização. Assim, se ε_0 é real, temos polarização linear. ao passo que se ele for complexo, temos polarização elíptica. No caso especial de polarização circular, as partes real e imaginária de ε_0 são iguais.

1.12

1.4- PRODUÇÃO DE LUZ POLARIZADA

No laboratório, o método comumente usado para produzir iuz polarizada consiste essencialmente em dividir luz não-polarizada em duas componentes e então eliminar uma das componentes. A componente que permanece é essencialmente um feixe polarizado.

O dispositivo que divide luz não polarizada em duas componentes e então descarta uma é conhecido como polarizador. Se este processo não é perfeito tanto que uma das componentes não é completamente eliminada, o polarizador é conhecido como polarizador parcial e a luz que sai é parcialmente polarizada. Um polarizador não cria as vibrações transversas, ele somente divide as vibrações existentes em duas componentes e seleciona uma.

Há vários métodos diferentes para transformar a luz aleatoriamente polarizada em luz linearmente polarizada. Os métodos geralmente utilizados são: absorção, reflexão ou transmissão através de cristais birrefringentes.

1.4.a- POLARIZAÇÃO POR ABSORÇÃO

A polarização por absorção é a classe que nos é mais familiar, pois esse é o método de polarização usado em óculos escuros. Existem determinadas moléculas longas e finas - moléculas de cadeia longa que contém muitos átomos de iodo - que são alinhadas paralelamente umas as outras, e por causa da condutividade fornecida pelos átomos de iodo, absorvem as componentes das vibrações elétricas paralelas às moléculas. As componentes perpendiculares às moléculas são transmitidas, com ínfima absorção.

Assim, se incidimos luz aleatoriamente polarizada através de um material que contenha essas moléculas, a componente paralela ao longo do eixo molecular é absorvida juntamente com cerca de um terço da luz cuja polarização é normal a este eixo. A luz transmitida é linearmente polarizada e aproximadamente um terço tão intensa quanto a luz incidente. A direção da polarização da luz transmitida é chamada de eixo polarizador. Esta direção é perpendicular ao eixo das moléculas.

Desde 1938, são desenvolvidos certos materiais sintéticos que exibem este fenômeno. Tais materiais são conhecidos como polaróides. Uma variedade de filmes polaróide contém iodo embebido em álcool polivinil orientado. Esses filmes transmitem aproximadamente 80% de luz polarizada em uma direção e menos de 1% na direção perpendicular. As chapas de polaróide, atualmente, são os polarizadores mais empregados.

1.4.5- POLARIZAÇÃO POR REFLEXÃO

A polarização por reflexão é o resultado da interação de uma onda de luz com uma superfície material. A iuz cujo velor de polarização é paralelo a superficie refletora é, preferenciasmente. ilustra a fígura 1.8. Nesta figura, Remos fuz refietida, como aleatoriamente polarizada como dois vetores perpendiculares de comprimento igual e normais ao vetor de propagação Ki. Hostra-se também as ondas transmitidas (Ki) e refletida (Kr) em algum ànguio é ao vetor normal à superficie (\vec{n}). O plano que contem $\vec{K_1} \in \vec{n}$ é o plano de incidência, e os campos elétricos são caracterizados de acordo com sua polarização em relação ao plano de incidência. Em incidência normal (0 =0°), aproximadamente 4% da luz é refletida em todas as polarizações se considerarmos uma superfí le. Incidindo-se através de uma placa de vidro (duas superfícies), aproximadamente 8% da luz é refletida. Para qualquer ângulo 0 # 0°, a maior parte da luz polarizada paralela ao plano de incidência. Á transmitida e somente pequena parte da luz e refletida.

Experimentalmente, para materiais dielétricos, assim como o vidro, há um ângulo particular de incidência, chamado ângulo de polarização (aproximadamente 37º para o vidro comum), no qual o coeficiente de reflexão para a componente paralela ao plano de incidência é zero. Esso significa que o feixe refletido do vidro, embora de baixa intensidade, é linearmente polarizado com seu plano 04 polarização perpendicular ao plano de incidência.

Brewster descooriu que no ângulo de polarização (ou ângulo de Brewster), os raios refletido e refratado estão seperados de 900. Essa descoberta permitiu correlacionar a polarização com o índice

25

.

.....

relativo de refração e pode ser mostrado que (39):

 θ_{g} =tan⁴ (n_g/n_g) 1.13 onde $\theta_{g} \neq 0$ ângulo de Brewster, n_g $\neq 0$ índice de refração do meio no qual a luz \neq transmitida e n_g $\neq 0$ índice de refração do meio da luz incidente.

A expressão 1.12 é conhecida como a Lei de Brewster. O ângulo de Brewster é uma função do comprimento de onda em virtude da dispersão. No entanto, a variação sobre o espectro visível é muito pequena.

No ângulo de polarização, a componente paralela ao plano de incidência é completamente refratada. Portanto, o feixe transmitido, que é de alta intensidade, é parcialmente polarizado.

Embora o raio refletido esteja completamente polarizado, somente uma fração muito pequena da luz é refletida (aproximadamente 15%), numa interface ar-vidro. Por isso, a produção de luz polarizada pela reflexão no ângulo de Brewster não é muito eficiente.

figura 1.8: Esquema para polarização por reflexão (40).

1.4. c- POLARIZAÇÃO ATRAVÉS DE CRISTAIS BIRREFRINGENTES

A polarização com cristais de dupla refração requer algum conhecimento sobre cristalografia. Enumeraremos aqui, seis fatos básicos sobre ótica de cristais importantes para entender o polarizador mais comum de dupla refração cristalina - o prisma de Nicol.

1- Quando dirige-se un feixe de luz sobre un cristal birrefringente, encontra-se geralmente dentro do cristal dois feixes, e estes são invariantes em suas características;
2- Em geral, um destes feixes tem uma direção do fluxo de energia que é oblíqua, ao invés de normal, às frentes de onda;
3- Geralmente os dois feixes têm velocidades de propagação diferentes e direções de propagação diferentes;

4- Cada feixe é 100% polarizado:

5- As duas formas de polarização são ortogonais.

Ao incidirmos um raio sobre um cristal não pertencente ao sistema monoclínico, este da lugar a formação, no meio cristalino, de dois raios: um, chamado ordinário, que obedece as ieis comuns da refração: e um, chamado extraordinário, que não oredece is colas leis da refração. Estes raios são polarizados em cois planos ortogonais entre si e orientados de um modo determinado em relação a rede cristalina. Uma vez produzidos os dois raios no cristal, ao ser eliminado um deles, o outro emerge no ar polarizado.

O mrisma de Nicol consiste em um cristal de espato da Islândia cortado em duas partes segundo um certo plano, como indicado na figura 1.9. Essas duas partes são depois coladas com um cimento que tenha índice de refração intermediário entre os índices ordinário e

27

÷.

extraordinário do cristal (o cimento comumente uzado é o bálzamo do Canadá, pois seu índice de refração é quase ideal. 1.55). Um raio de luz que incida sobre o prisma de Nicol divide-se em dois, ordinário e extraordinário. O raio ordinário sofre reflexão total sobre a superfície de separação com a camada de bálsamo enquanto que o extraordinário emerge do prisma de Nicol, gerando assim luz linearmente polarizada.

1

Ł

figura 1.9: O polarizador de Nicol

O plano $P_1 Q_1 P_2 Q_2$ é o plano onde o cristal calcita foi cortado em dois e então unido com o bálsamo Canadá. As quatro faces laterais estão cobertas com tinta (37).

CAPÍTULO 2

EFEITOS DA LUZ COERENTE E POLARIZADA EN UNA SUPERFICIE MICROSCOPICAMENTE RUGOSA

Neste capítulo estudaremos os efeitos da luz coerente e polarizada quando iluminando uma superfície que possui micro-rugosidades. Esta tem papel importante na interação da radiação laser com diversos materiais.

O equacionamento teórico das propriedades óticas de superfícies é obtido através das relações de Maxwell macroscópicas, presumindo-se que a constante dielétrica muda como uma função degrau na superfície, de um valor e_i , no meio 1, para e_2 , no meio 2. Por causa desta mudança abrupta nas propriedades dielétricas que ocorrem em muitas interfaces, e por não haver interface atomicamente lisa, a radiação pode ser espalhada ao longo da interface e interferir com o feixe incidente e/ou refravado (29). A interferência ocorre devido ao alto grau de coerficia espacial do laser e a direção e intensidade do campo espalhado depende da polarização do feixe, conduzindo a uma deposição incomoçênea de energia na interface.

A deposição espacial inomogênea de energia. portanto, está intimamente relacionada ao modo como a radiação eletromagnética incidente é espalhada. à existência de uma superfície microscopicamente rugosa e à interferência que ocorre entre os campos incidente e espalhado. A parte de quaisquer parâmetros do material que influenciam este processo, os parâmetros do feixe que são relevantes são o tipo de polarização (linear, circular) e o

grau (caracterizado por um tempo de correlação), comprimento de onda e coerência espacial.

1

.) .)

. 1

)

)

`) | De particular interesse é a universalidade deste fenômeno, fornecida uma quantidade suficiente de energia que possa ser depositada próximo a interface: se o coeficiente de absorção ror grande o bastante no comprimento de onda incidente, os mesmos efeitos podem ocorrer em sólidos ou líquidos, de naturezas dielétricas diferentes, para comprimentos de onda arbitrários (29).

A seguir, descrevemos o papel da interface na irradiação de um material por um laser. Nosso estudo se baseia na análise de J. E. Sipe et al [30], que estudou a formação de estruturas espacialmente periódicas em superfícies, induzidas por um laser. Consiste basicamente, numa teoria de perturbação com parâmetro de expansão $1/\lambda$, onde " λ " é o comprimento de onda da radiação incidente (luz) e "l" a espessura da região próxima a superfície onde a constante dielétrica não dá uma descrição adequada da resposta do material. Esta região será denominada "selvedge".

Convém ressaltar que nosso interesse neste trabalho é de caráter qualitativo. Enquanto Sipe e seus colaboradores se preocuparam em testar a validade de sua teoria prevendo a localização de estruturas espacialmente periódicas em superfícies iluminadas por lasers, comparando-az com seus dados experimentais, nós nos preocupamos apenas em considerar como se dará a distribuição do campo elétrico e intensidade na superfície em questão, quando a luz for coerente polarizada ou não. Assim, permitimo-nos algumas simplificações no cáculo analítico de algumas grandezas eletrodinâmicas envolvidas, que não seriam praticáveis caso fôssemos, também, realizar estudos quantitativos do problema.
A primeira questão que advém da análise da interação da radiação eletromagnética com uma superfície está na natureza eletrodinâmica da interface que leva a interferência e a deposição inimogênea de energia. Estas, como já foi mencionado, estão intimamente relacionadas a maneira como a radiação eletromagnética incidente é espalhada por uma superfície que apresenta micro-rugosidades. No caso aqui considerado , a radiação incidente provém de um laser e será idealizada como monocromática. Isto não impede que o modelo teórico para o espalhamento de luz se aplique a radiação não-monocromática, pois as componentes de frequências diferentes do campo de radiação são espalhadas independentemente.

Começamos nossa discussão descrevendo a interação de uma onda eletromagnética plana com uma interface como mostra a figura 2.1.

figura 2.1: Esquema mostrando a radiação incidente numa superfície com micro-rugosidades (30).

Un feixe laser , idealizado como una onda plana infirmaincide com um vetor de onda de magnitude $\omega = 2\pi i \lambda$ sobre a superfície rugosa; a componente paralela do vetor de onda paralela à superfície é designada por $\overline{K}_{i}^{\bullet}$, $|\overline{K}_{i}^{\bullet}| = \omega$ sen0. Assume-se que a rugosidade está confinada na região do "selvedge" entre z=0 e z=1, onde 1/ λ << 1.

