

AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

MÉTODO DE CÁLCULO DE DOSE NA IRRADIAÇÃO DE TODO O CORPO COM RAIOS GAMA DO COBALTO-60

LUIZ ALBERTO MALAGUTI SCAFF

Tese apresentada como parte dos requisitos para obtenção do Grau de Doutor em Ciências na Área de Tecnologia Nuclear-Aplicações.

Orientadora: Dra. Barbara Maria Rzyski

São Paulo 2001

•

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES Autarquia associada à Universidade de São Paulo

MÉTODO DE CÁLCULO DE DOSE NA IRRADIAÇÃO DE TODO O CORPO COM RAIOS GAMA DO COBALTO-60

LUIZ ALBERTO MALAGUTI SCAFF

Tese apresentada como parte dos requisitos para a obtenção do grau de Doutor em Ciências na Área de Tecnologia Nuclear.

Orientadora : Dra. Barbara Maria Rzyski

SÃO PAULO 2001

OMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP IPL

MÉTODO DE CÁLCULO DE DOSE NA IRRADIAÇÃO DE TODO O CORPO COM RAIOS GAMA DO COBALTO-60

Luiz Alberto Malaguti Scaff

RESUMO

Foram estudados os fatores físicos associados à irradiação de todo o corpo com feixes de raios gama do ⁶⁰Co e estabelecido um método de cálculo de distribuição da dose, reproduzível em qualquer centro de radioterapia e com boa precisão e exatidão.

O método se baseia em considerar esta irradiação como um campo grande, irregular e com heterogeneidades. Para çada região de interesse (cabeça, tórax, coxa etc.) determina-se a radiação espalhada e, com a primária, é calculada a dose ou taxa de dose nestas regiões.

Observou-se que se fossem considerados campos desmagnificados, para o cálculo da radiação espalhada, após a obtenção dos valores procurados, os mesmos poderiam ser projetados para o tamanho real, para obter os valores desejados para o cálculo das taxas de doses.

Paralelamente, foi determinada a variação da taxa de dose no ar, na distância de tratamento e para pontos fora do eixo central, confirmando-se a não validade do uso da lei do inverso do quadrado da distância.

Determinou-se também a curva de atenuação para um feixe largo de raios gama do ⁶⁰Co para que fosse possível usar absorvedores.

Neste trabalho são descritas fórmulas adaptadas para o cálculo das taxas de dose nas várias regiões do corpo e também o modelo de uma ficha técnica específica para estes tipos de irradiaçõesde corpo inteiro.

A dosimetria *in vivo* mostrou que as taxas de dose calculadas pelo método proposto e as taxas de dose determinadas experimentalmente, foram bem concordantes.

A DOSE CALCULATION METHOD WITH 60-COBALT GAMMA RAYS IN TOTAL BODY IRRADIATION

Luiz Alberto Malaguti Scaff

ABSTRACT

Physical factors associated to total body radiation using ⁶⁰Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision.

The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or dose rates, of each area of interest (head, thorax, thigh, etc), sacattered radiation is determined.

It was observed that if dismagnified fields were cosidered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations.

In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid.

An attenuation curve for a broad beam was also determined in order to allow the use of absorbers.

In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation.

The *in vivo* dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies.

Aos meus anjos da guarda Leta, Luiz e Alberto

AGRADECIMENTOS

Aos meus orientadores :

Prof. Dr. Marcello Damy de Souza Santos, pelo generoso apoio e liberdade de ação no evolver de meu trabalho e a Profa. Dra. Barbara Maria Rzyski, cujo empenho e dedicação muito me animou.

Ao Prof. Dr. Dirceu Martins Vizeu, com quem iniciei o aprendizado da Física da Radioterapia e cuja orientação solícita e amiga nunca me faltaram.

Ao Prof. Dr. Roberto Araújo Segreto e Dra. Patrícia Bailão Aguilar, por suas sugestões, conselhos amigos e ativa colaboração.

A todos colegas e amigos que participaram das simulações preliminares da determinação das áreas e formas dos campos.

Um agradecimento final à minha esposa Cristina, pelo apoio e participação incondicional em todos os momentos e fases deste trabalho.

COMISSAD NACIONAL DE ENERGIA NUCLEAR/SP IMEN

SUMÁRIO

.

F	agina
1. INTRODUÇÃO	. 1
2. OBJETIVOS	. 6
3. FUNDAMENTOS TEÓRICOS	7
3.1 REVISÃO DE CONCEITOS FÍSICOS	7
3.1.1 Medida da dose com câmara de ionização	. 7
3.1.2 Fator de retrodispersão e fator espalhamento pico	. 8
3.1.3 Relação espalhamento-ar	. 8
3.1.4 Cálculo da dose para campos irregulares	. 9
3.1.5 Cálculo da dose fora do eixo central	. 14
3.1.6 Variação da dose devido à presença dos pulmões	. 14
3.2 IRRADIAÇÃO DE TODO O CORPO	. 16
3.2.1 Energia da radiação	. 16
3.2.2 Distância foco-superfície	. 17
3.2.3 Dose e fracionamento	. 17
3.2.4 Posição do paciente	. 17
3.2.5 Taxa de dose no ar	. 19
3.2.6 Homogeneidade da dose	. 19
4. EQUIPAMENTOS E MÉTODO	. 20
4.1 EQUIPAMENTOS	20
4.1.1 Fonte de irradiação	. 20
4.1.2 Dosímetro	21
4.1.3 Sistema de planejamento computadorizado	. 22
4.2 MÉTODO	23
4.2.1 Procedimento	. 23
4.2.2 Adequação do procedimento proposto	. 27
4.2.3 Simulações	37

5. RESULTADOS	39
5.1 DETERMINAÇÃO DA TAXA DE DOSE NO AR	39
5.2 LADOS L DOS CAMPOS QUADRADOS EQUIVALENTES	41
5.3 CURVA DE TRANSMISSÃO PARA FEIXES LARGOS DE RAIOS γ DO ⁶⁰ CO	42
5.4 FÓRMULAS PARA O CÁLCULO DA DOSE	43
5.5 MODELO DE UMA FICHA TÉCNICA	51
5.6 DOSIMETRIA "IN VIVO"	55
6. DISCUSSÕES	57
7. CONCLUSÕES	61
REFERÊNCIAS BIBLIOGRÁFICAS	62
APÊNDICE	66

23

1. INTRODUÇÃO

A descoberta da radiação ionizante artificial, os raios X, ocorreu em novembro de 1895 quando Wilhelm Conrad Roentgen (1845-1923), professor de física de uma universidade alemã, fazia experiências com raios catódicos.

A esta radiação desconhecida, mas de existência comprovada, Roentgen deu o nome de raios X, posteriormente conhecidos também por raios Roentgen.

Em 22 de dezembro de 1895, ao expor a mão de sua esposa aos raios X, durante 15 minutos, realizou a primeira radiografia em humanos.

O trabalho de Roentgen ganhou repercussão mundial imediata. De acordo com inúmeros historiadores, à partir da descoberta científica, fora da área médica, o emprego dos raios X, foi o que, com maior rapidez e repercussão, se incorporou a prática clínica.

A radioatividade natural foi descoberta, em março de 1896, pelo físico francês Antoine Henri Becquerel (1852-1908), pela verificação da emissão de radiação por sais de Urânio que eram capazes de produzir sombras de objetos metálicos sobre chapas fotográficas, envoltas em papel preto.

Entre os cientistas que mais se interessaram por essa descoberta destacou-se o casal Curie: Pierre (França, 1859 - 1906) e Marie Sklodowska (Polônia, 1867 - 1934). Preocuparam-se em verificar se outros elementos emitiam esses raios, cuja denominação "radioatividade" foi dada pela própria Marie Curie. O casal investigou dois minérios : Calcolita e Pechblenda da Bohemia. Finalmente, em junho de 1898, o casal obteve uma pequena quantidade de um composto radioativo que foi denominado Polônio. Além do Polônio, descobriram e separaram, em dezembro de 1898, uma outra substância radioativa, que levou o nome de Radium.

Os pioneiros destas descobertas notaram que a exposição a estas radiações provocava lesões na pele semelhante as provocadas pelo sol, com posterior recuperação com a interrupção da exposição. Nesta época atribuía-se a luz solar muitas propriedades benéficas, como o combate as bactérias e a função cicatrizante. Como os novos raios apresentavam propriedades semelhantes a da luz solar, foram rapidamente empregados em medicina.

Em 29 de janeiro de 1896, pela primeira vez, uma paciente portadora de um câncer de mama volumoso, sangrante e inoperável foi submetida a exposição com os raios X. Houve uma resposta surpreendente com grande diminuição do volume tumoral e do sangramento. Estava inaugurada a radioterapia.

Nos primórdios da radioterapia administrava-se elevadas doses absorvidas (dose absorvida doravante será denominada apenas dose) de radiação tanto quanto se julgava que o paciente era capaz de tolerar. Geralmente o limite estabelecido da dose era em função da tolerância da sua pele. Não se sabia exatamente a quantificação da dose e como ela se distribuía no volume irradiado.

Este conceito foi mudando, principalmente a partir de 1928, quando foi adotado formalmente o roentgen, "R", como unidade de radiação.

Variações de dose no paciente da ordem de 20%, eram consideradas quase uniformes nos anos 60. Nos dias de hoje procura-se não chegar aos 5% e provavelmente no futuro este porcentual será ainda menor.

Pacientes com alguns tipos de doenças hematológicas (anemia aplástica severa, acidentes de radiação ...) ou onco-hematológicas (leucemia aguda ou mielóide crônica, linfomas, mielomas múltiplos ...) que necessitam de transplante da medula óssea, podem ser condicionados para este procedimento através de uma irradiação de todo o corpo^{1,2,3,4} com feixes de fótons. Esta irradiação conhecida como TBI (do inglês *Total Body Irradiation*) é aplicada com a função de imunossupressão, ablação da medula e eliminação de células malignas para o posterior transplante de medula óssea.

O cálculo da quantificação da dose^{5,6} e os fatores físicos associados^{7,8,9,10,11,12,13} a este tipo de irradiação, devem ser estabelecidos e estudados para que um programa de irradiação de todo o corpo possa ser incorporado ao protocolo de procedimentos do centro de radioterapia da instituição envolvida.

O cálculo da dose no paciente é feito através do uso de uma função chamada relação tecido-ar¹⁰, normalmente abreviada por TAR (do inglês *Tissue-Air Ratio*) que é a razão entre duas taxas de doses (ou doses) :

$$\frac{\dot{\mathbf{D}}_{d}(\mathbf{F}, \mathbf{A})}{\dot{\mathbf{D}}_{A}(\mathbf{F}, \mathbf{A})} = \text{TAR}(\mathbf{d}, \mathbf{A}, \mathbf{Q})$$

onde:

 $D_d(F,A) =$ taxa de dose na profundidade d no paciente, na distância F da fonte de irradiação, para um campo A na distância F;

 $\dot{D}_{a}(F,A) = taxa de dose no ar (mantendo-se o equilíbrio eletrônico) para um campo A na distância F;$

TAR (d, A, Q) = relação tecido-ar na profundidade d, campo A e para a energia Q

Na equação apresentada, queremos determinar a taxa de dose em uma profundidade d no paciente, ou seja :

$$\overset{\bullet}{\mathsf{D}}_{d}(\mathsf{F},\mathsf{A}) = \mathsf{TAR}(\mathsf{d},\mathsf{A},\mathsf{Q}) \times \overset{\bullet}{\mathsf{D}}_{a}(\mathsf{F},\mathsf{A})$$

A determinação da taxa de dose no ar na distância de tratamento não deve ser determinada por $\mathring{D}_a(F,A) = \mathring{D}(F', 30x30) x \left(\frac{F'+d_m}{F}\right)^2$, ou seja, simplesmente com a aplicação da lei do inverso do quadrado da distância para uma taxa de dose, medida na distância F', igual à do isocentro da máquina e para um campo máximo nessa distância, normalmente 30cm x 30cm, não levando em conta espalhamentos que possam existir na sala para distâncias grandes. Esta taxa de dose deve ser medida na distância real de tratamento F.

Pode-se usar a lei do inverso do quadrado da distância, para determinarmos variações de taxa de dose no ar próximas à distância F de tratamento ($F \pm \frac{espessura do paciente}{2}$), contanto que se use, como referência, o valor medido da taxa de dose.

Para a determinação de TAR (d, A, Q), os valores de A, dimensões do campo equivalente às áreas do corpo (cabeça, tórax, abdome, coxa ...), são resultantes de medidas físicas feitas no paciente. Esse método de avaliação das dimensões dos campos para posterior determinação dos valores da TAR (d, A, Q) não é exato, pois é muito difícil estabelecer limites entre as regiões por causa da quantidade de radiação espalhada, que pode interferir nas áreas adjacentes.

É cometido também um erro na avaliação do campo com medidas físicas no paciente, pois o campo quadrado equivalente ao campo retangular obtido da tabela de *Quadrados Equivalentes a Campos Retangulares*¹⁴, que originalmente foi derivada para profundidades de dose máxima para feixes de raios X de 200kVp a 250kVp, não é exato. Dependendo da área do campo e profundidade de cálculo, esta diferença pode acarretar uma variação de dose no paciente da ordem de 5%.

Na irradiação do corpo todo, os efeitos mais importantes devem ser nos linfócitos, o tecido alvo para a imunossupressão, e nas células leucêmicas, a neoplasia mais freqüente tratada por TBI. Entretanto, existe uma multiplicidade de tecidos normais que podem ser afetados pela irradiação sendo os mais críticos: pulmões, trato gastrointestinal e o cristalino.

É fundamental, para o sucesso do procedimento, tanto para os efeitos imediatos como para os tardios, que a dose prescrita seja rigorosamente quantificada. Neste caso é possível conseguir o efeito desejado no TBI e minimizar, o quanto for exequível, os efeitos não desejados para que as sequelas sejam diminuídas ao máximo possível.

2. OBJETIVOS

Em vista do exposto, os objetivos deste trabalho são :

- Estabelecimento de uma aplicação original de um método teórico de cálculo de distribuição da dose, também baseado no uso da relação tecido-ar, determinada para cada região e profundidade do paciente por meio do cálculo da radiação primária e espalhada sendo, desta maneira, uma determinação exata.
- Para a facilidade de execução do método, propor também uma adequação por intermédio do cálculo com campos minimizados, que além da originalidade, mostra um enfoque de parâmetros físicos da radioterapia até então nunca utilizados e a possibilidade de sistemas de planejamentos computadorizados serem usados para o cálculo de campos de TBL
- Confirmação da validade do método aplicando uma dosimetria "in vivo" em pacientes submetidos a irradiação de todo o corpo, comparando os resultados experimentais com os calculados pelo método proposto.

3. FUNDAMENTOS TEÓRICOS

3.1 - REVISÃO DOS CONCEITOS FÍSICOS

3.1.1 - MEDIDA DA DOSE COM CÂMARA DE IONIZAÇÃO

Para as medidas experimentais com câmara de ionização, foi utilizado o protocolo da Agência Internacional de Energia Atômica¹⁵ que define o parâmetro N_D como função de vários fatores que dependem da câmara e que pode caracterizar a resposta da mesma. N_D é definido por :

$$N_{D} = N_{K} (1 - g) k_{att} k_{m}$$

onde :

N_K = Fator de calibração Kerma-ar (Gy/divisão do eletrômetro)

g = Fração da energia das partículas secundárias convertida em "bremsstrahlung"

k_{att} = Correção para absorção e espalhamento dos fótons primários na parede e capa da câmara

k_m = Correção para a falta de equivalência de ar da parede da câmara

A dose absorvida na água, na profundidade de refêrencia (d_o), D_a(d_o) é dada por :

$$D_a(d_o) = M_U N_D (S_{a,ar}) P_u P_{cel}$$

onde :

 M_U = Leitura do eletrômetro corrigida para temperatura, pressão, umidade, perdas por recombinação e irradiação de haste e cabo

S_{a,ar} = Poder de Freamento

P_u = Correção para a perturbação

P_{cel} = Fator de correção que leva em conta a não equivalência do material do eletrodo central da câmara de ionização ao ar

3.1.2 FATOR DE RETRODISPERSÃO E FATOR DE ESPALHAMENTO PICO

A relação tecido-ar, em alguns casos, passa a ser chamada de "Fator de Retrodispersão (FRD)" ou "Fator de Espalhamento Pico (FEP) ". Isto acontece quando a profundidade d é igual a d_m, profundidade de equilíbrio eletrônico.

Para raios-X de energias médias e baixas (até aproximadamente 400kVp) com a profundidade de equilíbrio eletrônico praticamente zero, ou seja, na superfície, considera-se o fator de retrodispersão¹⁰ (FRD).

Para raios-X acima de 400kVp e raios gama do ⁶⁰Co, onde a profundidade de equilíbrio eletrônico não é na superfície, considera-se o fator espalhamento-pico¹⁰ (FEP).

