

AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

PADRONIZAÇÃO DOS RADIONUCLÍDEOS ⁴⁵Ca, ¹³⁷Cs E ²⁰⁴TI PELO MÉTODO DO TRAÇADOR UTILIZANDO SISTEMA DE COINCIDÊNCIA 4πβ-γ

CLAUDIA REGINA PONTE PONGE-FERREIRA

Dissertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Ciências na Área de Tecnologia Nuclear-Aplicações.

Orientadora: Dra. Marina Fallone Koskinas

São Paulo 2005

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES

Autarquia Associada à Universidade de São Paulo

PADRONIZAÇÃO DOS RADIONUCLÍDEOS ⁴⁵Ca, ¹³⁷Cs e ²⁰⁴Tl PELO MÉTODO DO TRAÇADOR UTILIZANDO SISTEMA DE COINCIDÊNCIA 4πβ-γ

Dissertação apresentada como parte dos requisitos para obtenção do grau de Mestre em Ciências na Área de Tecnologia Nuclear – Aplicações

Orientadora: Dra. Marina Fallone Koskinas

São Paulo 2005

COMMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP-IPEN

À Anna e Ada

 \mathbf{H}

.

.

S2

31

Ao Walter

Agradecimentos:

À Dra. Marina Fallone Koskinas, minha orientadora, pela paciência, constante dedicação e apoio durante os anos em que este trabalho foi desenvolvido;

Ao Dr. Mauro da Silva Dias, pelas contribuições e contínua ajuda nesses anos;

Ao Mauro N. Takeda, pela constante colaboração e amizade;

Aos colegas Denise, Eliezer, Carlos e Hélio pelo incentivo e amizade;

Ao Maurício Marques, por toda a colaboração no laboratório;

À Ione Yamazaki, pela ajuda no preparo das fontes;

A todos os colegas do LMN pelo incentivo e amizade;

Ao Dr. Rajendra Saxena, gerente do Centro do Reator de Pesquisas. pela oportunidade oferecida para a realização deste trabalho;

Ao meu marido, Walter, pela paciência e apoio dispensados durante os anos de realização deste trabalho;

À minha mãe, Nurimar Galastri Ponte, por tudo;

À Margareth Ponge-Ferreira, por assumir tantas vezes a responsabilidade de minhas filhas;

Ao Instituto de Pesquisas Energéticas e Nucleares, na pessoa do Superintendente Dr.Claudio Rodrigues, pela possibilidade oferecida de realização deste trabalho;

A todos que direta ou indiretamente colaboraram na execução e realização deste trabalho.

PADRONIZAÇÃO DOS RADIONUCLÍDEOS ⁴⁵Ca, ¹³⁷Cs E ²⁰⁴TI PELO MÉTODO DO TRAÇADOR UTILIZANDO SISTEMA DE COINCIDÊNCIA $4\pi\beta$ - γ

Claudia Regina Ponte Ponge-Ferreira

RESUMO

Neste trabalho são apresentados os procedimentos adotados para as padronizações dos radionuclídeos emissores beta puros ⁴⁵Ca, ¹³⁷Cs e ²⁰⁴Tl. A medida da atividade foi feita no sistema de coincidências $4\pi\beta$ - γ pelo método do traçador. Os radionuclídeos escolhidos como traçadores foram o ⁶⁰Co para a padronização do ⁴⁵Ca e o ¹³⁴Cs para a padronização do ¹³⁷Cs e do ²⁰⁴Tl. A escolha dos traçadores se deve aos valores semelhantes das energias do radionuclídeo beta puro e do traçador. A atividade das soluções radioativas foram determinadas pela técnica de extrapolação da eficiência. As fontes radioativas foram preparadas por duas técnicas distintas: a técnica de solução, em que foram preparadas soluções mistas de emissor beta puro e traçador, sendo posteriormente preparadas as fontes a serem medidas e a técnica de gotas, pela qual as fontes são preparadas depositando-se os radionuclídeos obtidos com as duas técnicas de preparação foram comparados e apresentaram boa concordância dentro da incerteza experimental.