Se o feixe incide num ângulo θ_i e a componente do vetor de onda no plano da superfície é \overline{K}_i^* , então para una superfície perfeitamente lisa, haverá ondas refratadas e refletidas, ambas com \overline{K}_i^* como componente de seu vetor de onda paralelo a superfície. Se a interface é rugosa, tanto devido a variações espaciais de seu perfil, como devido a sua constante dielétrica (por exemplo, devido a composição), a luz será espalhada em todas as direções, em ameos os meios adjacentes. Mas, se a interface possui uma componente de Fourier da rugosidade \overline{K} , na região do "selvedge", os campos espalhados terão componentes do vetor de onda definidos e runções de \overline{K} . Uma superfície com rugosidade aleatória pode ser considersos como composta de um espectro de componentes de Fourier da rugosidade, existindo assim, um espectro espacial de dampos espalhados.

Esse raciocínio sugere o estudo do fenômeno de deposição inomogênea de energia no espaço \vec{K} . Iniciamos então, desenvolvendo uma equação integral para a polarização na região do "selvedge", mostrada na figura 2.1. Desprezando os efeitos magnéticos, o campo eletromagnético gerado pela polarização $\vec{P}(\vec{r},t)$ no meio, satistaz as equações de Maxwell:

onde os campos são estacionários, da forma:

$$f(\vec{r},t) = Re [f(\vec{r})exp(-i\omega t)] = \vec{\omega} = \omega / v = 2\pi n / \lambda$$
 2.2

Se considerarmos un potencial de polarização da forma [28,34]: $\vec{P}(\vec{r}) = \vec{P} \exp(i \vec{K}, \vec{r}) \delta(2-z_{a})$ 2.3

venos que para $z \neq z_0$, os campos $\vec{E} + \vec{B}$ satisfazen as formas homogéneas de 2.1; as soluções con comportamento adequado em $z \rightarrow \pm \alpha$ são $(\vec{E}_0^*(\vec{r}), \vec{B}_0^*(\vec{r}))$ para $z > z_0 + (\vec{E}_0^*(\vec{r}), \vec{B}_0^*(\vec{r}))$ para $z < z_0$, onde

$$\vec{E}_{(r)} = \vec{E}_{0} \exp(i\vec{\nu}_{0}, \vec{r}) = (\vec{E}_{0} + \vec{E}_{0} + \vec{E}_{0}$$

se propagam para cima e

$$\vec{E}_{(\vec{r})} = \vec{E}_{(\vec{r})} \exp(i\vec{\nu}_{0},\vec{r}) = (\vec{E}_{0},\hat{s} + \vec{E}_{0},\hat{p}_{0})\exp(i\vec{\nu}_{0},\vec{r})$$
 2.5

se propagam para baixo e correspondem, no problema, aos campos inclientes. Temos:

$$\hat{\nu}_{0\pm} = \nu_{c}^{-1} (\hat{k} \pm \omega_{c} \hat{z}), \quad \hat{\rho}_{0\pm} = \nu_{c}^{-1} (\hat{k} \hat{z} \mp \omega_{c} \hat{k}), \quad \hat{s} = \hat{k} \times \hat{z}$$
 $e^{-i(\nu_{c}^{2} - k^{2})^{1/2}}$ ($\nu_{c} \equiv \hat{\omega}$) 2.6

onde os vetores unitários de propagação utilizados estão representados na figura 2.2.

$$\vec{B}_{i}^{\dagger}(r) = \vec{B}_{i}^{\dagger}(r) \text{ seguen das equacões de Maxwell 2.1:}$$
$$\vec{B}_{i}^{\dagger}(r) = -i\omega^{-1} \vec{\nabla} \times \vec{E}_{i}^{\dagger}(\vec{r}) = \vec{B}_{i}^{\dagger} \exp(i\nu_{o_{\pm}}, \vec{r})$$
2.7

Nas equações 2.4 e 2.5. E_{0e}^{\pm} e E_{0p}^{\pm} são, respectivamente. As amplitudes das ondas s-polarizada (componente da radiação perpendicular ao plano de incidência) e p-polarizada (componente da radiação paraleia ao plano de incidência); os vetores unitários escritos mas equações 2.6 formam o triedro ortogonal no sentido:

$$\hat{\mathbf{p}}_{\mathbf{o}\pm} \mathbf{x} \,\hat{\mathbf{s}} = \hat{\mathbf{v}}_{\mathbf{o}\pm} \hat{\mathbf{s}} \,\mathbf{x} \,\hat{\mathbf{v}}_{\mathbf{o}\pm} = \hat{\mathbf{p}}_{\mathbf{o}\pm} \mathbf{x} \,\mathbf{v}_{\mathbf{o}\pm} \mathbf{x} \,\hat{\mathbf{p}}_{\mathbf{o}\pm} = \hat{\mathbf{s}}$$
 2.9

e o renso: unitário U pode ser decomposto como:

$$U = \widehat{\underline{c}} + \widehat{\underline{b}} + \widehat{\underline{b} + - \underline{b} + - \underline{b} + - \underline$$

assim, procuramos por soluções de 2.1 da forma:

$$\vec{\mathbf{E}} (\vec{\mathbf{r}}) = \theta (z - z_{p}) \vec{\mathbf{E}} (\vec{\mathbf{r}}) + \theta (z_{p} - z) \vec{\mathbf{E}} (\vec{\mathbf{r}}) + \vec{\mathbf{e}} \exp(\mathbf{i} \vec{\mathbf{K}} \cdot \vec{\mathbf{r}})$$

$$\vec{\mathbf{E}} (\vec{\mathbf{r}}) = \theta (z - z_{p}) \vec{\mathbf{E}} (\vec{\mathbf{r}}) + \theta (z_{p} - z) \vec{\mathbf{E}} (\vec{\mathbf{r}})$$

$$2.10$$

onde o termo em e representa a contribuição da polarização 2.3 e os coeficientes nos outros cermos devem, juntamente com e, ser determinados. Colocando as equações 2.10 em 2.1, vemos que as útimos serão satisfeitas em codos os pontos ser

$$\hat{z} \times i \overline{z}_{j}^{*} = sp(iw_{j}z_{j}) - \overline{z}_{j}^{*} exp(-iw_{j}z_{j}) + i \overline{K} \times \overline{e}^{*} = 0$$

$$\hat{z} \times e^{2} = 0$$

$$\hat{z} \times i \overline{z}_{j}^{*} exp(iw_{j}z_{j}) - \overline{B}_{j}^{*} exp(-iw_{j}z_{j}) + i \overline{w} = -4\pi i \overline{w} \overline{P}^{*}$$
onde usames $\underline{d\theta(z)} = \delta(z)$
 dz

As equações 2.11, que são necessárias para satisfazer 2.1 em $z = z_{\alpha}$. São similares às condições sobre as componentes tangenciais de \overline{E}^{*} e \overline{H}^{*} (aqui igual a \overline{B}^{*}) que aparecem na eletrodinâmica macroscópica, mas diferem no fato de aqui existir uma polarização e o campo gerado por ela. Para resolver as equações 2.11, devemos colocar: e. se os coeficientes de
$$\mathbf{E}_{0}^{-1}$$
 (r') são tomados como:
 $\mathbf{\widetilde{E}}_{0}^{\pm} = 2\pi i \widetilde{\omega} \omega_{0}^{-1} \exp(\mp i \omega_{0} z_{0}) \mathbf{\widehat{s}}, \mathbf{\overline{P}}^{+1}$ 2.13

as equações 2.7 e 2.11 são satisfeitas. Combinando 2.10, 2.12 e 2.13, temos:

 $\Rightarrow \Rightarrow z z \Rightarrow \Rightarrow$ a função degrau usual:

Já que 2.15 satisfaz as equações 2.1 e 2.3 e tem comportamento acequado em z → z ∞. é a solução das equações de Maxwell procurada. Para um potencial de polarização da forma:

temps à generalização:

$$\vec{E}'(z) = \int \vec{G}'(z-z') \cdot \vec{P}'(z') dz' \qquad 2.10$$

Assim, para o nosso caso temos, para a componente de Fourier da rugosidade \vec{K} :

$$\vec{E}^{(\vec{K},z)} = \vec{E}^{(\vec{K},z)} + \int \vec{G}^{(z-z')} \vec{P}^{(\vec{K},z')} dz' \qquad 2.19$$
onde $\vec{G}^{(z-z')} = \vec{G}^{(z-z')} -4\pi\hat{z}\hat{z} \delta(z-z')$

(3) (z-z')= (3) (K) (z-z') exp[iw,(z-z')] + (3) (K) (z-z') 2.20 x exp[-iw,(z-z')] e

$$\begin{array}{c} \widehat{\psi} & \widehat{\kappa}_{\pm}^{*} \rangle = 2\pi i \omega^{-1} \widetilde{\omega}_{0}^{2} (\widehat{s} \widehat{s} + \widehat{\rho}_{0\pm} \widehat{\rho}_{0\pm}) & \widehat{\rho}_{0\pm} = \widetilde{\omega}^{-1} (k\widehat{s} \neq \omega_{0}\widehat{k}) \\ \widehat{s} = \widehat{v} \times \widehat{z} & \omega = (\widetilde{\omega}_{0}^{2} - k^{2})^{4/2}, \quad Re\omega_{0}, \quad Im\omega_{0} \geq 0 \end{array}$$

Na expressão 2.19, $\vec{E}_{0}(\vec{k},z)$ é a transformada de Fourier da solução da parte homogênea de 2.1 e corresponde ao campo incidente. Contudo se o "selvedge" não é desprezado, o campo incidente não é apenas $\vec{E}_{0}(\vec{k},z)$, deve-se incluir o campo do "selvedge", que é representado em 2.19 pelo termo com a função de Green. A função de Green diádica 2.20 identifica as componentes s e p-polarizada geradas em cada \vec{k} pela polarização da onda original (27).

Para um feixe incidente de $z \rightarrow + \alpha$, temos:

 $\vec{E}_{c}(\vec{K},z) = \vec{E}_{c}(\vec{K})\exp(-i\omega_{c}z)$ ende $\vec{E}_{c}(\vec{K})$ pode ter componentes $\hat{s} \in \hat{p}_{0-}$, correspondendo às endas s
e p-polarizadas, respectivamente.

Temos então, para o campo no "selvedge" três contribuições distintas: a primeira é o campo elétrico no meio i devido a polarização do "selvedge" (z'>1); a segunda contribuição é dada peia própria polarização do "selvedge" (O(z'(1), enquanto que a terceira se deve a polarização do meio 2, induzida pela polarização do "velvedge" (z'(0).

a presenta contribuição é dada então, pela polarização do sero 1. que, con sua vez, é induzida pela polarização do "estrempe" en pode ser escrita como:

$$\int_{z'=1}^{z} \left(\vec{G} (z-z'), \vec{P} (\vec{K}, z') dz' \right)$$
 2.23

Como estamos interessados em calcular o campo elétrico no "selvedge", temos 0<z<1 e, portanto, z'-z>0. Usando esse resultado nas equações 2.20 e 2.21 e substituindo em 2.23, temos para o campo gerado no "gelvedge" pela polarização do meio 1:

 $e \times p(-iw_{g}z) \stackrel{f}{g} (\vec{K}) \quad \overline{Q}_{1}^{2}(\vec{K}), \qquad 2.24$ $com \quad \overline{Q}_{1}^{2}(\vec{K}) = \int_{z'=1}^{\infty} \left[\vec{P}(\vec{K},z') e \times p(iw_{g}z') dz' \right]$

Em relação ao meio 2, se este for caracterizado por uma

susceptibilidade X. temos:

والمراجع المراجع والمعادية والمعادية المعالمية والمحمد والمعادية والمراجع والمراجع والمعالية

e o campo incidente efetivo no meio 2 (z(0) toma a forma:

$$\operatorname{com} \vec{e}_{i}^{\dagger}(\vec{K}) = \vec{e}_{i}^{\dagger}(\vec{K}) + \vec{g}_{i}^{\dagger}(\vec{K}) \vec{Q}_{i}^{\dagger}(\vec{K})$$
 2.27

$$e \vec{v}_{z',z0}^{2} e^{i\omega_{z',z0}} e^{i\omega_{z'}} \vec{P}(\vec{K}, z') dz'$$
 2.28

Em 2.27, o primeiro termo corresponde ao campo que se propaga no "selvedge" proveniente de z=+x , o segundo termo se refere ao campo gerado pela polarização do "selvedge".