FRD =
$$\frac{D_s}{D'_d}$$
 onde: D_s = dose medida na superfície do tecido

D'd = dose medida no ar nas mesmas condições

$$FEP = \frac{D_{dm}}{D'_{dm}} \qquad onde: \quad D_{dm} = dose medida na profundidade de equilíbrio eletrônico$$

D'_{dm} = dose medida no ar nas mesmas condições

3.1.3 RELAÇÃO ESPALHAMENTO-AR

Considera-se a relação tecido-ar, para uma profundidade "d", uma área "zero" e uma qualidade de radiação "Q", como a contribuição da radiação primária.

TAR (d, 0, Q) \Rightarrow radiação primária

1

Se de uma relação tecido-ar, para uma área "r", profundidade "d" e qualidade de radiação "Q" for subtraida relação tecido-ar nas mesmas condições, só que para área zero, ter-se-á somente a quantidade de radiação espalhada pelo feixe, que é chamada de relação espalhamento-ar^{16,10} normalmente abreviada por SAR (do inglês *Scatter-Air Ratio*) ". Logo :

SAR (d, A_d , Q) = TAR (d, A_d , Q) - TAR (d, 0, Q)

3.1.4 CÁLCULO DA DOSE PARA CAMPOS IRREGULARES

Freqüentemente, o campo de irradiação não é quadrado, circular ou retangular. Em virtude das diferentes técnicas de tratamento, os campos de irradiação tomam formas irregulares^{17,18} como mostra a Figura 1.

Figura 1 – Exemplos de campos irregulares.

Nestes casos, para esses campos que não se encontram em tabelas padronizadas, é necessário determinar a relação tecido-ar¹⁰ (TAR) individualmente. Sabe-se que:

TAR $(d, A_d, Q) = SAR (d, A_d, Q) + TAR (d, 0, Q)$

Os valores de TAR (d, 0, Q) são tabelados^{19,14} e portanto de fácil obtenção. A SAR(d, A_d,Q) é calculada pela soma da contribuição de vários setores de ângulos iguais. Quanto menores forem estes ângulos, melhor será a precisão. Variações com intervalos de 10º resultam em valores que praticamente não mudarão se forem adotados ângulos menores.

Para cada raio encontrado, existe um SAR correspondente, pois os SAR são tabelados¹⁰ para um raio "r" do campo, uma profundidade "d" e uma qualidade da radiação "Q". A somatória dos SAR de todos os raios e a divisão pelo número deles será o SAR médio, do campo em questão, para a profundidade desejada e para a energia da radiação escolhida. Este é o chamado *"Método de Clarkson"*^{20,21,10,14}.

Exemplo de Aplicação :

Determinar o TAR para o campo irregular da Figura 2, para a profundidade de 10cm, e para os raios gama do cobalto-60.

Para o TAR (10, 0, 60Co) foi usado o valor 0,536 que é tabelado¹⁰.

A determinação das relações espalhamento-ar para os raios da Figura 2 está apresentada na Tabela 1. Para estas determinações foram usados valores da Tabela 2, que é uma reprodução da tabela XV-48 da referência bibliográfica número 10.

5

2

Figura 2 – Campo irregular e a determinação dos SAR pelo método de Clarkson. Escala 1:2

Setor	Relação Es	palhamento-A	r (SAR)	SAR Final
1	+ 0,215			+ 0,215
2	+ 0,283	- 0,271	+ 0,222	+ 0,234
3	+ 0,288			+ 0,288
4	+ 0,298			+ 0,298
5	+ 0,288			+ 0,288
6	+ 0,271	- 0,190	+ 0,122	+ 0,203
7	+0,109			+ 0,109
8	+0,100			+ 0,100
9	+ 0,100			+ 0,100
10	+ 0,092			+ 0,092
11	+0,100			+0,100
12	+ 0,100			+ 0,100
13	+0,109			+0,109
14	+0,122			+0,122
15	+ 0,136			+ 0,136
16	+ 0,161			+ 0,161
17	+ 0,199			+ 0,199
18	+ 0,279			+ 0,279
19	+ 0,277			+ 0,277
20	+ 0,279			+ 0,279
21	+ 0,199			+ 0,199
22	+ 0,161			+ 0,161
23	+ 0,136			+ 0,136
24	+ 0,122			+ 0,122
25	+ 0,109			+ 0,109
26	+ 0,100			+ 0,100
27	+ 0,100			+ 0,100
28	+ 0,092			+ 0,092
29	+ 0,100			+ 0,100
30	+0,100			+ 0,100
31	+ 0,109			+ 0,109
32	+ 0,271	- 0,190	+ 0,122	+ 0,203
33	+ 0,288	-		+ 0,288
34	+ 0,298			+ 0,298
35	+ 0,288			+ 0,288
36	+ 0,283	- 0,271	+ 0,222	+ 0,234
			Tota	al = +6.328

Tabela 1 – cálculo do SAR, para 10cm de profundidade e raios gama do cobalto-60

Portanto : SAR medio = 6,328/36 = 0,176

1

1

Logo a Relação Tecido-Ar para o campo irregular em questão, será :

TAR (10, A_d , ${}^{60}Co$) = SAR (10, A_d , ${}^{60}Co$) + TAR (10, 0, ${}^{60}Co$)