STANDARDIZATION OF RADIONUCLIDES 45 Ca, 137 Cs, 204 Tl BY TRACING METHOD USING $4\pi\beta$ - γ COINCIDENCE SYSTEM

Claudia Regina Ponte Ponge-Ferreira

ABSTRACT

The procedure followed for the standardization of 45 Ca, 137 Cs and 204 Tl is described. The activity measurements was carried out in a $4\pi\beta$ - γ coincidence system by the tracing method. The radionuclides chosen as the β - γ emitting tracer nuclide were 60 Co for the 45 Ca and 134 Cs for 13 Cs and 204 Tl, because their end-point beta-ray energy are close to the respective beta emitters. The radioactive sources were prepared using two different techniques: one was the drops technique and the other was the solution technique. In the drop technique the sources were prepared by dropping directly on the substract both solutions (tracer and beta pure). In the other technique a solution of tracer plus beta pure was mixed previously before making the radioactive sources. The activities of the radionuclides obtained with these technique were compared and the values are in agreement within the experimental uncertainties.

SUMÁRIO

•

INTRODUÇÃO1	
1 FUNDAMENTOS TEÓRICOS	
1.1	Decaimento Beta3
1.2	Decaimento gama5
1.2.1	Processo de conversão interna5
1.3	Interação das partículas beta com a matéria5
1.4	Interação da radiação gama com a matéria6
1.5	Detectores de radiação7
1.6	Métodos de Medida de radionuclídeos10
1.6.1	Método de Coincidência10
1.6	.1.1 Técnica da extrapolação da eficiência14
1.6.2	Método do Traçador15
2 PARTE EXPERIMENTAL	
2.1	Preparação das fontes
2.1 2.1.1	Preparação das fontes
2.12.1.12.1.2	Preparação das fontes
2.1 2.1.1 2.1.2 2.1.3	Preparação das fontes
2.1 2.1.1 2.1.2 2.1.3 2.1	Preparação das fontes
2.1 2.1.1 2.1.2 2.1.3 2.1 2.1	Preparação das fontes

2.2.1 Sistema eletrônico23	
2.3 Procedimento de Medida27	
2.3.1 Ajuste das condições eletrônicas da via beta28	
2.3.2 Ajuste das condições eletrônicas da via gama28	
2.4 Cálculo da atividade do emissor beta puro e do traçador29	
2.4.1 Cálculo da atividade do traçador29	
2.4.2 Cálculo da atividade do emissor beta puro30	
3 PADRONIZAÇÃO DOS RADIONUCLÍDEOS BETA EMISSORES32	
3.1 Padronização do ²⁰⁴ Tl32	
3.2 Padronização do ⁴⁵ Ca36	
3.3 Padronização do ¹³⁷ Cs41	
4 RESULTADOS E DISCUSSÕES46	
4.1 Padronização do ²⁰⁴ Tl46	
4.2 Padronização do ⁴⁵ Ca50	
4.3 Padronização do ¹³⁷ Cs55	
5 CONCLUSÕES64	
Referências Bibliográficas65	

INTRODUÇÃO

As radiações α , β , γ ou X são empregadas em aplicações tecnológicas em uma grande variedade de setores. Sua utilização vai desde a medicina, em diagnósticos e tratamentos, como na indústria, no estudo do meio ambiente, na pesquisa, etc..

Como outras grandezas físicas sujeitas ao controle de qualidade, estas radiações necessitam da calibração, ou padronização dos sistemas de medida utilizados para medilas. Estes sistemas podem ser classificados como sistemas primários, secundários ou terciários.

Os sistemas de medida de radiação primários, como qualquer método de medida absoluta, não dependem do conhecimento do valor de grandezas auxiliares, como eficiência de detecção ou parâmetros do esquema de decaimento. As fontes radioativas calibradas nestes sistemas são chamadas de fontes padrão.

Os sistemas de medida secundários e terciários são os sistemas que utilizam as fontes padrão para a sua calibração. Para que se possa calibrar estes sistemas de medida de radiação, ou detectores de radiação, é necessário o conhecimento do valor da atividade das fontes radioativas padrões neles utilizados, constituídas de diferentes radionuclídeos.

A padronização de cada radionuclídeo é específica, levando em conta seu esquema de desintegração.

No caso de radionuclídeos que decaem pela emissão β - γ . RX- γ ou α - γ . o método de calibração mais utilizado é o método de coincidência. Este método possibilita o conhecimento da atividade da fonte radioativa pela medida de duas ou mais radiações simultaneamente emitidas.