A resposta do meio a esse campo incidente
$$\vec{E_{j}}(\vec{K})$$
 é:
 $\vec{E}(\vec{K},z) = \exp(-i\omega_{j}z)$ $\vec{t}(\vec{K}) = \vec{E_{j}}(\vec{K})$ (z(0) 2.29
onde $\vec{t}(\vec{K}) = \hat{s}\hat{s} t_{j} + \hat{p}_{0}\hat{p}_{0} t_{p}$ 2.30

é a matriz que envolve os coeficientes de Fresnel para a transmissão de luzis e p-polarizada:

$$t_{a} = \frac{2}{2}\omega \left(\omega_{a} + \omega\right)^{-1}$$

$$t_{a} = \frac{2}{2}\omega \left(\omega_{a} + \omega\right)^{-1}$$

$$e_{a} = \frac{2}{2}\omega \left(\omega_{a} + \omega\right)^{-1} \left(\log 2 + \omega k\right)$$

$$2.32$$

 $x = 1 + 4\pi X$ é a constante dielétrica do meio 8.

For sua vez, a contribuição da polarização do meto 2 para o campo eletrico no "selvedge" é dada por:

envoive os coeficientes de reflexão de Fresnel para luz s e p-polarizada:

$$r_{p} = (\omega_{p} + \omega)(\omega_{p} + \omega)^{-1}$$

$$r_{p} = (\omega_{p} + \omega)(\omega_{p} + \omega)^{-1}, respectivemente.$$

Portanto, das equações 2.19, 2.24 e 2.29 temos, para o campo

elétrico no "selvedge" a expressão final (O(z(1): $\vec{E}^{(\vec{K},z)} = \vec{E}^{(\vec{K})}_{(\vec{K})} \exp(-i\omega_{z}) + \exp(-i\omega_{z})^{\vec{g}}_{\vec{g}}(\vec{K}) \vec{Q}^{(\vec{K})}_{\vec{k}} + \vec{r}^{(\vec{K})}_{\vec{k}} \vec{E}^{(\vec{K})}_{\vec{k}} \times \exp(i\omega_{z}) + \int_{\vec{x}=0}^{1} \vec{G}^{(\vec{x}-z')}_{\vec{k}} \vec{P}^{(\vec{K},z')}_{\vec{k}} dz'$ 2.36

$$\vec{E} \in \vec{K}, \vec{z} := \vec{E} \in \vec{K}, \vec{z} := exp(iw_z) \vec{r} \in \vec{K}, \vec{z} = \vec{E} \in \vec{K}, \vec{z} := exp(-iw_z) \times \vec{g} \in \vec{K}, \vec{z} := exp(-iw_z) \times$$

ou

$$com \vec{E}_{i}(\vec{K},z) = \vec{E}_{j}(\vec{K})exp(-iw_{j}z) + \vec{r}(\vec{K})\vec{E}_{j}(\vec{K})exp(iw_{j}z)$$
 2.38

O primeiro termo de 2.36 dá o campo que se propaga no "selvedee", proveniente de z= +x ; o segundo termo se deve a polarização do meio 1, enquanto que o terceiro fornece o campo devido a polarização do meio 2; o quanto termo corresponde à polarização do próprio "selvedee".

Introduzindo agora uma relação para a polarização no "selvedye", optamos pela forma mais simples [30]:

 $\vec{P} < \vec{r} > = X_{y} < \vec{r} > \vec{E} < \vec{r} >$ (0 < z < 1) 2.39

 onside $X_{y} < \vec{r} > = X_{y} < \vec{r} >$ $b(\vec{r} > = 0; 1)$ 2.40

O valor da função $b(\vec{r})$ pode ser O ou 1, dependendo se tratamos da região não preenchida por material ou da região ocupada rob "selvedge", respectivamente.

As equições 2.36. 2.19 e 2.40, determinam a polirização no "secondre". Entretanto, já que estamos interessados em analisar as características qualitativas do modelo de campos espalhados, ponemos considerar resultados padrões para a forma da polarização no "selvedge".

Temos então, que se não houvesse material na região do "selvedge", o campo elétrico seria $\vec{E_g} = \vec{E_l} + \vec{r} \cdot \vec{E_l}$, onde $\vec{E_l} \cdot \vec{e}$ o campo incidente e \vec{r} a matriz dos coeficientes de reflexão de Frezuel. Na ordem mais baixa do parâmetro de expansão i/A, a

peranização em pontos no "selvedge" onde há material processo é dada por:

·· · · ·· ·

المتعامين المحاك فتتعريها

.

once o tensor resposta $\gamma = \gamma_2 \hat{z} \hat{z} + \gamma_1 (\hat{x} \hat{x} + \hat{y} \hat{y})$ tem componentes γ_2 e γ_1 que são funções das constantes dielétricas dos meios envolvidos no problema. O tratamento feito por Sipe et al (30) para o cálculo da polarização resultou em correções de γ_2 e γ_1 .

Construindo uma solução aproximada que leve em conta a forma da rugosidade superficial, notamos primeiramente que, exceto por sua variação no plano xy, $\vec{E_i}(\vec{r})$ - que está no espaço real- é a transformada de Fourier de $\vec{E_i}(\vec{K},z)$ e pode ser tomado como uniforme sobre o "selvedge" no limite \vec{w} l << i e kl << i, ou seja, no limite de um "selvedge" de espessora muito menor que o comprimento de onda da radisção incidente e com k não muito grande. Assumimos então, uma polarização do "selvedge" da forma:

para pontos no "selvedge", onde \vec{p} é o vetor dado por \hat{z} .41 e que acompanna a variação de $\vec{E}(\vec{p})$ no plano xy.

adotamos ainda um modelo para a rugosidade superticial montras, calígura 2.3 e dado por b(r)= pagos

Considerando i_c como um comprimento de correlação transversal. isto é, o comprimento de correlação da rugosidade no plano xy. temos que o resultado padrão para o tensor resposta no limite $l_{t} < i > i$ (no caso de uma interface vácuo material tipo lâmina) é (304):

$$4\pi r_{\pm} = \frac{c-1}{2}$$
 + $4\pi r_{\pm} = c-1$ 2.44

figura 2.3: Modelo simples para a rugosidade superficial (30).

Sipe et al [30] estenderam este tratamento para considerar correções do campo local que são importantes quando $l_{t}/l < 1$. Ainda no caso de uma interface rugosa vácuo-material, com o meio 2 com a mesma constante diviétrica do "selvedge", porém no limite $i_{t}/l < i$. temos:

$$4\pi r_{z}^{2} (e-1)(e - (1-F)(e-1)(a(s) + R = (s)))^{-1} = 2.45$$

$$4\pi r_{z}^{2} (e-1)(1 + 1/2(1-F)(e-1)(a(s) - R = (s)))^{-1}$$

onde s = 1/1 é a razão entre a distância de correlação no plano da superfície e a espessura do "selvedge" (s corresponde ao formato das "ilhas" que concluem a superfície), R= (e-1)/(e+1) e \vec{r} é a fração do "selvedge" preenchida por material (preenchida por "ilhas") chamado de fator de preenchimento, e: a(e)= (e²el)^{1/2}= e

$$\frac{2}{(s)^{2}} = \frac{1}{2} \left[\left(\frac{s^{2}}{(s)^{2}} + \frac{s}{s} \right) - \left(\frac{s^{2}}{(s)^{2}} + \frac{s}{s} \right) \right] = \frac{1}{2} \left[\left(\frac{s^{2}}{(s)^{2}} + \frac{s}{s} \right) - \left(\frac{s^{2}}{(s)^{2}} + \frac{s}{s} \right) \right]$$

Pels concordância dos resultados acima citados com se medidas experimentais de Sipe (31), vemos que a expressão da polarização dada por 2.41 e 2.42 é adequada ao problema que estamos tratando.

Não estamos interessados na forma exata do tensor $\frac{1}{7}$, mas somente no que a existência do "selvedge" pode acarretar, pela sua polarização, quando da incidência da radiação eletromagnética. Uma vez que a polarização no "selvedge" é conhecida, o campo por ela gerado no meio 2 é facilmente determinado pela expressão 2.18. Este campo interfere com o campo refratado usual (ordem zero) revando à osposição inomogênea de energia.

فحادة كميكتم التحلية التناك الربحان

المستعلق المحاج المراجع

Olhamos agora mais atentamente como se dá essa deposição incluigênta de energia nas proximidades do plano z=0. Das equações 2.41. 2.42 e 2.43, encontramos:

$$\vec{P}(\vec{p}) = b(\vec{p}) \cdot \vec{r} \cdot \vec{E}(\vec{p})$$

$$ende \cdot \vec{r} = r_{2} \cdot \hat{z} \cdot r_{1} (\hat{x}\hat{x} + \hat{y}\hat{y})$$

$$a 49$$

$$e \overline{E}(\overline{\rho}) = \overline{E}(\exp(iK(\overline{\rho})))$$

Aqui $\overline{K_{i}}$ é a componente do vetor de onda incidente paraleio à superficie e:

é obtido da equação 2.38. dentro dos limites kl $((1 e \tilde{w}))((1 + e \tilde{w}))$ \overleftrightarrow{V} o tensor unitário dado por 2.9, e assumimos uma onda incidente plana por simplicidade (onda com coerência temporalmonocromaticidade perfeita). Consideramos primeiramente, apenas uma componente de Fourier da função b(\overrightarrow{K}) da rugosidade e colocamos:

$$\mathcal{D}(\overline{\mu}^{2}) = \mathcal{D}(\overline{K}^{2}) \exp(i\overline{K}^{2}, \overline{\rho}^{2}) + b^{2}(\overline{K}^{2}) \exp(-i\overline{K}^{2}, \overline{\rho}^{2})$$
 2.50

em 2.47. Juntamente com as equações 2.48, obtemos:

$$\vec{u}_{2}^{\dagger}(\vec{p}) = \vec{u}_{2}^{\dagger} \exp(i\vec{K}_{1}^{\dagger}, \vec{p}^{\dagger}) + \vec{Q}_{2}^{\dagger} \exp(i\vec{K}_{1}^{\dagger}, \vec{p}^{\dagger})$$

$$\geq .51$$

$$\mathbf{e} \ \widetilde{Q} = \mathbf{b} \in \overline{K} > \mathbf{1} \ \mathbf{p}', \widetilde{\mathbf{c}}' = \mathbf{k} + \mathbf{k}' + \mathbf{k}'$$

da muuayao pana $\widetilde{Q}_{\mathbf{z}}'(\overline{\mathbf{k}'})$, dada na expressão 2.28, tomada no limite

 $\tilde{\omega}$ 1x41, x1x41,

Das equações 2.27, 2.28, 2.29 e 2.51, podemos achar o campo elétrico no meio 2: $\vec{E}(\vec{r}) = \vec{E}^{(0)}(\vec{r}) + \vec{E}^{(1)}(\vec{r})$, 2.53

oncie

$$E^{(0)}(\vec{r}) = \vec{c}(\vec{k}) E_{0}^{\dagger} \exp(i\vec{k}), \vec{\rho} \exp(-i\vec{k}) E_{0}^{\dagger} \exp(i\vec{k}), \vec{\rho} \exp(-i\vec{k}) E_{0}^{\dagger} \exp(-i\vec{k}) E_{0}^{$$

+ ϕ campo refratado que estaria presente sem o "selvedge", ϕ $\vec{E}^{(1)}(\vec{r}) = \vec{E}_{exp}(i\vec{K}, \vec{\rho}) exp(-i\omega(\vec{K})z) + \vec{E}_{exp}(i\vec{K}, \vec{\rho})$