= 0,176 + 0,536

- and the second	the state		Q. 4.	ALC: NO	60.00	Sec.15	1.0	は日本		ALC.	1		7 - F
l (cm)	1.27	2						The second	8		10	.u.	4
0.5	0.007	0.014	0.019	0,026	5 0,032	2 0,03	7 0,0	043 (1,048	0,054	0,058	0,063	0,067
1	0.013	0,025	0,037	0,048	3 0,058	8 0,06	6 0,0	073 (1,078	0,084	0,089	0,094	0,098
2	0,023	0,045	0,064	0,080	0,091	1 0,10	2 0,:	110 (0,116	0,122	0,127	0,133	0,139
3	0,032	0,061	0,084	0,103	3 0,118	8 0,13	0 0,	139 (1,147	0,154	0,161	0,166	0,172
4	0,038	0,071	0,099	0,121	0,132	7 0,15	1 0,	162 (), 170	0,179	0,186	0,191	0,197
5	0,041	0,076	0,107	0,134	0,152	2 0,16	6 0,	178 (1,189	0,198	0,206	0,212	0,218
6.	0.042	0,080	0,114	0,141	0,16	0 0,17	6 0,	190 (.201	0,211	0,219	0,226	0,234
7	0:042	0.081	0,115	0,143	3 0,164	4 0,18	1 0,	196. (1,209	0,220	0,229	0,239	0,246
8	0.041	0.080	0,114	0,142	2 0,16	5 0,18	5, 0,	199 (0.214	0,225	0,236	0,246	0,254
9	0,040	0,078	0,112	0,140	0,16	4 0,18	3 0,	200 4	1,216	0,228	0,240	0,251	0,260
10	0,038	0,075	0,109	0,136	5 0,16	1 0,18	1 0,	199 (0,216	0,229	0,242	0,252	0,262
11	0.036	0.071	0 104	0.135	0.15	7 0.17	8 0.	197 (1213	0.227	0.241	0.252	0.262
17	0.035	0.069	0,099	0128	8 015	3 0.17	4 0.	194 (210	0.225	0.239	0.251	0.261
13	0.034	0.066	0.095	0.124	4 0.14	9 0.17	0 0.	190	1.207	0.223	0.237	0.249	0.260
-14	0.032	0.063	0.092	0.120	0.14	5 0.16	8 0.	086	204	0.220	0.235	0.247	0.258
15	0.031	0.060	0,089	0,116	5 0,14	0 0,16	2 0,	182	1,200	0,216	0,231	0,244	0,255
14	0.020	0.059	0.084	0.11	0 12	6 0 15	7 0	177	196	0 212	0 227	0 240	0 252
10	0,000	0,056	0,000	0,112	2 013	2 0.15	3 0	172	1197	0 207	0.223	0.236	0 248
19	0,029	0,054	0,000	0,100	1 0,13	8 0,13	S 0, 8 0	167	0.186	0 202	0 218	0.232	0.244
10	0,027	0.052	0,000	0,10	1 0,12	4 0 14	4 0	162	187	0.197	0.213	0.226	0.239
20	0,020	0,032	0.074	0.097	7 0.119	9 0.13	9 0.	157	1.176	0.192	0.207	0.221	0.234
20	0,021	0,017	0,073		0,11	0,10	· ·,	146	1.20	0.100	0.104	0.008	0.000
22	0,022	0,044	0,067	0,088	3 0,10	9 0,12	8 0,	146	1,163	0,180	0,194	0,208	0,222
24	0,020	0,040	0,060	0,080	0,09	9 0,11	8 0,	136 1	1,152	0,168	0,182	0,190	0,208
26	0,018	0,036	0,054	0,073	3 0,09	1 0,10	8 U,	145 1	1,142	0,150	0,170	0,104	0,190
28	0,016	0,032	0,049	0,062	/ 0,08	3 0,09	8 U,	115	1136	0,130	0,159	0,172	0,154
30	0,015	0,030	0,045	0,06.	1 0,070	o U,Uo	9 U,	105	4161	0,134	0,140	0,139	0,170
	1	12.5	V Charles	Rates	and the second second	The second	and the second second	181	1.1	Constraints of the	and the second second	s <u>i s</u> eku	
-				States and States		10 A 10 A	8 J 10 10		010 A 40	Marrie and	2.7P		1000
CORD	12	5 14		-	1			- 30					
1080	0.050	IL.		1.	IVIE 0.000	0.002		0.095	0.096	0.097	0.099	0.099	0.080
0,5	0,070	0,073	0,076	0,078	0,080	0,082	0,084	0,085	0,086	0,087	0,088	0,088	0,089
0,5 1	0,070 0,101	0,073 0,104	0,076 0,107 0,140	0,078 0,109 0,152	0,080 0,112 0,154	0,082 0,114 0,156	0,084 0,116 0,158	0,085 0,118 0,160	0,086 0,119 0.161	0,087 0,120 0,162	0,088 0,121 0,164	0,088 0,122 0,166	0,089 0,123 0,167
0,5 1 2	0,070 0,101 0,142 0,176	0,073 0,104 0,146 0,180	0,076 0,107 0,149 0,184	0,078 0,109 0,152 0,187	0,080 0,112 0,154 0 190	0,082 0,114 0,156 0 193	0,084 0,116 0,158	0,085 0,118 0,160	0,086 0,119 0,161	0,087 0,120 0,162 0,202	0,088 0,121 0,164 0,203	0,088 0,122 0,166 0,204	0,089 0,123 0,167 0,205
0,5 1 2 3	0,070 0,101 0,142 0,176 0,201	0,073 0,104 0,146 0,180 0,205	0,076 0,107 0,149 0,184 0,210	0,078 0,109 0,152 0,187 0,215	0,080 0,112 0,154 0,190 0,218	0,082 0,114 0,156 0,193 0,222	0,084 0,116 0,158 0,195 0,225	0,085 0,118 0,160 0,198 0,228	0,086 0,119 0,161 0,200 0,231	0,087 0,120 0,162 0,202 0,233	0,088 0,121 0,164 0,203 0,235	0,088 0,122 0,166 0,204 0,237	0,089 0,123 0,167 0,205 0,239
0,5 1 2 3 4 5	0,070 0,101 0,142 0,176 0,201 0,224	0,073 0,104 0,146 0,180 0,205 0,229	0,076 0,107 0,149 0,184 0,210 0,235	0,078 0,109 0,152 0,187 0,215 0,240	0,080 0,112 0,154 0,190 0,218 0,245	0,082 0,114 0,156 0,193 0,222 0,248	0,084 0,116 0,158 0,195 0,225 0,252	0,085 0,118 0,160 0,198 0,228 0,255	0,086 0,119 0,161 0,200 0,231 0,258	0,087 0,120 0,162 0,202 0,233 0,261	0,088 0,121 0,164 0,203 0,235 0,263	0,088 0,122 0,166 0,204 0,237 0,264	0,089 0,123 0,167 0,205 0,239 0,266
0,5 1 2 3 4 5	0,070 0,101 0,142 0,176 0,201 0,224	0,073 0,104 0,146 0,180 0,205 0,229	0,076 0,107 0,149 0,184 0,210 0,235	0,078 0,109 0,152 0,187 0,215 0,240	0,080 0,112 0,154 0,190 0,218 0,245	0,082 0,114 0,156 0,193 0,222 0,248	0,084 0,116 0,158 0,195 0,225 0,252	0,085 0,118 0,160 0,198 0,228 0,255	0,086 0,119 0,161 0,200 0,231 0,258	0,087 0,120 0,162 0,202 0,233 0,261	0,088 0,121 0,164 0,203 0,235 0,263	0,088 0,122 0,166 0,204 0,237 0,264	0,089 0,123 0,167 0,205 0,239 0,266
0,5 1 2 3 4 5 6	0,070 0,101 0,142 0,176 0,201 0,224 0,241	0,073 0,104 0,146 0,180 0,205 0,229 0,246	0,076 0,107 0,149 0,184 0,210 0,235 0,252	0,078 0,109 0,152 0,187 0,215 0,240 0,257	0,080 0,112 0,154 0,190 0,218 0,245 0,262	0,082 (0 0,114 (0 0,156 (0 0,193 (0 0,222 (0 0,248 (0 0,265 (0 0,265 (0))))))))))))))))))))))))))))))))))))	0,084 0,116 0,158 0,195 0,225 0,252 0,269	0,085 0,118 0,160 0,198 0,228 0,255 0,272	0,086 0,119 0,161 0,200 0,231 0,258 0,275	0,087 0,120 0,162 0,202 0,233 0,261 0,278	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,280	0,088 0,122 0,166 0,204 0,237 0,264 0,282	0,089 0,123 0,167 0,205 0,239 0,266 0,284
0,5 1 2 3 4 5 6 7	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,252 0,252	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,257	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,262	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,285	0,084 0,116 0,158 0,195 0,225 0,252 0,252 0,269 0,287	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,278 0,296	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,280 0,299	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304
0,5 1 2 3 4 5 6 7 8	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,263	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,289	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,294	0,084 0,116 0,158 0,195 0,225 0,252 0,269 0,287 0,298 0,298	0,085 0,118 0,160 0,228 0,255 0,272 0,290 0,301	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294 0,305	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,399 0,219	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,229	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,234	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315
0,5 1 2 3 4 5 6 7 8 9	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,252 0,267 0,278 0,284	0,078 0,109 0,152 0,157 0,215 0,240 0,257 0,273 0,285 0,292 0,205	0,080 0,112 0,154 0,190 0,218 0,245 0,245 0,262 0,278 0,289 0,298 0,202	0,082 (0,114 (0,156 (0,193 (0,222 (0,248 (0,265 (0,282 (0,282 (0,282 (0,282 (0,282 (0,283 (0,184 (0,186 (0,193 (0,282 (0,283	0,084 0,116 0,158 0,195 0,225 0,252 0,252 0,252 0,252 0,259 0,258 0,287 0,298 0,308 0,314	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,312	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294 0,305 0,316	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,296 0,309 0,319	0,088 0,121 0,164 0,203 0,263 0,263 0,280 0,299 0,311 0,322 0,231	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,324	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,327
0,5 1 2 3 4 5 6 7 8 9 10	0,070 0,101 0,142 0,176 0,201 0,224 0,224 0,254 0,263 0,269 0,271	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,282 0,294 0,303 0,308	0,084 0,116 0,158 0,195 0,225 0,252 0,252 0,269 0,287 0,298 0,308 0,304	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327	0,088 0,121 0,164 0,203 0,263 0,263 0,280 0,299 0,311 0,322 0,331	0,088 0,122 0,166 0,204 0,237 0,264 0,237 0,264 0,237 0,264 0,302 0,313 0,324 0,333	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336
0,5 1 2 3 4 5 6 7 8 9 10 11	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,288 0,288 0,289	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,295 0,295 0,296	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304	0,082 0,114 0,156 0,222 0,248 0,265 0,282 0,282 0,282 0,303 0,308 0,308	0,084 0,116 0,158 0,195 0,225 0,252 0,252 0,269 0,287 0,298 0,308 0,314 0,316	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331	0,088 0,121 0,164 0,203 0,263 0,263 0,280 0,299 0,311 0,322 0,331 0,334	0,088 0,122 0,166 0,204 0,237 0,264 0,237 0,264 0,237 0,264 0,302 0,313 0,324 0,333 0,337	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,304 0,315 0,327 0,336 0,339
0,5 1 2 3 4 5 6 7 8 9 10 11 12	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,288 0,288 0,289 0,290	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,296 0,297	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,282 0,282 0,303 0,308 0,308 0,311 0,312	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,288 0,308 0,314 0,316 0,318	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333	0,088 0,121 0,164 0,203 0,263 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,304 0,315 0,327 0,336 0,339 0,342
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,272	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,288 0,288 0,289 0,290 0,290	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,295 0,295 0,295 0,296 0,297 0,298	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,306	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,282 0,282 0,303 0,308 0,308 0,308 0,311 0,312 0,313	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,308 0,314 0,316 0,318 0,319	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,340 0,342	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,339 0,342 0,345
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,272 0,270 0,268	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,290	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,295 0,295 0,295 0,296 0,297 0,298 0,297	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,306 0,305	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,282 0,294 0,303 0,308 0,308 0,311 0,312 0,313 0,313	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,308 0,314 0,316 0,318 0,319 0,320	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,324	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,332	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337	0,088 0,121 0,164 0,203 0,263 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,341	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,340	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,339 0,342 0,345 0,345 0,347
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,272 0,270 0,268 0,266	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,288 0,288	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,295 0,295 0,295 0,296 0,297 0,298 0,297 0,295	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,305 0,303	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,282 0,282 0,303 0,308 0,308 0,308 0,311 0,313 0,311	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,308 0,314 0,316 0,316 0,318 0,319 0,320 0,318	0,085 0,118 0,160 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,344	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,339 0,342 0,345 0,347 0,347
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,272 0,270 0,268 0,266 0,263	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,289 0,290 0,288 0,288 0,286	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,295 0,295 0,296 0,297 0,298 0,297 0,295 0,295	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,306 0,305 0,303 0,300	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,282 0,282 0,282 0,282 0,303 0,308 0,308 0,311 0,313 0,311 0,313 0,311	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,308 0,314 0,316 0,316 0,318 0,319 0,320 0,318	0,085 0,118 0,160 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,338 0,330 0,332 0,333 0,331 0,328	0,087 0,120 0,162 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,342	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,339 0,342 0,345 0,345 0,347 0,345
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,270 0,268 0,266 0,263 0,259	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274 0,271	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,280 0,283 0,283 0,279	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,295 0,295 0,295 0,296 0,297 0,298 0,297 0,295 0,295 0,295	0,080 0,112 0,154 0,190 0,218 0,245 0,245 0,262 0,278 0,298 0,302 0,302 0,304 0,305 0,305 0,303 0,300 0,296	0,082 (0,114 (0,156 (0,193 (0,222 (0,248 (0,265 (0,282 (0,284 (0,303 (0,303 (0,303 (0,311 (0,313 (0,313 (0,311 (0,308 (0,304 (0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,308 0,314 0,316 0,318 0,319 0,320 0,318 0,319 0,320	0,085 0,118 0,160 0,198 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,332	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,334	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,342 0,344 0,342 0,349	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,339 0,342 0,345 0,347 0,345 0,347 0,346 0,343
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,270 0,268 0,266 0,268 0,266 0,263 0,259 0,255	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274 0,271 0,266	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,280 0,283 0,289 0,283 0,279 0,275	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,296 0,297 0,298 0,297 0,298 0,297 0,295 0,292 0,288 0,284	0,080 0,112 0,154 0,190 0,218 0,245 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,306 0,305 0,303 0,300 0,296 0,292	0,082 (0,114 (0,156 (0,193 (0,222 (0,248 (0,265 (0,282 (0,284 (0,303 (0,303 (0,303 (0,311 (0,313 (0,313 (0,313 (0,313 (0,311 (0,308 (0,300 (0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,308 0,314 0,316 0,318 0,316 0,318 0,319 0,320 0,318 0,315 0,311 0,307	0,085 0,118 0,160 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325 0,326 0,325	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324 0,320	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,335 0,337	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,334 0,330	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,342 0,344 0,342 0,349 0,342	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,339 0,342 0,345 0,345 0,347 0,345 0,347 0,346 0,343 0,339
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,270 0,272 0,270 0,268 0,266 0,266 0,263 0,259 0,255 0,251	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274 0,271 0,274 0,271 0,266 0,261	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,280 0,283 0,279 0,275 0,270	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,295 0,296 0,297 0,298 0,297 0,295 0,295 0,292 0,288 0,284 0,284 0,280	0,080 0,112 0,154 0,190 0,218 0,245 0,245 0,245 0,289 0,298 0,302 0,304 0,305 0,306 0,305 0,303 0,300 0,296 0,292 0,288	0,082 (0,114 (0,156 (0,193 (0,222 (0,248 (0,265 (0,282 (0,282 (0,294 (0,303 (0,303 (0,313 (0,313 (0,313 (0,313 (0,313 (0,313 (0,313 (0,313 (0,313 (0,300 (0,295 (0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,287 0,318 0,314 0,316 0,318 0,319 0,320 0,318 0,319 0,320 0,318	0,085 0,118 0,160 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325 0,326 0,325 0,326 0,313 0,309	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324 0,320 0,315	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,335 0,337 0,336	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,334 0,330 0,326	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,344 0,344 0,344 0,342 0,335 0,331	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,339 0,342 0,345 0,347 0,345 0,347 0,346 0,343 0,339 0,335
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,272 0,270 0,268 0,266 0,266 0,263 0,259 0,255 0,251 0,246	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274 0,271 0,274 0,271 0,266 0,261 0,257	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,288 0,289 0,285 0,275 0,275 0,270 0,265	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,295 0,296 0,297 0,298 0,297 0,295 0,295 0,292 0,288 0,284 0,284 0,280 0,275	0,080 0,112 0,154 0,190 0,218 0,245 0,245 0,245 0,289 0,298 0,302 0,304 0,305 0,306 0,305 0,303 0,300 0,296 0,292 0,288 0,284	0,082 (0,114 (0,156 (0,193 (0,222 (0,248 (0,265 (0,282 (0,282 (0,294 (0,303 (0,303 (0,303 (0,311 (0,313 (0,313 (0,313 (0,313 (0,311 (0,308 (0,300 (0,295 (0,291 (0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,287 0,287 0,318 0,314 0,316 0,318 0,319 0,310 0,318 0,319 0,320 0,318 0,315 0,311 0,307 0,303 0,299	0,085 0,118 0,160 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325 0,326 0,325 0,326 0,313 0,309 0,305	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324 0,320 0,315 0,311	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,335 0,337 0,336	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,340 0,337 0,334 0,330 0,326 0,321	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,342 0,344 0,344 0,342 0,335 0,331 0,326	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,339 0,342 0,345 0,347 0,345 0,347 0,345 0,347 0,346 0,343 0,339 0,335 0,329
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,272 0,270 0,272 0,270 0,268 0,266 0,263 0,259 0,255 0,251 0,246 0,233	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274 0,271 0,274 0,271 0,266 0,261 0,257 0,246	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,288 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,285	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,295 0,296 0,297 0,295 0,295 0,295 0,295 0,295 0,292 0,288 0,284 0,280 0,275 0,264	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,305 0,306 0,305 0,303 0,300 0,296 0,292 0,288 0,284 0,273	0,082 0,114 0,156 0,222 0,248 0,265 0,282 0,294 0,303 0,308 0,308 0,301 0,313 0,313 0,311 0,312 0,313 0,313 0,311 0,308 0,304 0,300 0,295 0,291 0,280	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,287 0,288 0,314 0,316 0,314 0,316 0,318 0,319 0,320 0,318 0,319 0,320 0,318 0,315 0,311 0,307 0,303 0,299 0,288	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325 0,326 0,325 0,326 0,313 0,309 0,305	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324 0,320 0,315 0,311 0,301	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,335 0,337 0,336 0,333 0,329 0,325 0,321 0,316	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,334 0,330 0,326 0,321	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,342 0,344 0,344 0,344 0,342 0,335 0,331 0,326 0,316	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,327 0,336 0,339 0,342 0,345 0,347 0,345 0,347 0,346 0,343 0,339 0,335 0,329 0,319
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24	0,070 0,101 0,142 0,176 0,201 0,224 0,254 0,263 0,269 0,271 0,272 0,272 0,270 0,272 0,270 0,268 0,266 0,266 0,263 0,259 0,255 0,251 0,246 0,233 0,220	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,281 0,280 0,279 0,277 0,274 0,271 0,266 0,261 0,257 0,246 0,235	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,283 0,279 0,275 0,275 0,275 0,243	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,295 0,296 0,297 0,295 0,295 0,295 0,295 0,295 0,292 0,288 0,284 0,280 0,275 0,264 0,252	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,306 0,305 0,306 0,305 0,303 0,300 0,296 0,292 0,288 0,284 0,273 0,259	0,082 0,114 0,156 0,193 0,222 0,248 0,265 0,282 0,294 0,303 0,308 0,308 0,301 0,313 0,311 0,312 0,313 0,313 0,311 0,312 0,313 0,311 0,308 0,304 0,300 0,295 0,291 0,280 0,267	0,084 0,116 0,158 0,225 0,252 0,252 0,269 0,287 0,287 0,288 0,314 0,316 0,314 0,316 0,318 0,319 0,320 0,318 0,319 0,320 0,318 0,315 0,311 0,307 0,303 0,299 0,288 0,275	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325 0,326 0,313 0,309 0,305 0,295 0,281	0,086 0,119 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324 0,320 0,315 0,311 0,288	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,335 0,337 0,336 0,333 0,329 0,325 0,321 0,316	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,340 0,337 0,334 0,330 0,326 0,321 0,311 0,299	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,324 0,333 0,337 0,340 0,342 0,344 0,344 0,344 0,342 0,335 0,331 0,326 0,316 0,304	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,327 0,336 0,329 0,345 0,347 0,345 0,347 0,345 0,347 0,346 0,343 0,339 0,335 0,329 0,335 0,329
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,270 0,272 0,270 0,268 0,266 0,263 0,259 0,255 0,251 0,246 0,233 0,220 0,207	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,281 0,280 0,279 0,277 0,274 0,277 0,274 0,271 0,266 0,261 0,257 0,246 0,257	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,255 0,275 0,275 0,275 0,225 0,225	0,078 0,109 0,152 0,187 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,295 0,296 0,297 0,295 0,295 0,295 0,295 0,295 0,295 0,292 0,288 0,284 0,280 0,275 0,264 0,252 0,236	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,298 0,298 0,302 0,304 0,305 0,305 0,306 0,305 0,305 0,303 0,300 0,296 0,292 0,288 0,284 0,273 0,259 0,245	0,082 0,114 0,156 0,222 0,248 0,265 0,282 0,282 0,282 0,282 0,284 0,303 0,308 0,301 0,313 0,311 0,313 0,311 0,308 0,304 0,300 0,300 0,300 0,300 0,300 0,300 0,300 0,300 0,300 0,300 0,265 0,287 0,280 0,265	0,084 0,116 0,158 0,195 0,225 0,252 0,269 0,287 0,288 0,318 0,316 0,318 0,316 0,318 0,319 0,318 0,315 0,317 0,315 0,311 0,307 0,303 0,299 0,288 0,275 0,260	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,322 0,326 0,325 0,325 0,322 0,318 0,309 0,305 0,295 0,281 0,266	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,330 0,332 0,333 0,331 0,328 0,324 0,320 0,315 0,311 0,288 0,272	0,087 0,120 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,329 0,325 0,321 0,316 0,306 0,294 0,279	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,344 0,337 0,344 0,337 0,344 0,337 0,344 0,337 0,344 0,337 0,344 0,337 0,244	0,088 0,122 0,166 0,204 0,237 0,264 0,282 0,302 0,313 0,324 0,333 0,324 0,333 0,340 0,342 0,344 0,344 0,344 0,342 0,335 0,331 0,326 0,316 0,326	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,327 0,336 0,329 0,342 0,345 0,347 0,347 0,346 0,343 0,339 0,335 0,329 0,335 0,329
0,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28	0,070 0,101 0,142 0,176 0,201 0,224 0,241 0,254 0,263 0,269 0,271 0,272 0,270 0,272 0,270 0,268 0,266 0,263 0,255 0,251 0,255 0,251 0,246 0,233 0,220 0,207 0,207 0,214	0,073 0,104 0,146 0,180 0,205 0,229 0,246 0,260 0,271 0,277 0,279 0,280 0,280 0,281 0,280 0,279 0,277 0,274 0,274 0,266 0,261 0,266 0,261 0,257 0,246 0,261 0,257 0,246 0,261 0,257	0,076 0,107 0,149 0,184 0,210 0,235 0,252 0,267 0,278 0,284 0,288 0,289 0,290 0,290 0,290 0,290 0,288 0,289 0,290 0,288 0,289 0,290 0,275 0,275 0,275 0,275 0,275 0,275 0,275 0,275 0,225	0,078 0,109 0,152 0,215 0,240 0,257 0,273 0,285 0,292 0,295 0,295 0,296 0,297 0,295 0,297 0,295 0,297 0,295 0,292 0,295 0,292 0,288 0,280 0,275 0,264 0,252 0,226 4,236 0,222	0,080 0,112 0,154 0,190 0,218 0,245 0,262 0,278 0,289 0,298 0,302 0,304 0,305 0,306 0,305 0,306 0,305 0,303 0,300 0,296 0,292 0,288 0,288 0,288 0,288 0,284 0,273 0,259 0,245 0,230	0,082 0,114 0,156 0,248 0,248 0,265 0,282 0,294 0,303 0,308 0,301 0,312 0,313 0,311 0,313 0,311 0,313 0,311 0,308 0,304 0,300 0,295 0,291 0,280 0,285 0,287 0,283	0,084 0,116 0,158 0,225 0,252 0,269 0,287 0,287 0,288 0,318 0,316 0,318 0,319 0,316 0,318 0,319 0,318 0,315 0,311 0,307 0,315 0,311 0,307 0,303 0,299 0,288 0,275 0,260 0,245	0,085 0,118 0,160 0,198 0,228 0,255 0,272 0,290 0,301 0,312 0,318 0,322 0,324 0,325 0,326 0,325 0,326 0,325 0,322 0,318 0,309 0,305 0,295 0,281 0,265	0,086 0,119 0,161 0,200 0,231 0,258 0,275 0,294 0,305 0,316 0,384 0,328 0,330 0,332 0,333 0,331 0,328 0,324 0,328 0,320 0,315 0,311 0,288 0,272 0,258	0,087 0,120 0,202 0,233 0,261 0,278 0,296 0,309 0,319 0,327 0,331 0,333 0,335 0,337 0,336 0,333 0,325 0,331 0,325 0,331 0,325 0,321 0,316 0,306 0,294 0,279 0,264	0,088 0,121 0,164 0,203 0,235 0,263 0,280 0,299 0,311 0,322 0,331 0,334 0,337 0,340 0,341 0,340 0,337 0,340 0,337 0,340 0,337 0,340 0,337 0,340 0,337 0,340 0,337 0,340 0,326 0,311 0,299 0,284 0,269	0,088 0,122 0,166 0,204 0,237 0,264 0,302 0,313 0,324 0,333 0,337 0,340 0,342 0,344 0,342 0,344 0,342 0,335 0,331 0,326 0,316 0,304 0,289 0,274	0,089 0,123 0,167 0,205 0,239 0,266 0,284 0,304 0,315 0,327 0,336 0,327 0,336 0,339 0,342 0,345 0,347 0,345 0,347 0,345 0,347 0,346 0,343 0,339 0,335 0,329 0,335 0,329

Tabela 2 – Relação espalhamento-ar - raios gama do cobalto-60

3.1.5 CÁLCULO DA DOSE FORA DO EIXO CENTRAL

Para se obter valores de dose profunda, em pontos fora do eixo central do campo¹⁰, deve-se os determinar a relação espalhamento-ar (SAR) pelo método de Clarkson na região em questão e profundidade desejada, obtendo-se portanto a TAR para este ponto e profundidade, fora do eixo central.

A radiação tem também uma variação de intensidade na sua taxa de dose no ar fora do eixo central do campo, num plano perpendicular ao feixe¹⁰.

Esta variação pode ser traduzida por um fator, conhecido por "off-axis", medido experimentalmente.

3.1.6 VARIAÇÃO DA DOSE POR CAUSA DOS PULMÕES

Na região dos pulmões, em razão da diferença de densidade, as profundidades usadas no cálculo devem ser corrigidas^{22,23,24,10} :

- deve-se considerar que o pulmão é formado por 2/3 de ar e 1/3 de tecido; portanto, de cada 1cm de espessura de pulmão, 0,66cm de ar e 0,34cm de tecido.
- se, numa profundidade d, estiver contida uma espessura p de tecido pulmonar, onde p < d, o cálculo da dose em uma profundidade efetiva d_{ef}, será :

$$d_{ef} = d - p + \frac{1}{3}p$$
 que se reduz a : $d_{ef} = d - \frac{2}{3}p$

IOMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP IPLA

Chamamos de diâmetro látero-lateral efetivo (DLL)_{TE} na região do tórax ao diâmetro latero-lateral (DLL)_T corrigido pela presença dos pulmões, ou seja

$$(DLL)_{TE} = (DLL)_T - \frac{2}{3}p$$

Como um valor aproximado, normalmente temos $(DLL)_{TE} \cong 0.7 (DLL)_{T}$.

A Figura 3 mostra uma carta de isodoses onde parte da mesma passa por uma região pulmonar, portanto, sofre uma correção na sua distribuição. Este procedimento para a determinação da profundidade efetiva deve ser feito na região dos pulmões na irradiação de todo o corpo.

Figura 3 – Ilustração da correção das isodoses por causa da presença de pulmão.

3.2 IRRADIAÇÃO DE TODO O CORPO:

Os parâmetros físicos envolvidos na irradiação de todo o corpo são os seguintes :

3.2.1 - ENERGIA DA RADIAÇÃO

Centros de radioterapia usam feixes com energias entre 1,25MeV, energia média dos raios gama do ⁶⁰Co^{25,26,27,28}, **até** aquelas dos feixes de raios X com energias nominais de 10MV^{29,30} produzidos por aceleradores lineares.

Quando se usa energias maiores³¹ que as do ⁶⁰Co, deve-se tomar cuidado para que não ocorram subdosagens na superfície do paciente por causa do aumento da profundidade de equilíbrio eletrônico. Nestes casos é aconselhável usar uma tela no paciente, feita de material equivalente ao do tecido, de modo a garantir que a pele não fique subdosada.

A vantagem de usar unidades de cobalto, é que a profundidade de equilíbrio eletrônico é muito pequena e praticamente não existe o problema de subdosagem na pele. Outra vantagem é que estas unidades de telecobalto, na sua maioria, possuem mais graus de liberdade (cabeçote e pescoço) facilitando as irradiações, principalmente em salas pequenas.

Por causa dessas vantagens, optou-se usar radiações gama do ⁶⁰Co pois no Brasil, nos centros de radioterapia, existem cerca de duas vezes mais unidades de telecobaltoterapia do que aceleradores lineares.

3.2.2 - DISTÂNCIA FOCO-SUPERFÍCIE

A distância foco-superfície F, deve ser suficientemente grande para obter um campo de irradiação com dimensões adequadas ao tratamento. Este campo deve englobar todo o volume a ser irradiado³². Normalmente estas distâncias variam de 2m a 4m, dependendo das dimensões da sala e posição do paciente. Esses campos podem chegar até 200cm x 200cm.

3.2.3 - DOSE E FRACIONAMENTO

A dose total, na maioria dos protocolos, é de 1200cGy fracionada em 3 dias, com 2 aplicações ao dia de 200cGy e com uma taxa de dose³³ de 5cGy/min a 8cGy/min. Existem outros tipos de fracionamento com resultados radiobiológicos semelhantes^{34,35}.

3.2.4 - POSIÇÃO DO PACIENTE

Os pacientes podem se submeter a essa irradiação em varias posições, dependendo da técnica utilizada³⁶ e das dimensões da sala de tratamento³⁷ como mostra a Figura 4. É comum usar as posições ântero-posterior e póstero-anterior ou látero-laterais, na posição sentada com os braços apoiados sobre os joelhos (ou rentes ao tronco), em doses iguais. Outras posições^{38,39} de tratamento podem ser usadas. Entretanto, deve-se sempre considerar o conforto do paciente, pois deve ficar imóvel por cerca de 30minutos por campo.

A irradiação látero-lateral na posição sentada com os braços apoiados sobre os joelhos, como ilustra a Figura 5, foi escolhida porque a experiência mostrou que é a menos desconfortável e pode ser aplicada inclusive em salas pequenas.

Figura 4 – Exemplo de diferentes posições de irradiação de TBI.

Figura 5 - Irradiação do corpo todo na posiçao latero-lateral.

3.2.5 - TAXA DE DOSE NO AR

A taxa de dose no ar à distância de tratamento, não deve ser determinada pela lei do inverso do quadrado da distância em razão de espalhamentos extras (cadeira, parede ...) em grandes distâncias de tratamento. Esta taxa de dose deve ser medida não só no centro do campo, mas também ao longo dele.

3.2.6 - HOMOGENEIDADE DA DOSE

A dose não é uniforme no volume do corpo todo do paciente porque possui regiões com espessuras diferentes e tecidos inomogêneos, além do campo de irradiação ser grande e irregular. Para corrigir este desvio são usados absorvedores, como lâminas de chumbo, fixadas na bandeja da unidade de terapia conforme ilustração da Figura 6. A atenuação nas lâminas de chumbo deve ser medida para o feixe largo de radiação.

Se a variação no valor da dose é de $\pm 10\%$ considera-se aceitável, e quando é de $\pm 5\%$ é considerada excelente⁷.

Figura 6 – Ilustração do uso de absorvedores.

4. EQUIPAMENTOS E MÉTODO

4.1 EQUIPAMENTOS

4.1.1 - FONTE DE RADIAÇÃO

Neste trabalho foi usada uma unidade de telecobaltoterapia do Centro de Radioterapia do Hospital Alemão Oswaldo Cruz de São Paulo, Figura 7, fabricada por *Atomic Energy of Canada*, modelo Theratron 765. A distância foco-isocentro é de 65cm e o tamanho máximo de campo no isocentro de 30cm x 30cm. A fonte de ⁶⁰Co tem diâmetro ativo de 17mm e a taxa de dose no ar, a 1m de distância, é 22,00cGy/min (janeiro de 2.001).

Figura 7 - Unidade de telecobalto.

4.1.2 - DOSÍMETRO

9

Câmara de ionização de 0.6cm^3 , tipo Farmer, modelo PR-066 com eletrômetro modelo 192, como mostra a Figura 8. O conjunto câmara mais eletrômetro é da marca *Capintec Nuclear*. Esta câmara (incerteza associada ao fator de calibração, avaliada pelo IPEN em $\pm 1\%$ - certificado de calibração n⁰ 013C/0898) foi usada para a dosimetria in vivo nos pacientes, como ilustra a Figura 9.

Figura 8 - Câmara de ionização com eletrômetro.

Figura 9 - Ilustração do posicionamento da câmara de ionização no paciente para a dosimetria in vivo

4.1.3 - SISTEMA DE PLANEJAMENTO COMPUTADORIZADO

Para as simulações e cálculo de dose nos pacientes usando o método descrito foi usado o sistema de planejamento bi-dimensional de tratamento radioterápico, modelo Prowess 3000, versão 3.06 de fabricação *Prowess System – SSGI* (Figura 10).

O Sistema de Planejamento Computadorizado consiste num conjunto de programas independentes, cada um deles para uma finalidade específica (planejamento de feixes em teleterapia, cálculo de campos irregulares, braquiterapia etc.).

Este sistema é composto além da unidade central (CPU), de uma mesa digitalizadora para a entrada de contornos, campos irregulares etc., uma impressora, uma plotadora e também de um "scanner" para a entrada de imagens tomográficas.

Figura 10 - Sistema de planejamento computadorizado

O TBI foi considerado um campo grande, irregular e com heterogeneidades. Para cada região de interesse (cabeça, tórax, abdome...) determina-se a quantidade de radiação espalhada pelo método de Clarkson^{35,40} para que, com a radiação primária, seja obtida com exatidão a relação tecido-ar da região, para a determinação da dose ou taxa de dose.

4.2.1 - PROCEDIMENTO

Para cada pessoa na posição de tratamento, como ilustra a Figura 11, foi determinado o tamanho e a forma do campo utilizando-se uma máquina fotográfica. Esta máquina é colocada exatamente no lugar onde estará a fonte de ⁶⁰Co durante a irradiação, como ilustra a Figura 12. O diapositivo fornece uma imagem, por meio da projeção em verdadeira grandeza, de um corte sagital do paciente, que é a configuração do campo de irradiação como mostra a Figura 13. O fator de magnificação desta imagem é obtido pela dimensão de uma estrutura bem definida (por exemplo o diâmetro antero-posterior da cabeça) no paciente. Câmaras digitais também podem ser usadas.

Figura 11 - Paciente e unidade de 60Co na posição de irradiação

Figura 12 - Máquina fotográfica na posição onde fica a fonte de 60Co durante a irradiação

Figura 13 - Ilustração do corte sagital do paciente

Com o tamanho e a forma do campo, para cada região de interesse (cabeça, tórax, braços ...) na profundidade desejada, determina-se a quantidade de radiação espalhada pelo método de Clarkson³⁵ conforme a Figura 14, para que, com a radiação primária possa ser determinada a relação tecido-ar.

Figura 14 – Ilustração da determinação da radiação espalhada no TBI pelo método de Clarkson (escala aproximada 1:13)

Os campos de irradiação (contornos nos planos sagitais médios dos pacientes), obtidos por meio da projeção dos diapositivos, desenhados em grandeza verdadeira, para a distância de tratamento assumem tamanhos da ordem de 100cm x 100cm.

Os valores da relação espalhamento-ar, para raios grandes, maiores que 25cm, não são tabelados, o que seria uma dificuldade para o TBI, pelo método de Clarkson, para a determinação da radiação espalhada.

Mas, a relação espalhamento-ar é uma função direta da relação tecido-ar, que tem valores tabelados¹⁴ para campos de até 75cm x 75cm.

Portanto, aplicando-se a relação descrita no ítem 3.1.3

SAR
$$(d, A_d, Q) = TAR (d, A_d, Q) - TAR (d, 0, Q)$$

pode-se facilmente obter os valores do SAR para raios de até 40cm (círculo equivalente a um campo quadrado de 75cm x 75cm) que, se plotados num gráfico, sugerem uma estabilização de seus valores para raios maiores de 25cm. Desta maneira, é possível desenvolver os cálculos para a determinação da dose, ou taxa de dose, em determinadas regiões.

A Figura 15 mostra um gráfico da relação espalhamento-ar em função do raio de campo, a 14cm de profundidade, para os raios gama do ⁶⁰Co.

Figura 15 - Relação espalhamento-ar, para uma fonte de ⁶⁰Co na profundidade de 14cm

Mesmo assim, trabalhar com campos com essas dimensões, em verdadeira grandeza, torna-se praticamente inviável por causa das dificuldades inerentes a campos tão grandes, seja fazendo cálculos manualmente como usando computadores, cujos programas comerciais não aceitam campos grandes, fora dos padrões de uma radioterapia convencional.

4.2.2 - ADEQUAÇÃO DO PROCEDIMENTO PROPOSTO

Nos equipamentos de teleterapia observa-se, para a mesma abertura dos colimadores, as situações seguintes :

a) se a distância F_1 da fonte tiver um campo quadrado de dimensões $y \ge y \ge y$, a distância F_2 , com $F_2 > F_1$, ter-se-á um campo quadrado de dimensões $z \ge z \ge y(F_2/F_1)$. Ver Figura 16.

Figura 16 - Ilustração da variação de um campo com a distância

b) se para a distância F₁ da fonte existir um campo irregular cujo quadrado equivalente é a x a, à distância F₂ com F₂ > F₁, ter-se-á um campo irregular de quadrado equivalente b x b , onde b = a (F₂/F₁) . Figura 17.

Figura 17 - Ilustração da variação de um campo irregular com a distância

c) analisando as duas situações anteriores a) e b) constata-se que para um campo grande e irregular, como é o campo do TBI, se forem conhecidas as suas dimensões a uma distânçia de tratamento F₂, pode-se usar o do método de Clarkson por cálculos manuais ou computadorizados, para um campo minimizado para a distância F₁, ver Figura 18, (por exemplo: distância do isocentro da máquina). Nessa situação, os campos quadrados equivalentes obtidos para cada região de interesse (cabeça, tórax etc.) podem ser projetados à distância real de tratamento (F₂) do TBI com a relação (F₂/F₁) e, a partir desses valores reais, as relações tecido-ar e as taxas de dose em cada região.

Figura 18 - Ilustração da variação de um campo de TBI com a distância

Esta projeção das dimensões dos campos quadrados equivalentes, na distância de cálculo F₁ para a de tratamento F₂, é válida porque a variação da relação espalhamentoar pode ser assumida como linear para os raios no intervalo entre F₁ e F₂, ou seja, para valores mínimos de raios em F₁ até valores máximos em F₂.

Nas Figuras 19, 20, 21, 22, 23, 24 e 25 temos curvas de relação espalhamento-ar, que foram feitas com os dados da Tabela 2, no intervalo médio de variação do campo quadrado equivalente da região de interesse na distância F1 à distância F2, representadas pelo seu raio equivalente (raio do círculo equivalente ao campo quadrado).

O intervalo estabelecido foi entre os campos equivalentes as regiões de interesse de uma criança à de um adulto de compleção grande.

Estas curvas demonstram seu comportamento próximo ao linear nos intervalos escolhidos.

Q

ADASSAO NACIONAL DE ENERGIA NUCLEAR/SP IPER

UMISSAC NACIONAL DE ENERGIA NUCLEAR/SP IMER

ŧ.

.

32

INHISSAD NACIONAL DE ENERGIA NUCLEAR/SP IPE

•

,

Foram feitas 20 (vinte) simulações do procedimento em pessoas voluntárias, de constituições físicas variadas. Na Tabela 3 temos os dados anatômicos de cada pessoa simulada : sua altura H (cm), sua massa M (kg) e a área da superfície corpórea ASC (m²). Na Tabela 4, temos as profundidades de cálculo nas várias regiões do corpo de cada simulação e os valores médios das mesmas.

Os campos de tratamento tem suas dimensões em verdadeira grandeza na distância $F_2 = 220$ cm da fonte de irradiação e, para efeito de cálculo, foram desmagnificados para a distância $F_1 = 65$ cm.

Nesta distância F₁ estes campos minimizados foram calculados pelo sistema de planejamento bi-dimensional e foram determinados os lados dos quadrados equivalentes a cada região de interesse e posterior projeção destes valores para a distância F₂, por

meio da relação $\frac{F_2}{F_1}$.

Na Tabela 5 dos Resultados temos o lado L (cm), na distância F₂, dos quadrados equivalentes nas várias regiões do corpo das simulações feitas.

Os resumos dos dados fornecidos pelo sistema de planejamento computadorizado são apresentados no Apêndice como [Simulação 1] à [Simulação 20], as figuras apresentadas estão na escala 1:2 para distância F₁ e 1:3,38 para a distância F₂.

Simulação	H (cm)	M (kg)	ASC (m ²)	Simulação	H (cm)	M (kg)	ASC (m ²)
1	172	78	1,92	11	152	46	1,43
2	172	117	2,29	12	174	80	1,99
3	166	63	1,74	13	158	62	1,66
4	170	102	2,13	14	162	67	1,75
5	150	46	1,52	15	182	90	2,16
6	180	91	2,03	16	178	73	1,94
7	188	95	2,07	17	158	52	1,54
8	160	57	1,66	18	136	27	1,05
9	165	61	1,71	19	161	48	1,50
10	160	55	1,60	20	178	119	2,37

TABELA 3 : ALTURA (H), MASSA (M) E ÁREA DA SUPERFÍCIE CORPÓREA (ASC) DAS SIMULAÇÕES FEITAS.

TABELA 4 : PROFUNDIDADES DE CÁLCULO (D) NAS VÁRIAS REGIÕES DO CORPO DAS SIMULAÇÕES FEITAS E VALORES MÉDIOS DAS MESMAS.

SIMULAÇÃO	D _{CABEÇA (cm)}	DTÓRAX (cm)	DABDOME (cm)	D _{COXA} (cm)	D _{PERNA (cm)}	DBRAÇO (cm)	DANTEBRAÇO (cm)
1	7,5	14,0	13,5	8,0	5,0	4,0	3,5
2	8,0	19,0	18,0	9,0	6,5	5,0	3,5
3	7,0	14,0	13,5	7,5	5,5	3,5	2,5
4	7,0	17,7	17,0	9,0	6,5	4,5	3,0
5	7,5	12,5	12,5	8,5	6,5	3,5	2,5
6	8,0	16,0	16,0	7,0	5,0	4,0	3,0
7	7,0	16,0	16,0	7,0	5,0	4,0	3,0
8	7,0	13,0	12,0	7,0	5,0	4,0	3,0
9	7,0	12,0	12,0	7,0	5,0	3,0	2,0
10	7,0	13,0	12,0	7,0	4,0	3,0	2,5
11	7,0	12,0	11,0	6,0	4,0	3,0	2,5
12	8,0	17,0	16,0	7,0	6,0	5,0	4,0
13	7,0	14,0	15,0	7,0	4,0	4,0	3,0
14	7,0	13,0	10,0	8,0	5,0	4,0	3,0
15	7,0	18,0	16,0	7,0	5,0	5,0	3,0
16	7,0	15,0	14,0	7,0	5,0	3,5	3,0
17	7,0	13,0	12,0	6,0	5,0	3,0	2,5
18	7,0	11,0	11,0	4,0	3,0	2,5	2,0
19	7,0	12,0	12,0	6,0	4,0	3,0	3,0
20	7,0	19,0	19,0	10,0	7,0	6,0	5,0
D (D _{medio})	7,2	14,6	13,9	7,2	5,1	3,9	3,0

5. RESULTADOS

5.1 DETERMINAÇÃO DA TAXA DE DOSE NO AR

A taxa de dose no ar à distância de tratamento igual a 220cm foi medida no eixo central do campo e também fora dele em pontos separados por intervalos de 10cm (nos eixos x e y do campo). Os valores encontrados em pontos equidistantes nos dois eixos foram iguais.

Valores de taxa de dose no ar não devem ser determinados com o auxílio da lei do inverso do quadrado da distância, por causa de espalhamentos da radiação na sala de tratamento (paredes, piso, cadeira etc.).