é o campo do "selvedge", onde

$$\vec{E}_{\pm} = \vec{V} \cdot \vec{K}_{\pm} \cdot \vec{Q}_{\pm} \cdot \vec{K}_{\pm} \cdot \vec{Q}_{\pm} = 2\pi \tilde{\omega} \cdot \vec{n} \cdot \vec{K}_{\pm} \cdot \vec{Q}_{\pm}$$
2.56

A energia absorvida no meio 2 é proporcional a $A(\vec{r}) = |\vec{E}(\vec{r})|^2$. Assumindo que o campo do "selvedge" é uma pequena perturbação, tomamos $|\vec{E}^{(i)}| \le |\vec{E}^{(0)}|$ e achamos: $A(\vec{r}) \ge 2Re(\vec{E}^{(0)}(\vec{r}), \vec{E}^{(i)}(\vec{r}))$ 2.57

para a parte inomogênea de A(\vec{r}). Em z=0, esta se reduz a: A(\vec{p}) = 4 $n\vec{\omega}$ lRe(b(\vec{K})($\nu(\vec{K})$)+ $\nu(\vec{K})$)exp($i\vec{K}$, \vec{p})) 2.58 and $\nu(\vec{K})$ = \vec{r} * \vec{r} * \vec{r}

onde
$$\nu(K_{\pm}) = E_{\pm}^{(1)} h'(K_{\pm}) \gamma' E_{\pm}^{(1)}$$
 2.59

De 2.58, vemos que ϕ módulo de A($\vec{\rho}$) é proponational a $(b,\vec{k})(\nu(\vec{k}) + \nu(\vec{k}))$). Para una soma dos componentes de Fourier da rugosidade, obtemos:

onde a tunção resposta que descreve a eficiência para a deposição inconogênea na superfície em \overline{K}^{0} , devido ao feixe incidente caracterizado por \overline{K}^{0} , é dado por:

e $p(\vec{E}')$ é a medida da ampostude da rugosidade superficial em \vec{E}' . A função $q(\vec{K}, \vec{K}'_{1})$ é responsável pela modulação da intensidade na região zeo. Para achar a dependência de $q(\vec{K}, \vec{K}'_{1})$ sobre \vec{K}' , notamos primeiramente que com a equação 2.58, obtém-se:

onde $\hat{e}_{1} = \hat{s}$, $\hat{k} = \hat{z}$. Logo: $h_{ss} = 2i\tilde{w}(w_{0}+w)^{-1}$, $h_{ss} = 2i\tilde{w}(w_{0}e^{+w})^{-1}$, $h_{ss} = 2ik^{-}\tilde{w}^{-1}(w_{0}e^{+w})^{-1}$, $h_{ss} = 2iw^{-}\tilde{w}^{-1}(w_{0}e^{+w})^{-1}$, com todos os outros h₁ desaparecendo.

Estudos feitos por Sipe et al (30) sobre as funções $\widehat{h}(\overline{K})$ envolvidas no problema, mostram que estas têm comportamento suave em quase todo o intervalo considerado, mas possuem máximos iocais em valores de \widehat{K} que satisfazem:

 $\{\vec{K}_{1} \pm \vec{K}\} = \vec{\omega}$ 2.64 e $\{\vec{K}_{1} \pm \vec{K}\} = \omega$ n 2.65 onde a equação 2.64 é válida para materiais com grandes índices de refração, enquanto que 2.65 se aplica a materiais com n2 i. Isto está de acordo com os resultados experimentais obtidos com diversos materiais, não-biológicos, com constantes dielétricas diferentes e, portanto, com diferentes índices de refração (31).

A expressão final para $v(\overline{k_{\pm}})$ é: $v(\overline{k_{\pm}}) = (n_{ab}(K_{\pm})(\overline{k_{\pm}}, \widehat{x})^2 + h_{kk}(K_{\pm})(\overline{k_{\pm}}, \widehat{y})^2)r_1(t_0(K_{\pm}))^2$ 2.66 para iuz s-polarizada, onde assumimos $\overline{k_{\pm}}$ na direção \widehat{x} . Para luz p-polarizada, achamos a expressão: $v(\overline{k_{\pm}}) = (n_{ab}(K_{\pm})(\overline{k_{\pm}}, \widehat{y})^2 + h_{kk}(K_{\pm})(\overline{k_{\pm}}, \widehat{x})^2)r_1(t_{\pm})^2 + \frac{1}{2}$ $+ h_{ka}(K_{\pm})(\overline{k_{\pm}}, \widehat{x})r_{\pm}e t_{\pm}^2 t_{\pm} + h_{kk}(K_{\pm})(\overline{k_{\pm}}, \widehat{x})r_1(t_{\pm})r_{\pm}e + \frac{1}{2}(K_{\pm})r_{\pm}e + \frac{1}{2}(K_$

Pera expressão 2.07, observamos que para luz p-polarizada, η depende da razão $r_{z}r_{z}$, e assim, dos parâmetros s e F do "selvedee". Entretanto, para luz s-polarizada (expressão 2.66), a função η é incependente dos detaines da rugosidade.

Na teoria proposta por Sipe et al 1301, assume-se que ocorra dano nos pontos onde a deposição inomogênea de energia é maior, ou seja, nos pontos de máximo da função $\eta(\vec{K}, \vec{K})$. Nesses locais, para intensidades incidentes no material suficientemente altas, pode ocorrer a fusão que levará então ao aparecimento das estruturas espacialmente periódicas observadas experimentalmente na superfície dos materiais irradiados.

O fenômeno físico da deposição inomogênea de energia depende, em parte, do termo inomogêneo da intensidade dado por 2.57. Se nouver correlação entre os dois campos, $\vec{E}^{(0)}(\vec{r}) = \vec{E}^{(0)}(\vec{r})$, temos luz coerente, produzindo os efeitos descritos anteriormente. Se a correlação entre eles for nula, temos que a distribuição de intensidade será aproximadamente constante sobre a superfície considerada (16).

Com relação ao interesse de nosso trabalho, temos que a eficiência da deposição inomogênea de energia em superfícies com micro-rugosidades iluminadas por laser val depender de como o campo elétrico é polarizado. Considerando um feixe linearmente polarizado, que foi o tipo de luz utilizada na parte experimental de nosso trabalho, esta eficiência dependerá dos parâmetros s e F da rugosidade ou não, no caso da luz ser p ou s-polarizada, respectivamente. Porém, o fator mais importante, já que a radiação pode ser espaihada ao longo da superfície, interferindo com o feixe incidente. É que tanto a direção quanto a intensidade do campo espaihado vai depender, exclusivamente, de como o feixe é polarizado, conduzindo a deposição inomogênea de energia na interfade. A eficiência na deposição também dependerá da polarização do feixe, podendo depender ou não do tipo de rugosidade da superfície irradiada.

.

Consideramos viável a existência de fenômenos físicos como os descritos neste capítulo em material biológico, pois descreveremos no capítulo seguinte, alguns aspectos sobre superfícies biológicas (membranas celulares) que fundamentam a hipótese de que as superfícies celulares se adaptam ao modelo de superfície por nós considerado.

CAPÍTULO 3

HEIBRAMAS BIOLÓGICAS

As membranas externas ou plasmáticas de muitas células, bem como as membranas das organelas internas, como as mitocondrias e os cloroplastos, já foram isoladas e a sua composição molecular estudada por vários autores. Todas as membranas contém lipídios polares, que perfazem de 20 a 90% da massa da mesma, dependendo do tipo de membrana; o restante é na sua maioria, proteína. A parte lipídica das membranas consiste em uma mistura de diferentes espécies de lipídios polares. A membrana do eritrócito humano (glóbulo vermelho do sangue) está bem caracterizada e serve como exemplo. Aproximadamente 99% dos lipídios é colesterol ou um dos fosfolipídios; destes, a maioria é de fosfoglicerídios, que são moléculas assimétricas de forma alongada. Há um grupo polar num extremo e uma cadeia de hidrocarbonetos no outro. O grupo polar é estável quando em contato com moléculas de água, também polares. Tais grupos são chamados hidrofílicos. As cadeias de hidrocarbonetos são instáveis quando associadas com água, e por isso são chamadas hidrófobas. A molécula como um todo é chamada anfipática.

As características físicas das moléculas de lipídios da membrana, produzem efeitos que são fatores centrais na estrutura da membrana. Esses efeitos são amplamente revelados no comportamento de monocamadas das moléculas. Uma monocamada é um arranjo tridimensional com a espessura de uma molécula. Já que os fosfolipídios são moléculas anfipáticas, eles podem formar monocamadas em uma interface ar-água. As cabeças poienes se associam com a água e as caudas hidrófobas se orientam lado a lado na direção do ar. ficando mais ou menos em ângulo reto com a superfície.

Em 1928. Gortel e Grendel [45] fizeram uma observação que foi assumida como o primeiro passo para a ciência moderna da biomembranalogia. Eles extraíram o lipídio de eritrócitos com acetona e formaram uma monocamada que ocupou, em uma pressão superficiai razoável, uma area duas vezes maior que a área estimada da superficia da célula (membrana) da quai o lipídio foi extraído. Concluiram então, que os lipídios do glóbulo vermelho do sangue estavam arranjados em estruturas de bicamadas na membrana celular.

Posteriormente, em 1943, Davson e Danielli (45) sugeriram que a bicamada lipídica era estabilizada por uma fina camada de proteínas de cada lado da membrana (modelo "sanduíche").

Athaimente, sabe-se que as membranas naturais são muito finas, de 6 a 9 mm de espessura (é interessante notar que, por suas oumensões, as biomembranas ocupam uma escala no espaço-tempo muito grande para se tratar quanticamente e muito pequena para aplicação de membrance contínua), fiexíveis e fluidas. Elas são totalmente percesáveis i água, mas são intrinsicamente impermeáveis a fons carregados eletricamente como o Na^{*}. Cl^{*} ou H^{*} e a moieculas não carregadas como os açúcares. As membranas naturais permitem àquelas moléculas polares passar somente se houver um sistema de transporte específico ou transportadores. Por outro lado, as moléculas lipossolúveis passam facilmente através das membranas comprovando a idéia de que a barreira essencial ao movimento de substâncias através da membrana é uma camada lipídica, pois elas

entram em solução na base hidrocarbonada. Além disso, tanto as memoranas naturais como as bicamadas de lipídios polares possuem alta resistência elétrica, sendo portanto bons isolantes. Por causa de tais propriedades comuns acredita-se hoje, que as membranas naturais consistem de uma bicamada de lipídios polares, do tipo "lençol" contínua, contendo algumas proteínas.

As proteínas das diferentes membranas perfazem de 20 a 80% de sua massa. Algumas das proteínas das membranas são enzimas, outras funcionam na ligação e transporte de moléculas polares através da membrana. As proteínas da membrana diferem na sua associação com a estrutura da membrana. Algumas, chamadas extrínsecas ou perifériras, são fracamente ligadas à superfície da membrana e podem ser facilmente removíveis. Outras, são embebidas na estrutura da membrana e podem mesmo se estender completamente através dela: estas proteínas são chamadas de intrínsecas ou integrais e apenas podem ser removidas com detergentes ou solventes orgânicos.

Para confirmar a hipótese que as proteínas integrais da memmane penetram a bicamada lipídica. não estando simplesmente espainados ao longo de seus planos polares, surgiu a técnica de "ree-de-stablog", ou criofratura, mostrada nas figuras 3.1 e 3.2.

contre procedimento, as células são congeladas e o pioco congelado é estilhaçado ou partido. As linhas de fraturas formadas, algumas vezes dividem uma membrana ao longo de um piano entre as duas camadas de inpídios (figura 3.1). Réplicas das duas superfícies que se "olham" são feitas e examinadas pela eletromicroscopia (figura 3.2). A superfície interna de uma camada de inpídio forma o fundo inso; os aglomerados de corpos globulares são moléculas de proteínas integrais da membrana. A seta aponta a

and a state of the state

figura 3.1 figura 3.2 Visão do interior da membrana do eritrócito, visualizada pelo método da criofratura (44).

Uma das dificuldades desse método é eliminar a presença da áqua que, por se expandir durante a fase de congelamento, poderia ser responsável pero aspecto rugoso da superfície observada no microsoópio eletrônico. Mostranos nas figuras 3.3 e 3.4 duas imagens obtidas pelo processo da criofratura que se referem às superfícies nidrófobas da biomembrana. Vemos, então, que mesmo onde a presença da água é reduzida, as superfícies lisas das monocamadas lipidicas são internompidas por projeções dando a superfície um aspecto rugoso.

As evidências que nos permitem afirmar que essas pequenas particulas que se projetam em ambas as faces são moléculas de proteína, advém do fato que fazendo um tratamento de membrana que permita remover as proteínas integrais, também reduzir-se-á o número ne partículas visualizadas pela técnica de criofratura.

figura 3.3 (nonocamada interna)				figura 3.4				
					(monocamada externa)			
Imagens	obtidas	peio	método	da	criofratura	ne	monipitatia	do
		eritróc	ito - fa	ice h	idrófoba (45).	,		

A partir dos resultados químicos, da evidência da microscopia electrónica e da semeinança nas propriedades das membranas naturais dom as picamadas de fosfolipídios sintéticos. Singer e Nicholson postularam em 1972 [45], uma teoria unificadora da estrutura de membrana chamada de modelo do mosaico fluido. Eles propuseram que a matriz, ou a parte contínua da estrutura da membrana, fosse uma bicamada de lipídio polar.

A bicamada é fluida porque as caudas hidrófobas de seus inordios polares consistem de uma mistura apropriada de ácidos graxos saturados e insaturados que é fluida na temperatura normal da céluia. O modelo do mosalco fluido propõe que as proteinas integrais da membrana possuam grupos R de aminoácidos hidrófobos na sua superfície o que forcaria as proteínas a se "dissolverem" na postão signofoba central da bicamada. Por outro lado, o modelo provée que as proteínas periféricas das membranas tenham essencieimente os seus grupos R hidrofilicos na sua superfície, ilgados por atração eletrostática às cabeças polares eletricamente dactegadas dos lipídios da bicamada. As proteínas integrais da nerne ana, que incluem as enzimas e os sistemas de transporte, são instivas a menos que sejam colocadas dentro da base hidrofoba da otosmana, o que produt e conformação tridimensional apropriada para sua attytosce. Ressattamos o fato de não naver ilgações covalentes entre as moléculas de lipícios da picamada ou entre os componentes protéleos e os lipídicos.

O modelo do mosaico fiuido permite ainda que as proteínas da membrana se movam lateralmente. As proteínas periféricas ilteralmente flutuam na superfície do "mar" da bicamada enquanto que as proteínas integrais são como "icebergs", quase completamente

suomersas na base hidrocarbonada, conforme mostra a figura 3.5.

figura 3.5: O modelo do mosaíco fluido Singer-Nicholson da estrutura da membrana (44).

Fortanto, de acordo com esse modelo, o mais acerto attainente e de interesse para nosso trabalho, do ponto de vista morteriógico, uma presentorana pode ser considerada como uma superfície dotada de micro-regocidades.

Quanto a fisiologia da célula, vamos mencionar aqui como exemplo, pois serve de maneira geral para nosso trabalho, o que acontece nos glóbulos vermelhos do sangue. Os eritrócitos contém um sistema de transporte de membrana, ou "bomba", que bombeja Na¹ para Fora da célula ao meio circundante, e K' para duntro às espensas da energia fornecida pela hidrólise do ATP dentro da célula. Esta bombe, chammda de AllPase transportadora do Na^{*} e K⁴ nunca bombeia tais fons nas direções opostas. Este tipo de transporte é chamado de transporto ativo, isto é, há gasto da energia metabólica da célula por quebra de AlP para transporte através da membrana. As experiências mostram que para cada 3 fons de Na'que saem da celula, 2 Jóns de K' entram. Assim, a bomba Na'- K'- AlPase é eletrogênica, contribuindo fortemente para uma diferença de polencial através da membrana celular. Essa ddp é conhecida como potencial de repouxo (entre 60 e 100 mV) e se deve a gradientes eletroquímicos existentes entre en lados intra e extraculular, no equilíbrio. Além dessa homba, existem outros mecanismos semulhantes para outros tipos de Íons. Essas "bombas" são responsáveis então, pela própria funcionabilidade da célula, poix controlam a pormeabilidade da membrana. Associadas aux processos de difusão e osmose, são os canais de entrada para as substâncias nocessárias à manutenção da célula, ao mesmo tempo em que expertam os produtos resultantes de seu metabolismo.

O estado de repouso dinâmico, mam estável, caracterizado por um balanceamento entre tais "bombas" aplica-se, geralmente, a todas células vivas. Perém, muitas células exibem "desvies" reversívels desse estado de repouso. Tais "desvies" podem ser descritos como mudanças nas concontrações de soluto nos deis lados da membrana e na diferença de potencial elétrico através da membrana. Apesar de terem sido constatados nas chamadas células excitáveis (neurônios e fioras musculares). evidências mais recentes mostram que o bombeamento de Na^{*}. por exemplo, existe também em céluias de teoidos não-excitáveis (23). Assim, pode-se esperar que a teoria de Hodgkin-Huxley de geração e propagação de potenciais elétricos nas memoranas de células excitáveis, já que tal teoria está relacionada com as correntes de Na^{*} e K^{*} medidas em separado, estando portanto interilgada ^{*}a permeabilidade da membrana, se aplique também a outros tipos de céiulas. Nessa teoria, temos basicamente, uma região de instabilidade elétrica na membrana.

É importante salientar que as "bombas" de Na^{*}- K^{*} não contribuem para o disparo do potencial de ação, e sim, são importantes à manutenção do potencial de repouso.

O potencial de repouso é constante e não pode alcançar um vaion limitar. Para surgir o potencial de ação (figura 3.8) é necessario algum tipo de estímulo, seja químico, eletrico ou mecánico à membrana. Ao aplicar-se à membrana esse estímulo, em princípio aumenta-se sua permeabilidade para os fons Na^{*}. Os fons Na^{*} entram na céluia e, conseqüentemente, a superfície interior da memorare troca o sinal de sua carga de negativa para positiva, originados à despolarização da membrana, ou seja, reduz-se a magnitude da diferença de potencial através da membrana. Durante o impuiso genado, o canal de Na^{*} se fecha e se abre o canal de K^{*}. Os ions Na^{*} saem para o exterior da membrana, conduzindo ao restabelecimento da carga negativa ao interior da membrana. Conre então, a repolarização da membrana, Pode ocourer também uma pequena hiperpolarização. O potencial de ação (PA) se propaga então, peria

fibra nervosa ou muscular, por exemplo, sem atenuação e é regenerado por meio de correntes que fluem da região ativa para região de repouso despolarizando esta última e causando a propagação do PA. Na região ativa, a variação das condutâncias do Na" e K", que produz a despolarização (ou a repolarização). induzindo ao potencial de ação, altera a permeabilidade de equilíbrio da membrana celular e, conseqüentemente, o estado fisiológico da célula (figura 3.7).

figura 3.6: Fases do potencial de ação (40).

potencial de ação (45).

Consideramos importante a aplicação de campos elétricos a uma membrana, pois estes podem interferir de alguma forma no controle elét co natural exercido pela célula.

De un modo genal, trata-se una biomembrana como un cabo condutor de propriedades elétricas ben definidas. Apresenta capacitância de aproximadamente i $\mu F/cm^2$; sua resistividade varia de membrana para membrana, sendo contudo, da ordem de K Ω/cm^2 . O valor de sua constante dielétrica e está entre 2 e 3 (a constante dielétrica do líquido adjacente tem valor próximo a 80). Trabalhos mais recentes (ds-26) têm levado em conta a influência da rugosidade nos parâmetros elétricos de membranas de bicamadas lipídicas.

Outra característica importante é o fato da biomembrana estar sujeita a um campo elétrico da ordem de 10^7 V/m, valor próximo ao campo elétrico associado a um feixe laser com uma densidade de energia de 1 J/cm², que é o valor por nós utilizado experimentalmente.

CAPITULO 4

MODELO FÍSICO TENTATIVO PARA EXPLICAÇÃO DOS EFEITOS NÃO-TÉRNICOS DA RADIAÇÃO LASER POLARIZADA

Independente da divisão didática e cômoda existente entre a Física e a Biologia existem fenômenos que, por definirem-se como de fronteira, exigem conhecimentos dos dois lados para sua explicação. A nível de uma dissertação de mestrado como esta, partindo da Física, somos obrigados a sacrificar um pouco o estudo biológico propriamente dito em prol de exigirmos uma conclusão indicativa da interação da radiação laser com um tecido vivo, esperando que a biologia pura venha a interessar-se pela continuação do trabalho.

Dentre os efeitos da bioestimulação laser nota-se que um dos mais estudados até agora é o efeito da aceleração de cicatrização de lesões. Isto implica no estudo da aceleração de processos da divisão celular que é um processo biológico típico e ainda não bem entendido. Assim, o primeiro passo na nossa pesquisa consiste em delimitar os parâmetros físicos importantes envolvidos direta ou indiretamente no problema, e como tais parâmetros podem ser relacionados com a divisão celular. Por isso, dentro da hipótese levantada inicialmente, pretendemos testar a importância da radiação laser polarizada na ocorrência dos efeitos não-térmicos, em particular com a aceleração cicatricial. Nosso trabalho dá continuidade a uma linha de pesquisa iniciada na UNICAMP com o estudo feito por M. Cotta [16] que consistiu em investigar os efeitos da radiação laser x radiação incoerente no processo de aceleração cicatricial de lesões produzidas artificialmente em

ratos. Entretanto, neste modelo não se considerou os efeitos da polarização da radiação, embora existam referências da literatura especializada [1-4], que tratam dos efeitos da bicestimulação, sugerindo efeitos biológicos devido ao grau de polarização da luz utilizada. Tais trabalhos são em geral especulativos e pouco elucidativos e por esta razão justifica-se um trabalho mais cuidadoso como o presente.

Nos capítulos anteriores tratamos independentemente do efeito físico produzido por radiação coerente polarizada sobre uma superfície rugosa ideal e da descrição de uma superfície biológica sob o ponto de vista de seus parâmetros físicos macroscópicos, como constante dielétrica. e microscópicos, como rugosidade. Salientamos ainda, a importância na funcionabilidade das células de campos elétricos localizados. A tentativa de explicar fenômenos observados anteriormente por diversos autores, bem como de nossa própria observação, da ação de lasers de baixa potência sobre tecidos vivos, depende de como podemos relacionar algumas conclusões, obtidas independentemente, numa forma apropriada, dentro dos aspectos comuns exibidos pelos sistemas investigados. As conclusões que tiramos dos capítulos anteriores desta dissertação bem como da literatura especializada, são:

1- a radiação coerente provoca efeitos em superfícies rugosas diferentes dos produzidos por radiação não-coerente nas mesmas superfícies;

2- também, a radiação polarizada produz efeitos diferenciados em relação a radiação não-polarizada em tais superfícies;

3- a direção e intensidade do campo espalhado na superfície vai depender da polarização do feixe incidente;

4- as superfícies de membranas celulares apresentam micro-rugosidades;

5- a funcionabilidade de algumas células- comprovadamente, a célula nervosa e a muscular- é regida por fenômenos elétricos que ocorrem a nível da membrana celular.