A Figura 26 mostra os valores medidos e os calculados pelo inverso do quadrado da distância, usando como valor de referência o medido no isocentro do equipamento. Podese verificar que existe uma variação significativa entre as duas condições. Os valores foram normalizados (100%) na taxa de dose medida no eixo central do campo na distância de tratamento.

Neste gráfico da Figura 26 temos além da prova da impossibilidade de se usar a lei do inverso do quadrado da distância para medidas de referência, a variação da taxa de dose fora do eixo central que na verdade é o fator off-axis descrito no ítem 3.1.5.

Na curva que representa os valores medidos, para cada distância no eixo das abcissas, pode-se determinar o valor porcentual da variação da taxa de dose fora do eixo central.

Figura 26 - Curva medida e a calculada pelo inverso do quadrado da distância para a taxa de dose no ar

....

. D

Com os dados das simulações feitas, foram determinados os lados dos campos quadrados equivalentes nas várias regiões do corpo, pelo método proposto, para a distância de tratamento $F_2 = 220$ cm , à partir dos valores calculados na distância $F_1 = 65$ cm. Também foram determinados os lados médios dos quadrados equivalentes nas distâncias F_2 e F_1 . Estes valores estão na Tabela 5.

SIMULAÇÃO	L _{CABEÇA} (cm)	L _{TÓRAX} (cm)	L _{ABDOME} (cm)	L _{COXA} (cm)	L _{PERNA} (cm)	L _{BRAÇO} (cm)	L _{ANTEBRAÇO} (cm)
1	22,0	33,8	37,2	32,2	18,6	18,6	13,5
2	23,5	44,0	49,1	40,6	22,0	29,4	18,6
3	22,0	35,5	37,2	37,2	19,3	23,7	17,3
4	22,0	33,8	45,7	38,9	21,7	25,4	18,3
5	20,3	30,5	38,6	31,1	17,3	23,7	17,3
6	23,7	38,9	43,7	33,0	18,0	20,3	16,6
7	23,7	40,3	42,6	35,2	22,0	21,5	17,8
8	21,1	30,1	28,8	29,6	17,3	19,5	13,9
9	21,3	31,8	34,2	32,5	19,3	19,3	15,6
10	20,0	29,6	32,3	31,5	17,3	19,3	14,6
11	18,3	26,2	28,9	25,4	14,9	18,0	14,6
12	24,0	37,2	35,5	31,1	19,1	21,3	14,5
13	20,0	32,1	36,5	30,5	18,6	22,0	15,2
14	21,3	31,3	33,5	35,6	20,3	22,8	16,9
15	23,7	41,5	42,3	33,5	17,9	26,7	17,8
16	23,3	35,0	37,2	33,5	19,2	22,0	15,6
17	22,7	33,2	37,2	33,8	18,3	22,7	14,4
18	16,1	23,0	25,0	21,5	14,4	17,6	13,2
19	19,5	31,3	33,2	30,5	18,6	17,3	12,5
20	26,7	40,3	41,9	42,0	25,0	23,4	17,3
$\frac{L_{médio}}{L_2} \text{ (em F}_2 = 220 \text{ cm})$	21,8	34,0	37,0	33,0	19,0	21,7	15,8
$\frac{L_{médio}}{L_1 (em F_1 = 65cm)}$	6,4	10,0	10,9	9,7	5,6	6,4	4,7

TABELA 5 - LADO L DO CAMPO QUADRADO EQUIVALENTE NAS VÁRIAS REGIÕES DO CORPO

Para feixes largos, não se pode calcular a absorção usando-se os coeficientes de atenuação linear tabelados que se aplicam apenas para feixes estreitos.

Foram obtidas medidas com o campo de tratamento, variando a espessura dos absorvedores (de 1mm em 1mm), com as quais foi construido o gráfico apresentado na Figura 27. Os valores da curva estão normalizados para 100% para espessura zero.

Figura 27 – Atenuação de um feixe largo de raios gama do cobalto-60

5.4 FÓRMULAS PARA O CÁLCULO DA DOSE

As fórmulas apresentadas a seguir são adaptações da definição da relação tecido-ar $\dot{\mathbf{D}}_{d} = \dot{\mathbf{D}}'_{d} \cdot \text{TAR} (d, A, Q)$, feitas para cada região de interesse no corpo humano, para a técnica do TBI.

Estas fórmulas adaptadas facilitam a rotina de cálculo de centros de radioterapia que não dispõem de sistemas de planejamento computadorizados.

A Figura 28 ilustra o paciente na posição de irradiação e os respectivos diâmetros láterolaterais.

IDMISSAO NACIONAL DE ENERGIA NUCLEAR/SP IMER

1 - REGIÃO DA CABEÇA

Taxa de dose no plano sagital da cabeça :

$$\dot{D}(S,F) \cdot TAR_{c}[(DLL)_{c}/2,S_{c}]$$
 (1)

Taxa de dose entrada na cabeça ($d = d_m$) :

24

$$\dot{D}(S,F)\left[\frac{F}{F-\frac{(DLL)_{G}}{2}+d_{m}}\right]^{2}FSP(S_{c})$$
(2)

Taxa de dose saída na cabeça (d = $DLL_{CA} - d_m$) :

$$\dot{D}(S,F)\left[\frac{F}{F+\frac{(DLL)_{c}}{2}-d_{m}}\right]^{2} TAR[(DLL)_{c}-d_{m},S_{c}]$$
(3)

A taxa média de dose na profundidade d_m da região da cabeça por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores (2) e (3).

Símbolos usados nas fórmulas :

•

۰.

1

.

D(S,F)	 Taxa de dose no ar no campo S, distância F, corrigida pela variação fora do eixo central (cGv/min)
F	- Distância fonte plano sagital médio do paciente (cm)
S	- Dimensões do campo de irradiação na distância F (cm x cm)
d _m	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co)
(DLL) _c	- Diâmetro látero-lateral na cabeça (cm)
Sc	 Campo quadrado equivalente, na cabeça (cm x cm)
FSP(Sc)	- Fator espalhamento-pico na cabeça
TAR _c	- Relação tecido-ar na região da cabeça

2 - REGIÃO DO TÓRAX

Taxa de dose no plano sagital do tórax :

$$D(S,F) \cdot TAR_{Te}[(DLL)_{Te} / 2, S_T]$$
 (4)

Taxa de dose de entrada no tórax $(d = d_m)$:

$$\dot{D}(S,F)\left[\frac{F}{F-\frac{(DLL)_{T}}{2}+d_{m}}\right]^{2}FSP(S_{T})$$
(5)

Taxa de dose saída no tórax (d = DLL_T - d_m) :

$$\dot{D}(S,F)\left[\frac{F}{F+\frac{(DLL)_{r}}{2}-d_{m}}\right]^{2}TAR_{Te}[(DLL)_{Te}-d_{m},S_{T}]$$
(6)

A taxa média de dose na profundidade d_m da região do tórax por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores de (5) e (6).

33

Símbolos usados nas fórmulas :

D(SE)	- Taxa de dose no ar no campo S, distância F, corrigida pela
D (0,1)	variação fora do eixo central (cGy/min)
F	 Distância fonte plano sagital médio do paciente (cm)
S	 Dimensões do campo de irradiação na distância F (cm x cm)
d _m	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co)
(DLL) _T	- Diâmetro látero-lateral no tórax (cm)
(DLL) _{TF}	 Diâmetro látero-lateral no tórax efetivo (cm)
S _T	 Campo quadrado equivalente, no tórax e abdome (cm x cm)
FSP(ST)	- Fator espalhamento-pico no tórax
TAR _{TE}	- Relação tecido-ar efetiva na região do tórax

2

3 - REGIÃO DO ABDOME

22

÷.

Taxa de dose no plano sagital do abdome :

$$D(S,F) \cdot TAR_{A}[(DLL)_{A}/2,S_{T}]$$
 (7)

Taxa de dose de entrada no abdome (d = d_m) :

$$\dot{D}(S,F)\left[\frac{F}{F-\frac{(DLL)_{A}}{2}+d_{m}}\right]^{2}FSP(S_{T})$$
(8)

Taxa de dose saída no abdome ($d = DLL_A - d_m$) :

$$\dot{\mathbf{D}}(\mathbf{S},\mathbf{F})\left[\frac{\mathbf{F}}{\mathbf{F}+\frac{(\mathbf{DLL})_{A}}{2}-\mathbf{d}_{m}}\right]^{2}\mathbf{TAR}_{A}[(\mathbf{DLL})_{A}-\mathbf{d}_{m},\mathbf{S}_{T}]$$
(9)

A taxa média de dose na profundidade d_m da região do abdome por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores (8) e (9).

Símbolos usados nas fórmulas :

Ď(S,F)	 Taxa de dose no ar no campo S, distância F, corrigida pela variação fora do eixo central (cGy/min)
F	 Distância fonte plano sagital médio do paciente (cm)
S	 Dimensões do campo de irradiação na distância F (cm x cm)
d _m	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co)
(DLL) _A	- Diâmetro látero-lateral no abdome (cm)
S _T	 Campo quadrado equivalente, no tórax e abdome (cm x cm)
FSP(ST)	 Fator espalhamento-pico no tórax e abdome
TARA	 Relação tecido-ar na região do abdome

4 - REGIÃO DA COXA

Taxa de dose no plano sagital da coxa

Coxa esquerda :

$$\dot{D}(S,F) \left[\frac{F}{F - \frac{(DLL)_{A}}{2} + \frac{(DLL)_{c0}}{2}} \right]^{2} TAR_{c0} \left[\frac{(DLL)_{c0}}{2}, S_{c0} \right]$$
(10)

Coxa direita :

$$\dot{D}(S,F) \left[\frac{F}{F + \frac{(DLL)_{A}}{2} - \frac{(DLL)_{CO}}{2}} \right]^{2} TAR_{CO} [1,5(DLL)_{CO}, S_{CO}]$$
(11)

A taxa média de dose no plano sagital das coxas esquerda e direita por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores (10) e (11).

Símbolos usados nas fórmulas

Ď (S, F)	 Taxa de dose no ar no campo S, distância F, corrigida pela variação fora do eixo central (cGy/min)
F	- Distância fonte plano sagital médio do paciente (cm)
S	 Dimensões do campo de irradiação na distância F (cm x cm)
d _m	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co)
(DLL) _A	 Diâmetro látero-lateral no abdome (cm)
(DLL) _{co}	- Diâmetro látero-lateral na coxa (cm)
S _{co}	- Campo quadrado equivalente, na coxa (cm x cm)
TAR _{co}	- Relação tecido-ar na região da coxa

.

23

5 - REGIÃO DA PERNA

Taxa de dose no plano sagital da perna

Perna esquerda :

$$\dot{D}(S,F)\left[\frac{F}{F-\frac{(DLL)_{A}}{2}+\frac{(DLL)_{P}}{2}}\right]^{2}TAR_{F}\left[\frac{(DLL)_{P}}{2},S_{P}\right]$$
(12)

Perna direita :

$$\dot{D}(S,F)\left[\frac{F}{F+\frac{(DLL)_{A}}{2}-\frac{(DLL)_{P}}{2}}\right]^{2} TAR_{P}[1,5(DLL)_{P},S_{P}]$$
 (13)

A taxa média de dose no plano sagital das pernas esquerda e direita por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores (12) e (13).

Símbolos usados nas fórmulas :

D(S,F)	 Taxa de dose no ar no campo S, distância F, corrigida pela variação fora do eixo central (cGy/min)
F	- Distância fonte plano sagital médio do paciente (cm)
S	 Dimensões do campo de irradiação na distância F (cm x cm)
d _m	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co)
(DLL) _A	 Diâmetro látero-lateral no abdome (cm)
(DLL) _P	- Diâmetro látero-lateral na perna (cm)
Sp	- Campo quadrado equivalente, na perna (cm x cm)
TAR _P	- Relação tecido-ar na região da perna

6 - REGIÃO DO ANTEBRAÇO

Taxa de dose no plano sagital do antebraço

Antebraço esquerdo :

$$\dot{D}(S,F)\left[\frac{F}{F-\frac{(DLL)_{T}}{2}+\frac{(DLL)_{AB}}{2}}\right]^{2} TAR_{AB}\left[\frac{(DLL)_{AB}}{2},S_{AB}\right]$$
(14)

Antebraço direito :

25

.....

28

$$\dot{D}(S,F)\left[\frac{F}{F+\frac{(DLL)_{T}}{2}-\frac{(DLL)_{AB}}{2}}\right]^{2} TAR_{AB}[1,5(DLL)_{AB},S_{AB}]$$
 (15)

A taxa média de dose no plano sagital dos antebraços esquerdo e direito por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores (14) e (15).

Símbolos usados nas fórmulas :

D (S, F)	 Taxa de dose no ar no campo S, distância F, corrigida pela variação fora do eixo central (cGy/min)
F	- Distância fonte plano sagital médio do paciente (cm)
S	 Dimensões do campo de irradiação na distância F (cm x cm)
d _m	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co)
(DLL) _T	 Diâmetro látero-lateral no tórax (cm)
(DLL) _{AB}	 Diâmetro látero-lateral no ante-braço (cm)
SAB	- Campo quadrado equivalente, no ante-braço (cmx cm)
TARAB	- Relação tecido-ar na região do ante-braço

53

7 - REGIÃO DO BRAÇO

Taxa de dose no plano sagital do braço

Braço esquerdo :

$$\dot{D}(S,F)\left[\frac{F}{F-\frac{(DLL)_{T}}{2}+\frac{(DLL)_{B}}{2}}\right]^{2}TAR_{g}\left[\frac{(DLL)_{B}}{2},S_{E}\right]$$
(16)

Braço direito :

$$\dot{D}(S,F)\left[\frac{F}{F+\frac{(DLL)_{T}}{2}-\frac{(DLL)_{B}}{2}}\right]^{2}$$
 TAR_B[1,5(DLL)_B, S_B] (17)

A taxa média de dose no plano sagital dos braços esquerdo e direito por causa dos dois campos (lateral direito e lateral esquerdo) é obtida pela soma dos valores (16) e (17).

Símbolos usados nas fórmulas :

D (S,F)	 Taxa de dose no ar no campo S, distância F, corrigida pela variação fora do eixo central (cGy/min)
F	 Distância fonte plano sagital médio do paciente (cm)
S	 Dimensões do campo de irradiação na distância F (cm x cm)
d _m (DLL) _T	- Profundidade de equilíbrio eletrônico (0,5cm para os raios γ do ⁶⁰ Co) - Diâmetro látero-lateral no tórax (cm)
(DLL) _B	- Diâmetro látero-lateral no braço (cm)
S _B	- Campo quadrado equivalente, no braço (cm x cm)
TAR	- Relação tecido-ar na região do braço

5.5 MODELO DE UMA FICHA TÉCNICA

Está sendo sugerido também um modêlo de ficha técnica para ser usada no cálculo da dose nas irradiações de todo o corpo, com o uso das fórmulas (1) à (17) do ítem 6.3 dos Resultados, por meio do método proposto neste trabalho. Este modêlo também facilitará os Centros de Radioterapia que não dispoem de sistemas de planejamento computadorizado.

1	
	IRRADIAÇÃO DE TODO O CORPO (TBI) - FICHA TÉCNICA
Nome :	
Registro ·	Data :

Registro	····· •	Jala		
Dose Total (DT) :	cGy	Dose por Campo-Aplicação (DA) :cGy		
Angulações da unidade	de terap	ia:		
Gantry :	. Pescoç	o: C	olimador :	
F :cm	S :	cm x cm	Ď[F,S] :cm	

DADOS ANATÔMICOS (cm)

(DLL)c		(DLL) _{co}	-
(DLL) _T		(DLL) _P	
(DLL) _{TE}	=	(DLL) _{AB}	(=)
(DLL) _A	iz X	(DLL) _B	

Taxas de dose nas regiões de interesse

Calculadas por meio das relações (1) à (17), somente para uma entrada de campo. [d = profundidade, E = taxa dose entrada (d = dm), S = taxa dose saída (d = DLL- dm), PS = taxa de dose no plano sagital (d = DLL/2)]

REGIÃO	d (cm)	Taxa de dose (cGy/min)	Redução Desejada (%)	Absorvedor + Bandeja	Taxa de dose (cGy/min) corrigida
Crânio E	2 (a)				
Crânio S				Į	
Crânio PS				6	100 NO 100 N
Tórax E	1	1			No tokat (Martin
Tórax S	372-202			18	
Tórax PS					
Abdome E				owin i	
Abdome S	Seres 1		1		
Abdome PS					·
Coxa Direita PS					
Coxa Esquerda PS	3		1.000	280 DA	
Perna Direita PS	- Sare -				
Perna Esquerda PS					
Braço Direito PS			8	······································	a Silenzia
Braço Esquerdo PS				:	
Antebraço Direito PS					
Antebraço Esquerdo PS					

O tempo T (min) da aplicação será o quociente da Dose por Campo-Aplicação (cGy), pela Taxa de dose (cGy/min) da região de referência

TEMPO DA APLICAÇÃO (T) :min

DOSES TOTAIS NO PLANO SAGITAL DE CADA REGIÃO :

taxa de dose no plano sagital x tempo x número de aplicações

OBS .:

 a) Nas regiões duplas (coxa direita e esquerda, perma direita e esquerda ...) as taxas de doses são diferentes para cada uma destas regiões, para cada entrada de campo (direito e esquerdo) portanto, a dose total média de cada região será :

[(taxa de dose no plano sagital direito + taxa de dose no plano sagital esquerdo) / 2] x tempo x número de aplicações

b) As doses totais de entrada (E) e saída (S) de cada região serão :

[(taxa de dose de entrada + taxa de dose saída) / 2] x tempo x número de aplicações

REGIÃO	DOSE TOTAL (cGy)
Crânio E = Crânio S	
Crânio PS	
Tórax E = Tórax S	
Tórax PS	
Abdome E = Abdome S	
Coxa Direita PS = Coxa Esquerda PS	
Perna Direita PS = Perna Esquerda PS	
Braço Direito PS = Braço Esquerdo PS	
Antebraço Direito PS = Antebraço Esquerdo PS	

DOSES TOTAIS ACUMULADAS EM CADA REGIÃO

CONTROLE DAS APLICAÇÕES

Número da Aplicação	DATA (d/m/a)	Horário	Campo	Dose (cGy)	Dose(cGy) acumulada	Tempo (min) da Aplicação	Técnica	Físico	Médico
01					1				
02		1							
03	0.0			0.000					
04									57
05		(*************************************			S				
06				94	8/		6 1	- 335	S
07		6					S - 5	· · · · · · · · · · · · · · · · · · ·	×
08							S - 5		ð
09	20.00.000		die Manaderie	10.00		20 00	100000000000	100000000	Coste 1-
10		5		e - 02	and the second second		а. С	-	-
11		8		3	s i		8		SS
12	35-69	÷	0	8	x				

OBS	ERVAÇÕES
01	
02	
03	
04	
05	
06	
07	
08	
09	
10	
11	
12	

5.6 DOSIMETRIA "IN VIVO"

Foram feitas medidas "in vivo" com câmara de ionização nos pacientes submetidos à irradiação de todo o corpo. A câmara de ionização, com a capa de equilíbrio eletrônico, foi colocada nos pacientes nas regiões de interesse como mostra a Figura 9.

Os resultados das medidas foram comparados com os valores calculados pelo método descrito neste trabalho, conforme mostram as Tabelas 6A e 6B.

TABELA 6A - RESULTADOS DAS TAXAS DE DOSE MEDIDA E CALCULADA PARA DIVERSA	S
REGIÕES DO CORPO DOS PACIENTES	

Número do Paciente	Região	Taxa de Dose Medida (\dot{D}_M) (cGy/min)	Taxa de Dose Calculada (D _c) (cGy/min)	Erro porcentual $ \begin{pmatrix} \left \dot{D}_{M} - \dot{D}_{c} \right \\ \dot{D}_{c} \\ \dot{D}_{c} \\ \end{pmatrix} \times 100 $
96078	Abdome (E)	9,80	9,43	3,78
96078	Abdome (S)	3,60	3,52	2,22
96567	Abdome (E)	9,10	8,80	3,30
97308	Boca	6,60	6,47	1,97
97308	Tórax (E)	5,30	5,46	3,02
97308	Abdome (E)	8,30	8,04	3,13
97308	Abdome (S)	1,97	1,95	1,02
98010	Boca	5,00	4,96	0,80
98010	Tórax (E)	6,00	6,07	1,17
98010	Abdome (E)	8,70	8,80	1,15
98010	Abdome (S)	1,60	1,59	0,63
98457	Tórax (E)	7,60	7,63	0,39
98457	Abdome (E)	7,80	7,63	2,18
98457	Abdome (S)	1,70	1,66	2,35
98457	Coxa (E)	7,86	7,68	2,29

 $E = taxa de dose entrada na região (d = d_m)$

S = taxa de dose saída na região ($d = DLL - d_m$)

Número do Paciente	Região	Taxa de Dose Medida (Ď _M) (cGy/min)	Taxa de Dose Calculada (\dot{D}_c) (cGy/min)	Erro porcentual $ \begin{pmatrix} \dot{D}_{M} - \dot{D}_{c} \\ \dot{D}_{c} \end{pmatrix} \times 100 $
98457	Perna (E)	7,66	7,55	1,44
98457	Perna (S)	5,61	5,46	2,67
98459	Boca	4,30	4,24	1,40
98459	Tórax (E)	6,73	6,56	2,53
98459	Abdome (E)	8,68	8,34	3,92
98459	Abdome (S)	1,27	1,26	0,79
98461	Boca	4,23	4,19	0,95
98461	Abdome (E)	8,25	7,93	3,88
98461	Abdome (S)	1,85	1,83	1,08
98502	Cabeça (E)	4,34	4,36	0,46
98502	Tórax (E)	6,30	6,53	3,65
98502	Abdome (E)	8,03	7,91	1,49
99512	Cabeça (E)	3,62	3,66	1,10
99512	Tórax (E)	5,24	5,16	1,53

TABELA 6B – RESULTADOS DAS TAXAS DE DOSE MEDIDA E CALCULADA PARA DIVERSAS REGIÕES DO CORPO DOS PACIENTES

E = taxa de dose entrada na região (d = d_m)

•

S = taxa de dose saída na região ($d = DLL - d_m$)

O erro porcentual medio dos procedimentos é obtido pela relação

onde $\begin{pmatrix} \bullet \\ D_C \end{pmatrix}$ é a taxa de dose calculada, $\begin{pmatrix} \bullet \\ D_M \end{pmatrix}$ a taxa de dose medida e N é o número

de procedimentos dosimétricos "in vivo". Usando os dados das Tabelas 1A e 1B calculase o erro porcentual medio que resulta igual a 1,94%.

6. DISCUSSÕES

- Quando a técnica de TBI é aplicada, muitos parâmetros físicos estão envolvidos, como energia, distância fonte paciente, posição do paciente, taxa de dose no ar, etc.
 É difícil calcular doses com exatidão em razão dos grandes campos utilizados, aumento do efeito da radiação espalhada e a necessidade de correção por causa de inomogeneidades. Pode-se afirmar que o cálculo das doses é uma técnica complexa e demorada.
- A essência deste trabalho foi o de considerar para efeito de cálculo de dose, que o campo de TBI é um campo grande e irregular, tratá-lo como tal e determinar, pelo método de Clarkson, portanto de uma maneira mais exata, valores de taxa de dose nas regiões de interesse, por intermédio da radiação primária e espalhada.

Seguindo esta linha, verificou-se que com as dimensões do campo de TBI a distância de tratamento F₂, pode-se usar o do método de Clarkson por cálculos manuais ou computadorizados para um campo minimizado para a distância F₁ (ver Figura 18), e obter os campos quadrados equivalente para cada região de interesse (cabeça, tórax etc.). Determinar o campo quadrado equivalente à distância real de tratamento (F₂) do TBI através da relação (F₂/F₁) e, a partir desses valores, as relações tecido-ar e as taxas de dose em cada região.

Desta maneira foi evitado o trabalho de cálculo em campos muito grandes (maiores que 100cm x 100cm), cuja execução na prática é bem incômoda.

57

- Este enfoque de minimização de campos, além de tomar o cálculo mais rápido, possibilita a execução de cálculos através de programas comerciais de planejamento radioterápico que normalmente não aceitam campos maiores que 70cm x 70cm.
- O valor da taxa de dose no ar, medida na distância de tratamento (220cm) nas condições de equilíbrio eletrônico, comprovou que é inválida a aplicação da lei do inverso do quadrado da distância para sua determinação, à partir de taxas de dose em distâncias de referência (por exemplo no isocentro do equipamento).
- Para a determinação da taxa de dose no ar em pontos fora do plano sagital médio do paciente, ou seja, para distâncias dentro do intervalo (F ± espessura do paciente 2) pode ser aplicada a lei do inverso do quadrado da distância, pois a taxa de dose na distância de tratamento F foi medida experimentalmente.
- Determinou-se a variação da taxa de dose no ar para pontos fora do eixo central e obteve-se uma curva com a qual podemos determinar, para a distância fora do eixo central desejada, o chamado fator "off-axis".
- Obteve-se com medidas, uma curva de atenuação para o feixe largo de raios gama do ⁶⁰Co para que fosse possível obter espessuras corretas de absorvedores de chumbo, necessárias para a homogeneidade da dose no volume irradiado.
- A bibliografia mais recente (últimos 2 anos) é quase toda composta por trabalhos clínicos que discutem a radiobiologia do TBI, efeitos imediatos, efeitos tardios e principalmente seqüelas.

- Todas as medidas experimentais que resultaram nas curvas das Figuras 26 e 27 e nos valores das dosimetrias *in vivo*, foram feitas com a mesma câmara de ionização e eletrômetro descritos no ítem 4.1.2.
- As medidas no ar, foram feitas para :

> Determinação de
$$\dot{D}_a(F, A)$$
 para a relação $\dot{D}_d(F, A) = TAR(d, A, Q) \times \dot{D}_a(F, A)$

- > Medidas in vivo nos pacientes para verificação da eficácia do método descrito
- > Determinação de $D_a(F, A)$ fora do eixo central do campo
- > Determinação de transmissão no chumbo

Em todas as medidas todos os parâmetros físicos envolvidos foram os mesmos.

Nas as medidas in vivo feitas nos pacientes, no fator de correção para a temperatura.

 $C_T = \left(\frac{273 + t}{295}\right)$ a temperatuta t foi tomada como a interna do paciente para

as medidas na cavidade oral e para as medidas externas, feitas na superfície do paciente, foi colocado um termômetro na posição da câmara, inclusive com sua capa de equiíbrio eletrônico, para avaliação desta temperatura.

• A irradiação da haste e cabo do dosímetro pode causar uma coleção extra de íons.

Para que a contribuição deste efeito fosse a mesma em todas as medidas, foi colocado dentro da área de irradiação a mesma extensão de cabo, como ilustra a Figura 29, em todas as medidas experimetais.

Lembrando que : as curvas de taxa de dose no ar e de transmissão no chumbo, foram normalizadas para 100% e as medidas in vivo foram para comparação com os valores calculados pelo método descrito, baseado nos valores de $D_a(F,A)$ também medidos experimentalmente .

Figura 29 - Ilustração da geometria da câmara nas medidas experimentais

 O diâmetro látero-lateral efetivo no tórax (DLL)_{TE} foi obtido por meio-de corte tomográfico da região do tórax pela relação, vista no ítem 3.1.6,

$$(\mathsf{DLL})_{\mathsf{TE}} = (\mathsf{DLL})_{\mathsf{T}} - \frac{2}{3} \mathsf{p}$$

onde

- > (DLL)T é o diâmetro látero-lateral na região do tórax
- > p é a espessura do tecido pulmonar
- > $p = p_D + p_E$ ($p_D e a$ espessura do pulmão direito e p_E do esquerdo)

Na Figura 30 temos uma ilustração destas espessuras.

Figura 30 - Ilustração das espessuras laterais na região do tórax

7. CONCLUSÕES

- Foi estabelecida uma aplicação original de um método de cálculo de dose usando a relação tecido-ar, determinada pelo método de Clarkson, para cada região e profundidade de interesse, e constatou-se que é uma determinação exata.
- Foi estabelecida a minimização nas dimensões dos campos para a facilidade de execução do método, um enfoque também original, que possibilita a determinação dos campos quadrado equivalentes em cada região de interesse do TBI e respectiva projeção a verdadeira grandeza com grande precisão e enorme economia de tempo. Esta adequação viabiliza o uso de sistemas de planejamentos computadorizados para estes campos de TBI.
- A dosimetria "in vivo" mostrou que o erro porcentual médio entre as taxas de doses, medidas experimentalmente e as calculadas pelo método descrito, foi menor que 2%, portanto bem concordantes, comprovando a eficácia do método.

REFERÊNCIAS BIBLIOGRÁFICAS

- Conference on Dosimetry of Total Body Irradiation by External Photon Beams Oak Ridge Associated Universities. CLOUTIER, R.J.; O'FOGHLUDHA F.; COMAS, F.V.(Eds) document Conf - 670219, Health and Safety (TID-4500). Published by Oak Ridge Associated Universities, 1967.
- MAGNA-FIELD SYMPOSIUM. Florida. Sponsored by Children's Cancer Study Group in conjunction with ASTR. October, 1982. *Int. J. Radiat. Oncol. Biol. Phys.*, 9: 1905-1973, 1983.
- SHANK, BB.; O'REIILLY, R. J.; CUNNINGHAM, I. Total body irradiation for bone marrow transplantation: the Memorial Sloan - Kettering Cancer Center experience. *Radiother. Oncol.* ;18 (supp1):68-81, 1990.
- 4. AGET, H.; VAN DYK, J.; LEUNG, P.M.K. Utilization of a high energy photon beam for whole body irradiation. *Radiol.*, **123**: 747-751,1977.
- INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS. Dose specification for reporting external beam therapy with photons and electrons. ICRU (International Commission on Radiation Units and Measuremennts), Report 29, 1978.
- BRIOT, E.; DUTREIX, A.; BRIDIER, A. IN: BROESSE, J. J.; DUTREIX, A.; NOORDIJK, E. M. (eds), Physical, Biological and Clinical aspects of total body irradiation. *Radiother. Oncol.*, 18 (supl. 1), 1990.
- SHANK, B. M. Radiotherapeutic Principles of Bone Marrow Transplantation. Forman, S.; Thomasd E. D. "Bone Marrow Transplantation". Boston. Blackwell Scient. Pub.; 96-113, 1994.
- PLANSKOY, B.; BEDFORD, A. M.; DAVIS, F. M.; TAPPER, P. D. Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988-1993 : II. In vivo planning and dosimetry. *Phys. Med. Biol.* 41 (11): 2327-2343, 1996.

- PLANSKOY, B.; BEDFORD, A. M.; DAVIS, F. M.; TAPPER, P. D.; LOVEROCK, L. T.: Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988-1993 : I. Phantom measurements and planning methods. *Phys. Med. Biol.* 41:11, 2307-2326, 1996.
- 10. SCAFF, L. A. M. Física da Radioterapia. Ed. Sarvier, São Paulo, Brasil, 1997.
- 11. VAN DYK, J.; GALVIN, J. M.; GLASGOW, G. P.; PODGORSAK, E. B. *The physical aspects of total and half body photon irradiation* (AAPM Report No. 17). New York: American Institute of Physics, 1986.
- 12. VAN DYK, J. Magna-field irradiation: Physical considerations. *Int. J. Radiat. Oncol. Biol. Phys.*, 9, 1913-1918, 1983.
- VAN DYK, J. Whole and partial body radiotherapy: Physical considerations. In: Advances in Radiation Therapy Treatment Planning. Wright, A.; Boyer, A. L. (Eds.). AAPM Monograph No. 9, American Institute of Physics. N.Y.,403-426, 1983.
- 14. SUPLEMENTO 25 DO BRITISH JOURNAL OF RADIOLOGY : "Central Axis Depht Dose Data for Use in Radiotherapy : 1996". British Institute of Radiology, Londres, 1996.
- 15. INTERNATIONAL ATOMIC ENERGY AGENCY Absorbed Dose Determination in Photons and Electrons Beams, IAEA Technical Reports Series 277, Viena, 1987.
- 16. CUNNINGHAM, J. R. Scatter-air ratios. *Phys. Med. Biol.*, 17: 42-51, 1972.
- 17. WILLIAM, J. R.; THWAITES, D. I. *Radiotherapy Physics*, Oxford University Press, New York, 1993.
- GUPTA, S. K.; CUNNINGHAN, J. R. Measurement of tissue-air ratios and scatter functions for larger field sizes for Co-60 gamma radiation. *Brit. J. Radiol.*, 39:7-11, 1996.
- 19. HOCHHAUSER, E.; BALK, O. A. Tissue -air ratios for whole body irradiation with cobalt -60 gamma rays. *Brit. J. Radiol.*, **51**: 460-462,1978.