Baseados nesses aspectos supomos primeiramente que a radiação coerente provoque efeitos diferenciados em relação aos efeitos da radiação não-coerente. Com base em alguns trabalhos de outros autores [7], o que inclui um trabalho experimental elaborado por pesquisadores da FCM/UNICAMP (41), podemos supor que a radiação coerente provoca alterações a nível de potencial de membrana. Este último trabalho citado consistiu no tratamento de faringites crônicas inespecíficas com laser de CO2, usando densidades de energia de 0,4 a 0,6 J/cm², dentro, portanto, do intervalo utilizado na literatura e abaixo da mínima dose reativa- que é a menor densidade de energia, tabelada para os diversos tipos de tecidos e lasers, capaz de provocar uma reação térmica detectável (por exemplo, hiperemia) na região irradiada. Foram obtidos bons resultados na cura dessa patologia com o uso do laser. Isso. além de aumentar o número de efeitos biológicos relacionados à aplicação de lasers de baixa potência, também nos leva a pensar se esse efeito não estaria relacionado a alterações na permeabilidade da membrana celular, uma vez que a faringite se resume a uma alteração na permeabilidade vascular da área afetada. Dada a estreita relação entre esta e o potencial de membrana, temos então base circunstancial para nossa hipótese. Ainda, o potencial elétrico da membrana está relcionado ao processo de divisão celular, como visto no trabalho de C. D. Cone (23).

Podemos também considerar que, se um padrão de interferência como o descrito no capítulo 2 (cf. figura 8.1) para o caso de uma superfície rugosa, ocorrer numa membrana celular, teremos regiões dessa membrana sujeitas a um campo elétrico oscilante com mesma magnitude que o campo natural da própria célula, enquanto que outras regiões estarão sujeitas a valores do campo elétrico próximos a zero. No entanto, não podemos afirmar se os efeitos observados se devem a presença do campo elétrico, ou a diferença na intensidade da radiação entre diversas regiões da célula. Entretanto, Pöhl [22] propõe que a reprodução celular requer oscilações elétricas naturais da própria célula e, sabendo que a irradiação de lesões consiste numa aceleração de processos da divisão celular, podemos supor que a incidência de um campo elétrico oscilante possa vir a interferir no controle natural da célula, contribuindo para os efeitos observados com laser de baixa potência.

Considerando agora o caso específico da radiação polarizada, supomos também que ela cause efeitos diferentes na cicatrização de lesões, quando comparada a lesões irradiadas com luz não-polarizada.

M. Fenÿo propõe em seu artigo [3], que a luz linearmente polarizada aja sobre a bicamada lipídica da membrana e. como consequência, os aspectos superficiais (por exemplo, a distribuição de cargas na superfície) e as conexões lipídio-proteína possam ser modificados. Isso ocorre por causa da intensidade do campo elétrico da luz linearmente polarizada, que não só muda a conformação da bicamada lipídica, bem como reordena as cabeças polares dos lipídios, isto é, as cabeças polares podem ser ligeiramente giradas

es relição à direção do campo elétrico da luz linescuente polarizada. Em tal trabalho, foi mostrado que o tratamento com juz polarizada estimula os mecanismos de defesa celular e numeral directionados à eliminação de bactérias, supondo-se assim, que o eletto da luz polarizada sobre a membrana celular pode ser conscidenado como um "engatilhador" inespecífico (ou específico) que pode induzir a uma reação imunológica em cadeia sobre alguns dos pomos leucócitos sadios na superfície da lesão.

Como foi mencionado no capítulo três, as proteínas e os lipidios são as unidades mais importantes da membrana celuiar, com os proteínas biologicamente ativas, incorporadas à orcamada lipidica. A aproximadamente 37°C, o estado da bicamada lipídica está próximo ao pouto de transição de fase- ná uma transição fasica, isto é, a tusão dos lipídios, que passam de uma fase lamelar (fase líquido-cristalina) para uma fase micelar (fase liquida). Próximo a esta temperatura, o estado da bicamada lipídica é muito instável e é provável que a energia recebida na mudança da contormação da bicamada acelere a transição de fase da memorana 04.0000.

vá que ná um contato próximo entre lipídios e proteinas que torna possivel a transferência de energia entre eles, a mudança da contormação da proamada lipídica pode influenciar cada processo vital que é conectado à membrana, tais como:

- a produção de energia da célula:

- os processos imunes:

- as reações enzimáticas, que podem incluir mudança do transporte ativo e energia de ativação das enzimas.

A membrana tem um papel importante em uma variedade de

processos bioquímicos que podem ser influenciados pela mudanda de conformação mencionada acima. Por exemplo:

- reconhecimento (de anticorpos, hormônios, etc);

- controle:

- transporte ativo e passivo (de ions. metabólitos);

- transmissão e conversão de energia (por exemplo, fosforilação oxidativa);

- transferência de informação (neurotransmissores);

- fusão da membrana (por exemplo, liberação de materiais ecuazenados nas vesículas intracelulares).

A estrutura da membrana pode ser modificada por muitos spenter, tais como, aglutinina de plantas, drogas, hormónios, bem como, or polarizada. Quantidades pequenas de qualquer uno destas sobstâncias químicas são bastante efetivas, causando maiores mudanças no metabolismo celular. No entanto, a quantidade de ecençia transferida pela luz polarizada, pode causar o mesmo eteito. Resumindo, a reordenação dos lipídios pode influenciar cada promesso vital que é conectado à membrana celular.

For outro lado, para a formulação de um modelo qualitativo apequado la interação luz-matéria viva, devemos também considerar aiguns aspectos constitucionais do tecido biológico.

As células são, em geral, organismos muito pequenos (de dimensão da ordem de 10⁻⁹m), què no tecido epitelial se emcontram muito próximas entre si, ficando separadas por um escasso espaço intercelular. No caso particular da pele, existe uma camada superficial de epitélio estratificado- a epiderme- colocada sobre uma base de tecido conjuntivo- a derme. Na epiderme, as células são, na maioria das vezes, de formato poligonal. As situadas em ingares mais profundos tendem a uma forma colunar cilíndrica. - as mais ingenficiais ficam um tanto achatadas. As figuras -... - -... ilustram o epitélio da pele.

Sg: Glândulas sudoriparas So: Orifícios Me: Corpúsculo de Meissmer Pe: Corpúsculo Paciniano F: Gordura subcutânea Se: Estrato córneo Si: Estrato lúcido Sg: Estrato granuloso Sm: Estrato de Malpighi

figura 4.1: Diagrama ilustrando a estrutura da pele coberta com salièncias papiares (46).

figura 4.2: Epitélio pavimentoso estratificado queratinizado da

pele (epiderme) [47].

fos riguras 4.1 e 4.2. notamos que a orientação espaciaje das celuias no tecido tem uma organização bem definida. Por Esso, acreditamos que ao incidirmos sobre a lesão luz linearmente pelarizada viuz incidente numa determinada direção», esse tipo de luz tenha efeitos mais marcantes do que quando incidimos luz não-polarizada (luz incidente propagando-se em várias direções). É interessante notar ainda que, por tratarmos com material biológico. o efeito da radiação, ou de outros tipos de agentes físicos, não oporre necessariamente apenas na região onde esta incide. A comunicação entre células é bem conhecida, como por exemplo a de especie química que ocorre na sinapse, ou a inibicão da divisão cecular pelo contato entre células (48). Isso pode explicar porque observiens efeitos semelhantes para comprimentos de onda com graus de apsonção pelo tecido diferentes, ou seja, com grau de transmissão variável pelos tecidos atingidos. No caso particular do laser de Herne, pelo fato da radiação ser transmitida para camadas. mais profundas, não so césulas mortas estão sendo irradiadas como trebem células boas. As células montas não dão inicio a um processo de l'identização, por isso acredițamos que as dérulas boas das converse were profundes atingidas pelo laser possam contribuir no processo canatricial da lesão. No caso da nadiação laser ser polarizada, pode ser que a interacão da luz com o tecido ploiógico seja mais eficaz, já que a direção do campo espainado depende da perarização do feixe e peio fato das células estarem orientadas organizadamente no tecido.

Como foi dito inicialmente, qualquer tentativa de aprofundarmos tal discussão a fim de se montar uma teoria plausível para a explicação dos efeitos observados, esbarraria numa série de problemas, principalmente do ponto de vista experimental. A nável dos diferentes grupos envolvidos na realização do trabalho experimental relatado no próximo capítulo, ainda não é possível a medida de possíveis modificações de potencial do membrana produzidas pela irradiação laser, bem como não nos foi possível fazer uma análise bioquímica das membranas das cólulas do tecido irradiado para averiguar a reordenação dos lipídios, principalmente para observarmos se o efeito é permanente ou temperário, implicando assim numa teoria quantitativa para os efeitos não-térmicos (por exemplo, calcular o tempo de relaxação no caso do efeito ser temporário). Isto estaria fora do alcance de um trabalho do nível a que se propõe o presento.

Assim, o procedimento experimental adotado visou, basicamente, verificar a validade de considerarmos relevante, nos processos biológicos considerados, a polarização da radiação incidente num tecido vivo. Este seria mais um passo de uma série de experimentos que podem ainda ser realizados, para verificar nossas supesições. Vamos nos dedicar então, à descrição do trabalho experimental, bem como dos resultados obtidos, no capítulo restante desta dissertação.

CAPÍTULO 5

PROCEDIMENTO EXPERIMENTAL

Visando continuar a linha de pesquisa iniciada por nosso grupo, da avaliação dos efeitos não-térmicos da radiação laser em tecidos vivos, objetivamos um teste simples para nossa hipótese, ou seja, da relevância da polarização nos processos biológicos considerados. Desse modo, resolvemos provocar uma lesão no animal escolhido, e irradiá-la com fontes de luz com grau de coerência distinto, polarizada e não-polarizada, acompanhando então a evolução do processo cicatricial com registro fotográfico.
5.1- FONTES DE LUZ

Nas experiências realizadas no trabalho anterior (i8), for utilizado um laser de He-Ne. não-polarizado, tanto devido ao aito erau de coerencia da radiação emitida, bem como pelo fato desse laser ser amplamente utilizado em estudo dos efeitos não-térmicos. de acordo com a literatura obtida. Quanto à outra fonte, optou-se pelo uso do mesmo laser de He-Ne, acoplado a um dispositivo ótico que diminuisse seu grau de coerência. Este consistiu num vidro losco colocado em movimento à frente do feixe laser. Tal esspositivo afeta a coerência da luz laser. transformando-o numa rente de luz quase-térmica [16]. Para la obtenção do vidro fosco. pareou-se um disco de vidro com diâmetro ϕ =100 mm.com grãos - de anela de dimensões da ordem de um. Acoplou-se o disco a um motor. Elimentado por fonte DC, que permitiu sua rotação. Por meio de luz estropulaçõpica. Poi detectado 2400 rpm para o conjunto disco-motor. n vermidade escolhida mediante a observação dos padrões de inverterência. Isto implicou numa velocidade angularo 2 cóldz e es ter sie escalar para o ponto onde incide o feixe laser de aproble commute été mes la distância deste ponto au eixo de roteção الأسادية المعلم وروات مشو

Fara polarizar a radiação espeinada por estes fontes de luz. Usou-se um filtro polarizador focal de ϕ =55 mm. O efeito do polarizador, conforme mencionamos no capítulo 1. É fazer dom que uma única componente linear da radiação eletromagnética incida soore a lesão.

Assim, para posterior irradiação das lesões, foi feita a seguinte montagem:

,

•

figura 5.1.a: Radiação coerente (laser) polarizada.

and the second secon A second secon

69

Utilizamos un laser de Ho-Ne, potência de saída 2.5 mW, luz polarizada. A montagem foi feita na vertical para que fosse possívol a irradiação de animais anestesiados, que não podem ser colocados na vertical, devido à ocorrência de depressão respiratória.