- 20. CLARKSON, J. R. A note on depth dose in fields of irregular shape. *Brit. J. Radiol.*,14:265,1941.
- 21. WORTHLEY, B. Equivalent square of rectangular fields, *Brit. J. Radiol.*, **39**:559,1966.
- GLADSTONE, D. J.; VAN HERK, M.; CHIN, L. M. Verification of lung attenuator positioning before total body irradiation using an eletronic portal imaging device. *Int. J.* Radiat. Oncol. Biol. Phys., 27: 449-454, 1993.
- 23. HUSSEIN, S.; KENNELLY, G. M. Lung compensation in total body irradiation : a radiographic method. *Med. Phys.*, 23(3), 357-360, 1996.
- VAN DYK, J.; BATTISTA, J. J.; RIDER, W.D. Half body Radiotherapy: The use of Computed Tomografy to determine the dose to lung. *Int. J. Radiat. Oncol. Biol. Phys.*, 6: 463-470, 1980.
- 25. DOMINIQUE, C. ; SCHWARTZ, L. H. ; LESCRAINIER, J. ; KERAUDY, K. ; BELKACEMI, Y. ; FOULQUIER, J. N. ; OZSAHIN, M. ; LEFKOPOULOS, D. ; PENE, F. A modified 60Co teletherapy unit for total body irradiaton. *Int. J. Radiat. Oncol. Biol. Phys.*, 33: 951-957, 1995.
- 26. LEUNG, P.M.K.; RIDER, W.D.; WEBB, H.P.; AGET, H.; JOHNS, H.E. Cobalt-60 therapy unit for larger field irradiation. *Int. J. Radiat. Oncol. Biol. Phys.*, 7: 705-712, 1981.
- 27. MILLER, R.J.; LANGDON, E. A.; TESLER, A. S. Total Body irradiation utilizing a single Cobalt-60 source. *Int. J.Radiat. Oncol.Biol. Phys.*, **1**: 549-552, 1976.
- PETERS, V.G.; HERER, A. S. Modification of a standard Cobalt-60 unit for total body irradiation at 150 cm. SSD. *Int. J. Radiat. Oncol. Biol. Phys.*, 10: 927-932, 1984.
- FINDLEY, D.O.; SKOV, D.D.; BLUME, K.G. Total body irradiation with a 10 MV linear accelerator in conjunction with bone marrow transplantation. *Int. J. Radiat. Oncol. Biol. Phys.*, 6: 695-702, 1980.
65

31. GLASGOW, G.P. Comparative Co-60 total body irradiation (220cm SAD) and 25 MV total body irradiation (370 cm SAD) dosimetry. *Int.J. Rad. Oncology Biol. Phys.*,

for whole body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 6,:761-765, 1980.

6:1243,1980.

- LEER, J. W. H.; BROERSE, J. J.; DE VROOME, H.; CHIN, A.; NOORDIJK, E. M.; DUTREIX, A. Techniques applied for total body irradiation. *Radiat. Oncol.* ,18 (suppl 1): 10-15, 1990.
- 33. VALLS, A.; GRANENA, A.; CARRERAS, E.; FERRER, E.; ALGARA, M. Total body irradiation in bone marrow transplantation : fractionated vs single dose. Acute toxicity and preliminary results . *Bull. Cancer*, **76** : 797-804, 1989.
- VITALE, V.; SCARPATI, D.; FRASSONI, F.; CORVO, R. Total body irradiation: single dose, fractions, dose rate. *Bone Marrow Transplant.*, 1989;4(suppl 1):233-235, 1989.
- 35. TRAVIS, E. L.; PETERS, L. J.; MCNEILL, J.; THAMES, H. D.; KAROLIS, C. Efect of dose-rate on total body irradiation : lethality and pathologic findings. *Radiother. Oncol.*, 4: 341-351, 1985.
- 36. SHANK, B. Techniques of magna-field irradiation. *Int. J. Radiat. Oncol. Biol. Phys.*, 9:1925-1931, 1983.
- 37. BARISH, R. J. On designing room shielding for total body irradiation. *Health Physics*, **70**: 714-716, 1996.
- 38. GERIG, L. H. ; SZANTO, J. ; BICHAY, T. ; GENEST, P. A translating-bed technique for total body irradiation. *Phys. Med. Biol.*, **39**: 19-35, 1994.
- GLASGOW, G. P.; WANG, S.; STANTON, J. A total irradiation stand for bone marrow transplant patients. *Int. J. Radiat. Oncol. Biol. Phys.*, 16: 875-877,1989.
- 40. SCAFF, L. A. M. Depth dose factors for radiotherapeutic treaments of lymphomas in a 4 MV linear accelerator. *Int. J. Radiol. Oncology Biol.*,4:521,1978.

[SIMULAÇÃO 2]

.

Machine Collimator Width Effective Field	C Size(A/P)	DBALT 27.2 10.5	Cm Co Cm	tput Fact llimator	or Length	1.087 24.5	cm
Prescription Poi PSF Ratio	nt	3 0.973	Pr	escribed ay Factor	Dose	100.0 0.970	cGy
Field Summaries	Deint	Deint	Detab	Delat			2000
	1 POINT	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7
Description	CABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	10.1 9.3 0.920 0.638	10.3 1.1 0.956 0.608	8.1 -3.5 0.970 0.623	2.1 -6.8 0.981 0.783	-4.9 -6.9 0.973 0.839	6.0 1.9 0.985 0.876	-1.5 -0.3 0.998 0.914
		P	rimary Fie	ld			
Machine Setting							
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	75.0 7.0 0.643 -0.135 1.000 0.778 0.726 157.9	65.0 19.0 0.283 0.158 1.000 0.442 0.429 88.9	65.0 18.0 0.304 0.176 1.000 0.480 0.471 100.0	65.0 9.0 0.563 0.170 1.000 0.733 0.722 192.8	65.0 6.5 0.665 0.122 1.000 0.787 0.770 220.2	65.0 5.0 0.739 0.124 0.999 0.862 0.851 253.9	65.0 3.5 0.825 0.066 0.984 0.891 0.877 273.2
			5			×	- · · ·

Collimator

[SIMULAÇÃO 3]

٩.

0

Machine COBALT Output Factor 1.086 Collimator Width 26.4 cm Collimator Length 22.7 cm Effective Field Size (A/P) Prescription Point 8.1 cm Prescribed Dose 3 100.0 CGy 0.966 PSF Ratio Tray Factor 0.970 Field Summaries Point Point Point Point Point Point Point 1 2 3 4 5 7 6 CABECA TORAX COXA Description ABDOME PERNA BRACO ANTEBR 8.2 X Position (cm) Y Position (cm) -6.0 -5.7 9.7 9.9 5.7 0.8 -0.8 8.2 0.2 -5.4 1.4 1.5 Profile Factor 0.960 0:998 0.932 0.963 0.989 0.975 0.986 Inverse Square 0.687 0.687 0.696 0.816 0.942 0.863 0.914 Primary Field Machine Setting SSD (cm) 65.0 2.5 72.0 65.0 65.0 65.0 65.0 65.0 7.0 7.5 Depth (cm) 14.0 13.5 5.5 3.5 0.713 TMRO 0.643 0.403 0.402 0.623 0.825 0.881 SMR 0.124 0.152 0.176 0.152 0.099 0.079 0.047 1.000 1.000 Edge Factor 1.000 1.000 0.997 0.997 0.981 TMR (Uncorrected) 0.767 0.555 0.578 0.775 0.812 0.904 0.928 TMR (Corrected) 0.909 0.723 0.539 0.563 0.768 0.792 0.890 Dose (cGy) 94.5 125.8 100.0 160.0 174.3 207.7 218.4 -22 ×1 x7 *6 × 1.5 хB ×4 xō . Collimator

[SIMULAÇÃO 4]

Machine C Collimator Width Effective Field Size(A/P)	OBALT 26.7 cm 9.3 cm	Ou Co	tput Fact llimator	or Length .	1.086 21.7	cm
Prescription Point PSF Ratio	3 0.971	Pr Tr	escribed : ay Factor	Dose	100.0 0.970	сGу
Field Summaries Point	Point	Point	Point	Point	Point	Point
1 Description CABECA	2 TORAX	3 ABDOME	4 COXA	5 PERNA	6 ANTEBR	7 BRACO
X Position (cm) 8.9 Y Position (cm) 7.8 Profile Factor 0.942 Inverse Square 0.638	9.4 1.0 0.965 0.630	8.1 -4.5 0.966 0.638	2.6 -5.6 0.985 0.783	-5.2 -5.7 0.978 0.839	3.8 1.2 0.995 0.888	-1.3 0.6 0.998 0.928
	Prin	mary Fie	ld			
Machine Setting						
SSD (cm) 75.0 Depth (cm) 7.0 TMRo 0.643 SMR 0.125 Edge Factor 1.000 TMR (Uncorrected) 0.768 TMR (Corrected) 0.730 Dose (cGy) 149.7	65.0 17.5 0.314 0.165 1.000 0.479 0.468 94.8	65.0 17,0 0.324 0.174 1.000 0.499 0.488 100.0	65.0 9.0 0.563 0.166 1.000 0.729 0.721 181.5	65.0 6.5 0.665 0.116 1.000 0.781 0.766 206.6	65.0 4.5 0.768 0.103 0.998 0.871 0.866 247.0	65.0 3.0 0.852 0.062 0.983 0.914 0.898 267.8
		×7		×5	x1 x2 x3	
					Collin	

[SIMULAÇÃO 5]

۰.

Machine Collimator Width Effective Field : Prescription Poin PSF Ratio	C Size(A/P) nt	COBALT 22.7 6.9 3 0.965	Cm Co cm Pr Tr	tput Facto llimator 1 escribed 1 ay Factor	or Length Dose	1.081 19.9 100.0 0.970	ст сGy
Field Summaries	Doint	Deint	Deint	Delate	D 1 4	_	2004
Deservisetien	l	Point 2	Point 3	Point 4	Point 5	. Point	Point 7
Description (CABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.3 7.5 0.948 0.714	8.8 0.1 0.970 0.714	7.8 -4.4 0.969 0.714	2.4 -5.5 0.986 0.794	-3.1 -5.3 0.985 0.839	4.7 0.6 0.992 0.914	-0.5 -0.1 0.999 0.942
		P	rimary Fie	ld			
Machine Setting							
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	70.0 7.5 0.623 0.114 1.000 0.737 0.705 120.4	65.0 12.5 0.423 0.166 1.000 0.589 0.576 98.4	65.0 12.5 0.423 0.176 1.000 0.599 0.586 100.0	65.0 8.5 0.583 0.147 1.000 0.730 0.722 137.1	65.0 6.5 0.665 0.103 0.996 0.768 0.756 151.6	65.0 3.5 0.825 0.079 0.997 0.904 0.895 195.7	65.0 2.5 0.881 0.047 0.971 0.928 0.903 203.2
9				· · · · · · · · · · · · · · · · · · ·	,	×	1
	6	_	\$		× 4	7 ×3	

Collimator

[SIMULAÇÃO 6]

.

Machine Collimator Width Effective Field	C Size(A/P)	OBALT 27.3 8.8	cm Co cm	tput Fact llimator	or Length	1.087 24.3	cm
Prescription Poi PSF Ratio	Int	3 0.967	Pr Tr	escribed ay Factor	Dose	100.0 0.970	сGу
Field Summaries	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7
Description	CABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	10.5 9.4 0.916 0.646	10.3 0.3 0.957 0.64 6	8.1 -5.4 0.962 0.646	1.0 -6.7 0.983 0.828	-5.9 -6.4 0.970 0.863	3.6 0.9 0.995 0.901	-2.5 0.5 0.997 0.928
		I	Primary Fie	ld			
Machine Setting						5	
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	73.5 8.0 0.603 0.129 1.000 0.731 0.681 137.7	65.0 16.5 0.334 0.161 1.000 0.496 0.481 97.3	65.0 16.5 0.334 0.173 1.000 0.507 0.495 100.0	65.0 7.0 0.643 0.151 1.000 0.794 0.783 202.8	65.0 5.5 0.713 0.101 0.998 0.814 0.792 213.9	65.0 4.0 0.798 0.082 0.997 0.880 0.874 246.6	65.0 3.0 0.852 0.055 0.985 0.985 0.907 0.891 258.9
			*7		e 7	×3	

[SIMULAÇÃO 7]

Machine Collimator Width Effective Field	C Size(A/P)	OBALT 30.3 9.0	Cm	Output Fact Collimator	or Length	1.088 24.7	cm
Prescription Poi PSF Ratio	nt	3 0.967	Cin	Prescribed Tray Factor	Dose	100.0 0.970	cGy
Field Summaries	Point	Point	Doint	Deint	Deduch		
Description	1 CABECA	2 TORAX	ABDOME	E COXA	Point 5 PERNA	Point 6 ANTEBR	Point 7 BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	11.7 9.6 0.900 0.646	9.2 0.9 0.966 0.646	6.4 -4.9 0.977 0.654	-1.1 -4.9 7 0.990 6 0.816	-7.0 -5.1 0.972 0.876	3.9 3.1 0.991 0.888	-4.3 2.8 0.990 0.914
		<u>F</u>	rimary F	ield		<u></u>	21-
Machine Setting							
SSD (cm) Depth (cm) TMRO SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	74.0 7.5 0.623 0.129 1.000 0.751 0.689 133.7	65.0 16.5 0.334 0.165 1.000 0.499 0.488 94.7	65.0 16.0 0.344 0.173 1.000 0.517 0.509 100.0	65.0 7.5 0.623 0.157 1.000 0.780 0.774 189.7	65.0 5.0 0.739 0.108 1.000 0.847 0.826 217.1	65.0 4.5 0.768 0.094 0.997 0.863 0.853 227.7	65.0 3.5 0.825 0.065 0.988 0.890 0.872 239.5
			20				2
		×7	*	×6	×3	×1	
]		<u> </u>		Ϊ		

Collimator

.

[SIMULAÇÃO 8]

Machine Collimator Width Effective Field Prescription Poi PSF Ratio) Size(A/: Int	COBALT 22.8 P) 6.5 3 0.964	cm cm	Output Fac Collimator Prescribed Tray Facto	tor Length Dose or	1.08 20. 100. 0.97	2 cm 0 cGy 0
Field Summaries	Point 1 CABECA	Point 2 TORAX	Point 3 ABDOME	Point 4 COXA	Point 5 PERNA	Point 6 ANTEBR	Point 7 BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.5 6.9 0.951 0.696	8.1 -0.4 0.976 0.696	6.4 -5.4 0.974 0.724 Primary F	1.1 -5.2 0.989 0.816	-4.6 -4.4 0.984 0.888	5.0 1.5 0.990 0.901	-1.6 1.9 0.997 0.942
Machine Setting			1				
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	71.5 7.0 0.643 0.119 1.000 0.762 0.730 119.4	65.0 13.5 0.402 0.154 1.000 0.556 0.546 89.3	65.0 12.0 0.444 0.156 1.000 0.600 0.588 100.0	65.0 7.5 0.623 0.144 1.000 0.767 0.761 145.9	65.0 4.5 0.768 0.082 0.996 0.851 0.836 174.4	65.0 4.0 0.798 0.079 0.995 0.877 0.866 183.3	65.0 2.5 0.881 0.039 0.920 0.825 182.6

DANSSAD MACIONAL DE ENERGIA NUCLEAR/SP MER

[SIMULAÇÃO 9]

12

10

į.

Machine Collimator Width Effective Field	CC Size(A/P)	DBALT 22.6 7.3	cm d	Output Facto Collimator I	or Length	1.082 20.4	2 L Cm
Prescription Poi PSF Ratio	nt	3 0.966	1	Prescribed I Tray Factor	Dose	100.0 0.970) cGy)
Field Summaries	Point	Point	Point	Point	Point	Point	Point
Description	CABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.5 7.5 0.947 0.714	8.4 0.1 0.974 0.714	6.6 -4.7 0.976 0.714	0.5 -4.2 0.994 0.816	-4.5 -3.8 0.987 0.876	3.4 2.4 0.994 0.928	-2.5 3.6 0.993 0.956
		I	Primary F:	ield			
Machine Setting				14			
SSD (cm) Depth (cm) TMRO SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	70.5 7.0 0.643 0.120 1.000 0.763 0.728 124.0	65.0 12.5 0.423 0.167 1.000 0.590 0.579 98.5	65.0 12.5 0.423 0.175 1.000 0.598 0.587 100.0	65.0 7.5 0.623 0.151 1.000 0.774 0.771 149.9	65.0 5.0 0.739 0.098 0.998 0.837 0.826 172.3	65.0 3.0 0.852 0.062 0.995 0.914 0.906 200.2	65.0 2.0 0.910 0.033 0.967 0.943 0.907 206.6
				. •		12	10
				-		1	
) ×	1)
						5	/
1.t		\frown		01		\mathcal{L}	
		\subseteq		x7 .	<u> </u>	$ \longrightarrow $	\backslash
			1		×6		N
			. /		/	×	2
			/	- \			
			/	10. 11 12. 11	\backslash		/
		1	/ 5/	∕\ -×4	v .	2	
		/	/	\ -		~	
		/	(\.		/	
	/			1.	3		
	A					Collim	 nator

[SIMULAÇÃO 10]

•

.

							12
Machine Collimator Width Effective Field	C Size(A/P)	OBALT 22.4 6.6	cm Cc	tput Fact	or Length	1.082	2 7 cm
Prescription Po: PSF Ratio	int	3 0.964	Pr Tr	escribed ay Factor	Dose	100.0 0.970) cGy
Field Summaries							
	Point 1	Point 2	Point 3	Point 4	Point	Point	Point
Description	cabeca	torax	abdome	coxa	perna	antebr	braco
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.9 7.5 0.943 0.705	8.5 0.3 0.972 0.705	7.1 -4.1 0.976 0.724	2.1 -5.0 0.989 0.828	-4.0 -5.0 0.984 0.888	4.4 2.4 0.990 0.928	-2.6 2.6 0.995 0.942
			Primary Fie	ld			
Machine Setting							
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR (Uncorrected) TMR (Corrected) Dose (cGy)	71.0 7.0 0.643 0.115 1.000 0.758 0.722 117.8	65.0 13.0 0.401 0.166 1.000 0.567 0.556 90.8	65.0 12.0 0.444 0.164 1.000 0.608 0.597 100.0	65.0 7.0 0.643 0.147 1.000 0.790 0.782 149.9	65.0 4.5 0.768 0.082 0.997 0.850 0.836 171.9	65.0 3.0 0.852 0.062 0.996 0.914 0.903 193.9	65.0 2.5 0.881 0.040 0.975 0.921 0.895 195.0
				÷	2		Č.
				-		1	
				1125			×1
						ζ	. /
						5	(
	0	1		x7	,	6	/
		0	1				
125	· · ·	• • •		• • •)	$\backslash \cdot \cdot \cdot$		* ' 1
81. 			/	-	\backslash	/	/
			/	Λ.	\vee	, .a	/
			/ \$5	/ \ -	x 4	2	/
			/ /	Ľ.			/
			(- \	$\langle \rangle$)	/
		۸			1		
			5.e			Colli	mator

[SIMULAÇÃO 11]

			80 - E				
Machine Collimator Width Effective Field	C Size(A/P)	OBALT 21.2 5.7	cm cm	Output Fact Collimator	tor Length	1.078 18.6	cm
Prescription Point PSF Ratio		3 0.963		Prescribed Dose Tray Factor		100.0 cGy 0.970	
Field Summaries	Point	Point	Point	Point	Point	Point	Point
Description	1 CABECA	2 TORAX	3 ABDOME	4 COXA	5 PERNA	6 ANTEBR	7 BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.2 6.7 0.954 0.714	7.0 0.3 0.982 0.714	5.1 -3.9 0.984 0.743	0.4 -4.7 0.992 0.839	-5.3 -4.6 0.982 0.901	3.2 1.1 0.996 0.928.	-1.5 0.7 0.998 0.942
		I	Primary F	ield			189
Machine Setting		52	æ				
SSD (cm) Depth (cm) TMRO SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	70.0 7.5 0.623 0.109 1.000 0.732 0.703 108.1	65.0 12.5 0.423 0.149 1.000 0.572 0.564 86.7	65.0 11.0 0.489 0.144 1.000 0.633 0.625 100.0	65.0 6.5 0.665 0.132 0.998 0.797 0.790 142.7	65.0 4.0 0.798 0.064 0.995 0.862 0.843 163.6	65.0 3.0 0.852 0.059 0.988 0.911 0.897 179.3	65.0 2.5 0.881 0.040 0.887 0.921 0.820 166.2

[SIMULAÇÃO 12]

.

Machine Collimator Width Effective Field	1 Size(A/F	COBALT 23.3	Cm o	Output Fac Collimator	tor Length	1.08	3 4 cm
Prescription Por PSF Ratio	Int	0.966		Prescribed Tray Facto	Dose r	100. 0.97	0 cGy 0
Field Summaries	Point	Point	Point	Point	Point	Point	Point
Description	CABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.7 7.2 0.948 0.638	8.2 0.1 0.975 0.638	6.3 -4.7 0.978 0.662	0.2 -4.5 0.993 0.816	-4.7 -4.5 0.984 0.863	4.2 2.4 0.991 0.888	-3.2 2.8 0.994 0.914
	8	I	Primary F	ield			
Machine Setting							
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	74.0 8.0 0.603 0.128 1.000 0.731 0.699 133.5	65.0 17.0 0.324 0.152 1.000 0.476 0.468 89.4	65.0 15.5 0.367 0.146 1.000 0.513 0.505 100.0	65.0 7.5 0.623 0.148 1.000 0.771 0.767 187.3	65.0 5.5 0.713 0.103 0.997 0.816 0.802 207.2	65.0 4.5 0.768 0.095 0.996 0.863 0.854 226.9	65.0 3.5 0.825 0.057 0.978 0.881 0.889 235.0
2	s. 12			(g :			
				1997 - 1997 -	N 5	r	~
	2.0						
				947		6,	a]]
				8 .		{	/1
	8			-		L.	(]
	1 4		×/		ю		Y
			-	· ·		200	A
	• • •	a t 7 5 a t 2	• •/• •		· · · /	1 · · · •2	/
			/	:/	1		. /]
			/	1	$\backslash /$		
		/	5/	1 .4	\vee	-	
		/	/	1.		~	
		/	/	\.		/	
			/	ζ.			
	5)	×			
						Colli	mator

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP 112

[SIMULAÇÃO 13]

Machine Collimator Width Effective Field Prescription Poi PSF Ratio	OBALT 23.3 7.0 3 0.966	ALTOutput Factor23.3 cmCollimator Length7.0 cm33Prescribed Dose9.966Tray Factor			1.081 19.2 cm 100.0 cGy 0.970		
Field Summaries	Point 1	Point	Point 3	Point 4	Point 5	Point 6	Point 7
Description	CABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.4 7.0 0.951 0.679	9.2 0.9 0.967 0. 6 79	7.4 -3.9 0.974 0.662	1.6 -4.6 0.991 0.839	-4.4 -4.5 0.985 0.914	5.2 1.4 0.989 0.901	-1.7 1.3 0.997 · 0.928
<u>200</u>		1	Primary Fi	eld			
Machine Setting			10				
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	72.5 7.0 0.643 0.115 1.000 0.758 0.726 147.6	65.0 14.5 0.397 0.134 1.000 0.531 0.518 105.2	65.0 15.5 0.367 0.147 1.000 0.514 0.505 100.0	65.0 6.5 0.665 0.142 1.000 0.807 0.801 201.1	65.0 3.5 0.825 0.668 0.998 0.893 0.879 240.5	65.0 4.0 0.798 0.088 0.996 0.886 0.875 235.9	65.0 3.0 0.852 0.051 0.922 0.903 0.835 231.8

[SIMULAÇÃO 14]

Machine Collimator Width Effective Field Prescription Poi PSF Ratio	chine llimator Width fective Field Size(A/ escription Point F Ratio		Cm Cm	Output Fact Collimator Prescribed Tray Facto:	tor Length Dose r	1.086 23.1 cm 100.0 cGy 0.970	
Field Summaries	Point 1 CABECA	Point 2 TORAX	Point 3 ABDOME	Point 4 COXA	Point 5 PEPNA	Point 6	Point 7 BPACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	9.6 8.5 0.931 0.696	8.5 0.7 0.972 0.696	6.1 -5.2 0.977 0.763	0.2 -5.4 0.989 0.805	-5.4 -5.3 0.979 0.876	4.1 1.3 0.994 0.914	-1.3 1.5 0.998 • 0.942
Machine Setting		P	rimary F	ield		<u> </u>	
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	71.5 7.0 0.643 0.120 1.000 0.763 0.719 98.1	65.0 13.5 0.402 0.158 1.000 0.560 0.549 74.8	65.0 10.0 0.529 0.152 1.000 0.681 0.669 100.0	65.0 8.0 0.603 0.157 1.000 0.760 0.753 118.8	65.0 5.0 0.739 0.102 0.998 0.841 0.824 141.4	65.0 3.5 0.825 0.079 0.998 0.904 0.897 160.6	65.0 2.5 0.881 0.046 0.989 0.927 0.916 168.9

[SIMULAÇÃO 15]

1

Machine Collimator Width Effective Field S	COBALT Output 25.1 cm Collin 8.4 cm		atput Facto	ut Factor imator Length		1.086 23.1 cm	
Prescription Poin PSF Ratio	3 0.968	P: T:	rescribed i ray Factor	ribed Dose Factor		100.0 cGy 0.970	
Field Summaries	Point 1	Point 2	. Point 3	Point 4	Point 5	Point 6	Point 7
Description C	ABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.5 8.5 0.939 0.623	9.2 0.7 0.967 0.623	7.3 -5.0 0.970 0.654	1.2 -5.5 0.988 0.828	-5.7 -5.5 0.977 0.888	4.7 1.6 0.991 0.888 -	-1.3 1.1 0.998 0.928
<u> </u>	_	<u> </u>	Primary Fi	eld			201-290399
Machine Setting							
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	75.5 7.5 0.623 0.129 1.000 0.752 0.714 134.4	65.0 18.0 0.304 0.157 1.000 0.462 0.451 85.0	65.0 16.0 0.344 0.172 1.000 0.516 0.506 100.0	65.0 7.0 0.643 0.152 1.000 0.795 0.787 197.1	65.0 4.5 0.768 0.997 0.853 0.833 223.9	65.0 4.5 0.768 0.106 0.999 0.875 0.867 232.9	65.0 3.0 0.852 0.958 0.973 0.910 0.885 248.4
						×1	
K							lator

MAISSAO NACIONAL DE ENERGIA NUCLEAR/SP IMO

[SIMULAÇÃO 16]

	the second se	1				
Machine Collimator Width Effective Field Size(A/	COBALT 27.3 (P) 8.0	Cm Co	utput Fact ollimator	or Length	1.08 25.4	7 4. cm
Prescription Point PSF Ratio	0.964	P: T:	rescribed ray Factor	Dose	100.0 0.970	0 cGy 0
Field Summaries	Point	Point	Point	Doint	Doint	Point
Description CABECA	TORAX	ABDOME	COXA	POINC 5 PERNA	6 ANTEBR	7 BRACO
X Position (cm) 10.3 Y Position (cm) 9.5 Profile Factor 0.917 Inverse Square 0.670	9.5 0.6 0.964 0.670	7.1 -5.5 0.969 0.687	0.9 -5.9 0.986 0.839	-5.3 -5.6 0.978 0.876	4.9 2.0 0.989 0.914	-3.2 2.2 0.995 0.928
		Primary Fie	eld			
Machine Setting						
SSD (cm) 72.5 Depth (cm) 7.5 IMRo 0.623 SMR 0.128 Edge Factor 1.000 IMR (Uncorrected) 0.751 IMR (Corrected) 0.699 Dose (cGy) 124.7	65.0 15.0 0.390 0.133 1.000 0.524 0.510 90.9	65.0 14.0 0.403 0.157 1.000 0.560 0.547 100.0	65.0 6.5 0.665 0.148 1.000 0.813 0.804 179.5	65.0 5.0 0.739 0.098 0.998 0.837 0.819 190.8	65.0 3.5 0.825 0.079 0.998 0.904 0.894 217.3	65.0 3.0 0.852 0.982 0.982 0.904 0.885 218.3
	19	3	-			
		*7		*	×	1

[SIMULAÇÃO 17]

Machine Collimator Width Effective Field Prescription Poi PSF Ratio	C Size(A/P) .nt	OBALT 22.4 7.8 3 0.967	Cm Cm	Output Fac Collimator Prescribed Tray Facto	tor Length Dose r	1.085 23.4 100.0 0.970	cm cGy
Field Summaries Description	Point 1 CABECA	Point 2 TORAX	Point 3 ABDOME	Point 4 COXA	Point 5 PERNA	Point 6 ANTEBR	Point 7 BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	8.2 7.5 0.949 0.705	7.9 -0.2 0.977 0.705	6.0 -5.5 0.976 0.733	1.4 -6.5 0.983 0.851	-4.4 -6.3 0.978 0.876	4.1 1.6 0.993 0.928	-3.4 1.2 0.996 0.942
			Primary F.	ield			
Machine Setting							
SSD (cm) Depth (cm) TMRo SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	71.0 7.0 0.643 0.124 1.000 0.767 0.734 112.7	65.0 13.0 0.401 0.177 1.000 0.579 0.570 87.5	65.0 11.5 0.467 0.171 1.000 0.638 0.626 100.0	65.0 6.0 0.687 0.147 1.000 0.834 0.822 152.4	65.0 5.0 0.739 0.095 0.997 0.834 0.815 155.5	65.0 3.0 0.852 0.070 0.996 0.922 0.913 184.5	65.0 2.5 0.881 0.041 0.973 0.922 0.895 183.5

[SIMULAÇÃO 18]

1

4

Machine Collimator Width	(() ()	COBALT	Ou cm Co	tput Fact llimator	or Length	1.066 16.1	cm
Prescription Point PSF Ratio	120(A/P) t	4.8 1 C.963	Pr Tr	escribed ay Factor	Dose 🔸	100.0 0.970	сGу
Field Summaries	Point						
Description C	ABECA	TORAX	ABDOME	COXA	PERNA	ANTEBR	BRACO
X Position (cm) Y Position (cm) Profile Factor Inverse Square	7.6 6.1 0.962 0.743	6.4 -0.4 0.984 0.743	4.7 -3.7 0.986 0.743	0.2 -4.5 0.993 0.901	-4.5 -4.3 0.985 0.928	4.0 0.9 0.995 0.942	-1.5 0.9 0.998 0.956
		P:	rimary Fie	ld			
Machine Setting							
SSD (cm) Depth (cm) TMRO SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	69.0 7.0 0.643 0.097 1.000 0.740 0.715 100.0	65.0 11.0 0.489 0.123 0.999 0.612 0.604 84.4	65.0 11.0 0.489 0.131 1.000 0.620 0.614 85.8	65.0 4.0 0.798 0.085 0.999 0.883 0.876 148.6	65.0 3.0 0.852 0.048 0.988 0.900 0.878 153.3	65.0 2.5 0.881 0.047 0.980 0.928 0.906 160.5	65.0 2.0 0.910 0.028 0.860 0.938 0.808 145.4
	2 2	Ез т	5			\$ 7'' \$	×1

83

[SIMULAÇÃO 19]

Machine Co Collimator Width Effective Field Size(A/P) Prescription Point PSF Ratio		COBALT 24.9) 6.8 3 0:963	Cm Cm	Output Fact Collimator Prescribed Tray Factor	tor Length Dose	1.08 20. 100. 0.97	14 7 cm 0 cGy 70
Field Summaries	Deint	Deine	D - 1				
Description	L CABECA	2 TORAX	ABDOME	Point 4 COXA	Point 5 PERNA	Point 6 BRACO	Point 7 ANTEBR
X Position (cm) Y Position (cm) Profile Factor Inverse Square	9.9 8.3 0.929 0.724	8.3 -0.4 0.975 0.724	6.6 -5.0 0.974 0.724	1.0 -4.5 0.992 0.851	-4.4 -4.4 0.985 0.901	3.1 2.4 0.995 0.928	-4.4 3.4 0.988 0.928
121.0		I	Primary F	ield		1	
Machine Setting		-0					
SSD (cm) Depth (cm) TMRO SMR Edge Factor TMR(Uncorrected) TMR(Corrected) Dose (cGy)	70.0 7.0 0.643 0.112 1.000 0.755 0.710 118.5	65.0 12.0 0.444 0.160 1.000 0.605 0.593 99.0	65.0 12.0 0.444 0.167 1.000 0.611 0.599 100.0	65.0 6.0 0.687 0.139 1.000 0.826 0.821 161.0	65.0 4.0 0.798 0.076 0.998 0.874 0.860 178.6	65.0 3.0 0.852 0.057 0.987 0.909 0.894 191.2	65.0 3.0 0.852 0.040 0.954 0.892 0.842 180.2

[SIMULAÇÃO 20]

5

: ،

Machine (Collimator Width Effective Field Size(A/P)	26.0 cm	Output Fact Collimator	or Length	1.086 23.3	Cm
Prescription Point PSF Ratio	0.970	Prescribed Tray Factor	Dose	100.0 0.970	сGу
Field Summaries Point	Point Po:	int Point	Point	Point	Point
Description CABECA	2 TORAX ABDO	3 4 DME COXA	5 PERNA	6 BRACO	7 ANTEBR
X Position (cm) 9.6 Y Position (cm) 8.3 Profile Factor 0.932 Inverse Square 0.623	7.6 1.7 - 0.978 0.5 0.608 0.6	5.1 -1.3 5.4 -2.9 979 0.996 508 0.763	-5.6 -3.8 0.983 0.828	1.9 3.2 0.995 0.851	-3.9 3.5 0.989 - 0.876
	Primar	y Field			
Machine Setting					
SSD (cm) 76.0 Depth (cm) 7.0 TMRo 0.643 SMR 0.133 Edge Factor 1.000 TMR (Uncorrected) 0.776 TMR (Corrected) 0.733 Dose (cGy) 169.5	65.0 61 19.0 12 0.283 0.1 0.158 0.1 1.000 1.0 0.441 0.4 98.1 10	5.0 65.0 9.0 10.0 283 0.529 165 0.171 000 1.000 449 0.700 443 0.698 0.0 197.6	65.0 7.0 0.643 0.127 0.998 0.770 0.757 232.9	65.0 6.0 0.687 0.123 0.996 0.810 0.804 254.1	65.0 5.0 0.739 0.085 0.987 0.824 0.807 262.5
	×7	×4	 	×	

Collimator

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP 1940