Foi necessário que a potência de saída após o sistema de lentes da objetiva fosso aproximadamente igual em ambas as montagens, para que o tempo de exposição das lesões dos animais à radiação fosse o sesmo. Embora a potência de saída do laser fosse 2,5 mW, o uso do vidro fosco fez com que esta potência, no caso da figura 5.1.b. caísso para aproximadamente 0.25 mW. Esta diminuição de 10 vezes na potência exigiu o uso de um filtro de densidade neutra com densidade ótica i na montagem da figura 5.1.a. Desse modo, foi feita uma montagem fixa para o laser, a lente e a objetiva (com o polarizador acoplado através de um suporto feito em nosso laboratório), a qual se podia conectar tanto o suporte do motor com o vidro fosco, obtendo-se a montagem da figura 5.1.a.

Convém ressaltar que o polarizador, acoplado à objetiva, era móvel. tanto que podíamos obter luz não-polarizada, desconectando-o da objetiva. Dusse modo, obtemus luz coerento, se usarmos a montagem da figura 5.1.a, ou luz incourente, no caso da montagem da figura 5.1.b.

Como nouso objetivo era não só investigar o efeito da polarização com luz coerento e/ou incoerento, sas Lambém comparar esto efeito com luz não-polarizada, fez-so nocessário usar as montagens das figuras 5.1. som o polarizador. Assim, oblemos as montagens:

figura 5.2. az Radiação coerente não-polarizada.

.

figura 5.2.5: Radiação incoerente não-polarizada.

Sem o polarizador, a potência de saída após o sistema de restes da objetiva é de 3,6 mW. Com o uso do vidro fosco, esta potência cai para aproximadamente 0.6 mW. o que também exige o uso do filtro de densidade neutra nº 1. mostrado na figura 5.2.a. Desse

modo, as montagens mostradas nas figuras 5.1 e 5.2 são semelhantes e. dependendo do tipo de radiação aplicada na lesão, utilizamos aquela mais conveniente.

مستقلان الموجيس محارب والمحالة المستحر كالمالي وكالتها والكاريان المكتمين متهاكر والكاملات ومقترات المحاف كالكام

5.2- DETERNINAÇÃO DOS PARAHETROS BIOLÓGICOS

ba área médico-orológica, escoineu-se o rato como o arreir a z== siturzado, tanto pela racilidade de cotenção, como pero rato o= te admar ten sido utilizado nas experiências anteriores (18).

O trabalho foi desenvolvido dentro da FCM/UNICAMP, nas dependencias do Núcleo de Cirurgia e Medicina Experimental, onde foram optidos ratos Wistar e Lewis, nos quais seriam criadas as iesões para irradiação posteriormente.

Na criação e padronização das lesões, decidiu-se orian uma letão inflamatória, semeihante a gerada na faringite crônica, que serviu de base para o trabalho comentado no capítulo 4 (41). Foram testados vários agentes químicos e físicos para a criação de lesões no nato, após conveniente tricotomia e anestesia: cri-ciono acetico, nitrato de prata (estes dois em concentrações variadas), escamação e conte por pisturi, e queimadura com Na líquido (resperatura: - 196°C). Este último método foi o que apresentou metopores resultados, com a vantagem de não interferir na bioquímica.

Facconizou-se a lesão pela aplicação de Na líquido, no animal anostes com por 5 segundos, duas vezes consecutivas, com intervelo de tempo de lo minitos entre elas e aplicação foi repetida por 3 dies consecutivos, sendo a primeira inclouração feito após o última aplicação de os líquido, feise modo, para verificar os eleitos ua potarização em teordos vivos. continuamos com os mesmos tipos de lesão pedronizadas anteriormente (16).

A stea da lesão, determinada pela área da base do recipiente em contisto com a pele do animal, é circular com diâmetro - pe0,8 cm.

A padronização foi confirmada por biópsias levadas ao Departamento de Patologia da FCM-UNICAMP, que determinou por meio de exames nistológicos, o alto grau de repetibilidade na obtenção das lesões.

······

a sense a sector de la construcción de la construcción de la construcción de la construcción de la construcción

Além de determinar a forma de criação das lesão, acompanhamos também sua evolução natural, isto é, o processo natural de cicatrização da lesão, para posterior comparação com as lesões irradiadas. Pelo processo natural de cicatrização, o dorso do rato, onde são criadas as lesões, encontra-se perfeitamente reconstituído, após um período de 2 meses.

Tomados todos os procedimentos relatados acima, passamos então à fase de innadiação e acompanhamento da cicatrização das lesões provocadas.

5.3- IRRADIAÇÃO DAS LESÕES E RESULTADOS

Hascados no trabalho anterior [16], seguimos o mesmo procedimento para a irradiação das lesões. Optou-se por uma série de 4 irradiações, aplicadas até duas vezes por semana, utilizando densidade de energia de 1.0 J/cm². Para uma lesão circular. ϕ =6 mm, temos:

a-) para radiação não-po)arizada.

Pol=0,8 MW

d-1.0 J/cm

¢+6 ana

Atr 7'50''(sete minutos e cinquenta segundos)

b-) para radiação polarizada:

Pol=0.25 av

d=1.0 J/cm²

¢rti man

Atr 18'50''(dezoito minutos e cinquenta segundos)

onde "AL" é o tempo de exposição da Irradiação sobre as lesões.

Feitas estas considerações, partimos para a primeira experiência, na qual utilizamos 4 ralos do tipo Wistar. Um dos animais foi deixado para controle (processo natura) de cicatrização). Nos outros três, fizemos 5 lesões na região peitoral da cobaia, devidamente tricotomizada, e variamos o tipo de radiação incidente, observando os resultados.

Fizemon irradiação com luz comrente (laser) polarizada e não-polarizada, o com luz incorrente polarizada e não-polarizada. A figura 5.3 munita como foram criadam as Junãos.

figura 5.3: Esquema das lesões na região peitoral da cobaia.

Durante esta primeira exporiência, surgiram vários problemas: - a lesão foi criada no vontre das cobalas, e nesta região a "coçagem" é mais acontuada;

- o ventro não tem nenhum apoio interno que fizosse "pressão" quando aplicado o Nz líquido. Desse modo, as lesões não ficaras bem caracterizadas;

- um dom animaim aproxontou parada cardíaca o respiratória durante a quarta irradiação. Ambim, fomom obrigadom a desconsidorar este animal.

Por causa dostes problemas, nesta primeira experiência não pudemom afirmar se a luz polarizada tinha um efeito de cicatrização mais rápido que a luz não-polarizada. Pelas observações feitas, a única afirmação que pudemom fazor foi quanto aos ofeitos serem diferenciados.

Partimos então, para a segunda experiência, na qual utilizamos 4 cobaias do tipo Lewis. Nos quatro animais foram criadas 5 queimaduras com Na líquido, no dorso devidamente tricotomizado. As lesões foram criadas no dorso por causa dos problemas apresentados na primeira experiência, e também para seguir o procedimento utilizado por M. Cotta (16). A figura 5.4 mostra como foram criadas as lesões nesta experiência.

محيطا المتعشم فوالدهمات موالدكاة فعنامهم بدوا بالمومات الكافية وفالا كالاح ماجو بمعرودة وافتار الوراد الرواد

figura 5.4: Lesões produzidas no dorso do animal.

Das cinco lesões, quatro foram irradiadas com luz, utilizando as montagens das figuras 5.1 e 5.2. Uma lesão foi deixada para controle.

No decorrer desta experiência, além de perdermos um dos

aniauis por excesso de anestesia, durante a segunda aplicação de Ne) fquido, observamos que o processo de cicatrização das losões era influenciado pelo local do dorso onde havia sido criada a losão. Como foram criadas cinco lesões, ocupamos quaso a área total tricotomizada do dorso do animal. Pela figura 5.4, vemes que três lesões foram criadas sobre a coluna vertebral da cobaia, e duas, nas laterais. No entante a vascularização é diferente nestas regiões ⁴,e por isso concluínos que o local interfere no processo cicatricial. Nos três animais utilizados, variamos a ordem da irradiação incidente sobre as lesões, conforme mostra a figura abaiso.

figura 5.5: Losão nº 1- lux coerente não-polarizada: At-7'50'' Losão nº 2- lux coerente polarizada: At-2'50'' Losão nº 3- lux incogrante polarizada: At-2'50'' Losão nº 4- lux incogrante polarizada: At-38'50'' Losão nº 4- lux incogrante polarizada: At-38'50''

Comunicação interna com a Bra. Fater Maria D. Nicola.

Independente do tipo de irradiação recebida, as lesões criadas sobre a coluna vertebral evoluíram melhor que aquelas criadas nas laterais. Considerando somente as lesões criadas na coluna vertebral, temos o indício de que a polarização da luz é fator relevante no processo cicatricial. As lesões irradiadas com luz polarizada evoluíram melhor em relação às lesões irradiadas com outro tipo de luz e a lesão controle.

Apesar de não podermos fazer nenhuma afirmação conclusiva no que diz respeito a esta experiência, sabemos que a resposta biológica da luz polarizada é diferente em comparação à luz não-polarizada.

Ja que as duas experiências anteriores apresentaram problemas em relação a área de criação da lesão, resolvemos fazer uma experiência simples com três animais, para padronizar a área do dorso de melhor caracterização das lesões. As queimaduras com Na líquido foram criadas conforme mostramos na figura 5.6.

figura 5.6- Lesões produzidas em três regiões distintas, no dorso do animal.

Pela figura 5.6, vemos que o dorso, devidamente tricotomizado, foi totalmente utilizado para a padronização das lesões. Desse modo, acompanhamos o processo natural de cicatrização, e pudemos observar que as lesões criadas na região 3 (figura 5.6.b), foram as que ficaram melhor caracterizadas. Estas lesões ficaram bem homogêneas, quase sem distinção de uma para outra. Salientamos também o fato importante de que uma única pessoa deve ser encarregada de criar as lesões, pois assim a pressão exercida pelo "dedo frio"- recipiente com Nz líquido em contato com a pele do animal- no dorso do rato, é praticamente a mesma durante os três dias de aplicação.

Desta maneira, ficou padronizada a melhor região para criação das lesões e realizamos portanto, outra experiência.

Nesta quarta experiência, resolvemos aumentar o número de ratos, porque um experimento que utiliza cobaias, apresenta muitos fatores que são inerentes ao animal. No nosso caso, os ratos não são isogênicos, então devemos levar em conta que os animais não sendo iguais, respondem também de forma diferente.

Utilizando dez animais, nosso objetivo é pelo menos obter uma estatística do comportamento das lesões quando irradiadas com luz coerente e incoerente, polarizada ou não-polarizada. Desta forma, resolvemos separar as cobaias em três grupos de três animais, e em todos foram criadas 3 queimaduras. Na décima cobaia, criamos quatro lesões. A figura 5.7 mostra como foram criadas as lesões nesta experiência.

rigura 5.7: Lesões produzidas no dorso do animal da experiência 4 Lesão A- luz coerente polarizada: Δt=18°50°' Lesão B- luz coerente não-polarizada: Δt=7°50°' Jesão C- luz incoerente polarizada: Δt=18°50°' Lesão D- controle.

Decta experiência não utilizamos a intadieção com luz incompette não-polarizada. Resolvenos desconsidenátio, uma vez que estudos anteriores mostraram que lesões intadiadas com este tipo de lut demonam mais tempo para cicatrizar (18). Além disso, como exitem animais com maior sensibilidade à anestesia (éter) que outros, ocazionando na perda de alguns deles nas experiências relatadas anteriormente, e já que eles ficam anestesiados cenca de uma hore por vários dias, durante um período de três semanas, isto

exige também um número mínimo de lesões por animal, para que o tempo de anestesia seja o menor possívei.

Apesar disto, lesões irradiadas com luz incoerente tem eñeito de dicatrização mais rápido que lesões deixadas para controle (16). e já que os resultados obtidos por Mester e Fënyo (1-4) com luz termica polarizada são bastante eñetivos, lançando uma dúvida sobre a importancia da coerência da luz nos processos investigados, resolvemos usar então, somente a luz incoerente polarizada.

No rato cujo dorso foram criadas 4 lesões, usamos os três tipos de irradiação (A, B e C), conforme mostra a figura 5.7.a. Os nove animais restantes foram divididos em três grupos:

Nos nove ratos, sempre variamos a ordem do tipo de irradiação receptida peras lesões, para que um tipo de luz não influenciasse uma lesão irradiada com outro tipo, ou uma lesão não irradiada.

Analizando o comportamento das lesões nos três grupos. obtervanos que a lesão innadiada com luz polarizada realmente response de forma diferente, acelerando o processo dicatricial. dontudo, em nossa experiência pudemos observar que a coerência tampém e fator relevante e não pode ser descartada.

No grupo I, as lesões "A" de todos os ratos evoluíram melhor quando comparadas às lesões "B", ou lesões não-irradiadas "D": no grupo E. dois animais com lesões "B", tiveram tempo de cicatrização menor em relação às lesões "C" e não-irradiadas "D": no grupo B. as lesões "A" de dois ratos evoluíram melhor que as lesões "C" e "D". No rato cupo dorso foram criadas quatro lesões, também a lesão "A" teve tempo cicatricial mais rápido. Depois, as lesões "B", "C" e "D", respectivamente. A lesão "D" neste rato, ainda apresentava crossa.

apor os resultados obtidos nesta experiência, que se mostram traccionente ao prosseguimento da investigação dos etertos não-términos da cadiação inser polarizada em teoridos vivos, esperou-se aproximadamente um ano para vermos o comportamento das lesões. O dorso estava completamente recomposto e, pegando três ratos ao acaso, fizemos a tricotomia para observarmos as lesões. Nos três catos, havia pequenas dicatrizes bem definidas, sem maiores seguelas. A área da pele delimitada pelas lesões foi então tirada do animal e levada para biópsia no Departamento de Patologia da FCM-PACAME, para um castreamento melhor entre a interação da

radiação com o tecido animal e dar, portanto, informações sobre o "status" da pele quando irradiada ou não.

i

.

,

5.4- REGISTRO FOTOGRÁFICO

Nesta seção, apresentamos algumas das illustrações fotográficas referentes ao acompanhamento do trabalho experiental. A documentação fotográfica foi obtida por fotógrafos do Centro de Comunicação da UNICAMP. · · ····

figura 0.9: Montagem utilizada para a irradiação dos animais. No suporte vertical encontra-se o filtro e o polarizador (cf. figura 5.1.a).

,

figura 5.30: Montagem utilizada para a irradizção dos unimais. No suporte vertical encontra-se o suporte motor-vidro fosco (cf. figura 5.3.0). À esquerda, encontram-se a fonte de alta tensão para alimentação do laser e a fonte DC que alimenta o motor.

figura 5.12: Método para a criação de lesões com o N $_2$ líquido, no animal esquematizado na figura 5.3.

figura 5.13: Animal anestesiado, esquematizado na figura 5.4, preso à mesa e tricotomizado, já criadas as lesões, estando pontanto preparado para a primeira irradiação.

Figura 5.14: Animal esquematizado na rigura 5.7.6 sendo irradiado.

(Ъ)

figura 5.15: Aspecto das lesões um ano após sua criação no dorso do rato (cf. figura 5.8.a): a-) o dorso do animal encontra-se completamente reconstituído;

b-) lesões totalmente cicatrizadas.

figura 5.15: Aspecto d<mark>as lesões um dia após a primeira</mark> irradiação (cf. figura 5.8.a).

Lugura Sair: Aspentor das lesões um dia após a segunda irradiação: as lesões estão bem homogêneas (cf. figura 5.8.a).

risura 5.1%: Aspecto d**as lesões um dia após a terceira irranização** (ef. figura 5.8.a).

1

))))

+

rigura 5.19: Aspecto das lesões um dia após a quarta irradiação (cí. figura 5.8.a).

.

tigura 5.20: Aspecto das lesões quatro dias após a guarta itradiaráni as lesões "B" e "D" ainda apresentam crosta, enguanto que a lesão "A" está praticamente cicatrizada.

.

figura 5.21: Aspecto das lesões momentos antes da primeira irradiação (cf. figura 5.8.c).

irradiação (cf. figura 5.8.c).

Eligita 9.23: Aspecto das lesões momentos antes da frireira irradiação (cf. figura 5.8.c).

.

figura 5,24: Aspecto das lesões momentos antes da quarta irradiação (cf. figura 5.0.c).

iligura 5.25: Aspecto das lesões três dias após a quarta irradiação (cf. figura 5.8.c).

(Ъ)

figura 5.26: Aspecto das lesões um ano após sua criação no dorso do animal (cf. figura 5.8.c): a-) o dorso encontra-se completamente reconstituído;

b-) lesões cicatrizadas.

DISCUSSÃO E COMENTÁRIOS

O caráter interdisciplinar e inovador desta dissertação impossibilita-nos de fazer uma afirmação conclusiva quanto aus efeitos não-térmicos da radiação laser polarizada. Dentro das limitações impostas para um trabalho na área da Física-Médica, nossa preocupação inicial era investigar a importância da polarização do laser no processo cicatricial de lesões. Nossos resultados são animadores para o prosseguimento de pesquisas direcionadas ao estudo dos efeitos da "bioestimulação laser ". Embora ainda seja necessário percorrer um longo caminho para afirmar conclusivamente a importância da coerência e da polarização da luz nos processos biológicos considerados, demos aqui mais um passo que, acreditamos, dará suporte a pesquisas mais detalhadas e específicas no que diz respeito a esta área interdisciplinar.

É interessante comentar também sobre os dois objetivos desta monografia: um, de natureza acadêmica, no sentido de complementação da formação científica; outro, usando resultados práticos na área pouco explorada da "interface" Física-Medicina.

Quanto ao primeiro objetivo, acreditamos que tenha sido alcançado através dos três primeiros capítulos desta dissertação. Com relação ao segundo, embora nossos resultados não sejam conclusivos se olhados do ponto de vista estritamente biológico, pois ainda há muito por fazer até que a possível explicação para a classe de fenômenos que estamos investigando seja alcançada, o modelo por nós proposto no capítulo 4 representa um elo entre o fenômeno físico "luz coerente-polarizada" e outras propriedades biológicas, especificamente de biomembranas, abrindo assim, uma
The second s

104

porta para novas experiências.

Esperamos que este trabalho possa estimular pesquisadores interessados nessa área, para que haja o prosseguimento de pesquisas direcionadas a investigar o fenômeno da "bioestimulação laser", sendo o nosso mais um passo importante nessa linha de pesquisa iniciada na UNICAMP.

الواليوني الارتباعة التواليفترة بتكلاه فتنك برجاوية

Studia Biophysica <u>105</u>: 141 - 148, 1985 H-- Pubasoval T.: Kovács. L.: Somosy, Z.: Unk. F.: Kovett A.-"Enological effect of He-Ne lazer: Investigations on functional and micromorphological alterations of cell membranes, in vitro"

Lasers in Surgery and Medicine <u>4</u>: 381 - 388, 1984 19- Farm. T. L.: Kalenko, G. S.: Letokhov, V. S.; Lobko, V. V.-"Enbiographic action of low intensity visible light on Hela cells as a contrion of the coherence, dose, wavelenght and irradiation regime"

compety Sournal Quantum Electronics <u>12</u>: 1134 - 1138, 1982 Event and its Tippioway O. Alt Letornowy V. S.: Loone V. V.-"unipathon of El coll growth by laser and incoherent red light" of expose dimentor ED (1988 - 1144, 1983)

... Checking of T - Chechenmal biological effects of laser beams" Nature 204: 868 - 870, 1964

E2= Fohr. H. A.= "Natural alternating fields associated with coving second

International Journal of Quantum Chemistry: Quantum Biology Symposium <u>1.</u>: 367 - 368, 1984

23- Cone Inc., C. D.- "The role of the surface electrical transmemorane potential in normal and malignant mitogenesis"

Annais of the New York Academy of Sciences <u>238</u>: 420 - 435. 1974

24- Rabinowitz, J. R.- "A model for some of the effects of an extensily applied electric field on charged membrane constituents"

International Journal of Quantum Chemistry: Quantum Biology Symposium <u>11</u>: 249 - 256, 1984

25- Fasednnin, V. I.- "Influence of roughness on the optical

the energies and capacitance of bilayer lipid membranes"

Biophysics 28: 201 - 207, 1983

ed= Bourova. N. B.: Fasechnik. V. I.= "Study of the electric fields in biological memoranes using models"

Frophysics <u>30</u>: 265 - 250, 1985 27- Sipe, J. E. - "The dipole antenna problem in surface physics: a new approach"

Surrace Science <u>105</u>: 485 - 504, 1961 28- Sipe, J. É.- "The ATE spectra of multipole surface plasmons"

Surface Science <u>64</u>: 75 - 105, 1979 28- Van Drief, H. M.; Sipe, J. E.; Young, J. F.- "Laser-induced coherent modulation of solid and liquid surfaces"

Journal of Luminescence <u>30</u>: 446 - 471, 1985 50- Sipe, J. E.; Young, J. F.; Preston, J. S.; Van Driel. H. M.-"Laser-induced periodic surface structure I- Theory"

Physical Review B <u>27</u>: 1141 - 1154, 1983 Bi- Young, J. F.: Preston, J. S.: Van Driel, H. M.: Sipe. J. E.-"Laser-induced periodic surface structure II- Experiments on Ge, Si. Ai and prass"

Physical Review B <u>27</u>: 1155 - 1172, 1983 and Young, J. F.: Sipe, J. E.: Freston, J. S.: Van Driel, H. M.-"Laser-induced periodic surface damage and radiation remnants"

applied Physics Lethers <u>41</u>: 261 - 264, 1982 33- Van Driel, H. M.; Sipe, J. E.; Young, J. F.- "Laser-induced periodic surface structure on solids: a universal phenomenon"

Physical Review Letters <u>49</u>: 1955 - 1958, 1982 34- Sip+. J. E.- "Bulk-selvedge coupling theory for the optical properties of surfaces" J 109 Þ Physical Review B 28: 1585 - 1599, 1980 Þ 35- Naradudic. A. A.; Mills. D. L.- "Scattering and absorption • of electromagnesic radiation by a semi-infinite medium in the ١. presence of surface roughness" ł Physical Review B 11: 1392 - 1415, 1975 1 ŧ 36- Provies. O'Shea C.- "An Introduction to Laser and Their Applications" waarson-Wesley Publishing Company Inc., 1977 37- Shurchaff, W.: Ballard, S.- "Polarized Light" Van Nostrand Company Inc., 1964 30- Ghatak, H. E.- "An Introduction to Modern Optics" Ringsport Press Inc., 1971 39- Fowles, G. - "Introduction to Modern Optics" Hoit. Rinehart and Winston Inc., 1968 40- Sveito, 0. "Principles of Lasers" Flerium Fress, New York, 1989 41- Nicola, E. M. D.- "Caracterização de micro-lesões produzidas por laser de CO, na mucosa oral de cães, em função da variação de presentos intrínsecos do equipamento" Tese de Doutonamento - FCM - UNICAMP, 1984 42- Componant D. - "Biological Membranes" Academic Press. 1969 4:- Vouvenshtein, M. - "Biofísica" 1965 44- Lebninger. A. L. - "Princípios de Bioquímica" Forth Publishers Inc., 1986 4- Sector : S. "Promembranes-fundamental in relation to human biology"

Washington. Hemisphere Publishing Corporation. 1990

45- Le Gros Clark, W. E. "The Tissues of the Body"

Oxford University Press, 1958

47- Geneser, F. "Atlas de Histologia"

Editorial Médica Panamericana, 1987

48- Burger, M. M. & Noonan, K. D. - "Surface membrane alterations and relevance to cell-cell interaction and growth control in tissue culture" In: Jaenick, R. & Helmreich, E., ed. "<u>Protein-Protein</u> interactions"

Berlin, Springer-Verlag, 1972