O método de coincidência apresenta, em relação aos demais métodos, as vantagens de obtenção de precisões mais altas e possibilidade de aplicação a um grande número de radionuclídeos, até mesmo para aqueles que possuam esquemas de desintegração complexos, desde que tenham em comum a característica de emitir simultaneamente dois ou mais tipos de radiação (β - γ , RX- γ ou α - γ) [Moura, 1969].

Na padronização de radionuclídeos emissores beta puros, atualmente os sistemas mais utilizados são: o sistema de coincidência com detector $4\pi\beta$ - γ , empregando-se o método do traçador, que consiste na combinação de um emissor beta puro com um emissor

beta-gama, que fornecerá a eficiência de detecção; e os sistemas de cintilação líquida com soluções cintiladoras que empregam o ³H como padrão de eficiência.

O objetivo deste trabalho é o desenvolvimento do método do traçador na padronização de emissores beta puros, utilizando o sistema de coincidências $4\pi\beta$ - γ .

Além da determinação da atividade do emissor beta puro, foi feito um estudo para a verificação da eficácia de diferentes técnicas utilizadas na preparação das fontes.

Tal comparação foi realizada com a finalidade de verificar diferenças entre os resultados das atividades usando-se um ou outro procedimento. Com isso, procurou-se encontrar a maneira mais simples e eficaz de se medir a atividade de um emissor beta puro.

Neste trabalho foram realizadas as padronizações de três radionuclídeos emissores β puros: ²⁰⁴Tl, ⁴⁵Ca e ¹³⁷Cs, e utilizados como traçadores, respectivamente, ¹³⁴Cs, ⁶⁰Co e ¹³⁴Cs. A escolha dos traçadores se deve à semelhança entre seus valores de energia beta máxima e esses valores dos emissores beta puros.

No capítulo 1 estão os fundamentos teóricos, onde são apresentados os decaimentos nucleares β e γ estudados, as formas de interação das radiações β e γ com a matéria, assim como os detectores utilizados neste trabalho. Neste capítulo estão também descritos os métodos de coincidência e do traçador.

O capítulo 2 trata da parte experimental, onde é descrita a preparação das fontes radioativas com o uso de diferentes técnicas, e é feita a descrição do sistema eletrônico utilizado, bem como do procedimento de medida e do cálculo da atividade.

As padronizações dos três radionuclídeos emissores β puros são apresentadas no capítulo 3.

No capítulo 4 estão apresentados os resultados e as discussões das padronizações realizadas.

No capítulo 5 estão as conclusões e as propostas para estudos futuros.

1 FUNDAMENTOS TEÓRICOS

ć

•

A desintegração radioativa ou decaimento nuclear é a emissão de partículas ou radiação eletromagnética, ou ambos, que ocorre quando nuclídeos radioativos estão instáveis. Estar instável significa que no núcleo do átomo há um desequilíbrio entre o número de prótons e de nêutrons, existindo então a procura pelo equilíbrio de ambos, através da conversão de uma partícula em outra.

Ao se desintegrar, o radionuclídeo se torna outro elemento químico, o chamado elemento filho; este pode estar no estado estável, ou fundamental, ou pode estar ainda instável, havendo então nova emissão de radiação.

O decaimento nuclear fornece informações sobre centenas de espécies nucleares, como dados sobre os níveis de energia e esquemas de decaimento, assim como da estrutura e propriedades do núcleo atômico.

1.1 Decaimento Beta

A grande maioria dos nuclídeos radioativos decai para seu estado fundamental através da emissão de partículas beta, o chamado decaimento beta. Neste decaimento, o número de massa A permanece inalterado e o número atômico Z sofre uma alteração.

A partícula beta é qualquer elétron emitido do núcleo do átomo, podendo-se distinguir partículas beta negativas (β ⁻) das partículas beta positivas (β ⁺).

Neste decaimento ocorre a criação do neutrino. O neutrino é uma partícula cujas propriedades foram selecionadas de tal forma que o decaimento beta pudesse acontecer sem violar quaisquer das leis de conservação. Assim, cada desin'egração beta deve envolver a emissão simultânea de um elétron e um neutrino.

Quando houver excesso de nêutrons, há a mudança de um nêutron em um próton, ocorrendo o decaimento β^- . Este é emitido do núcleo, e a carga nuclear aumenta de uma unidade: o elemento é deslocado em uma posição para a direita na tabela periódica:

3

 ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + \beta^{-} + \overline{v}$

onde:

۰.

X e Y são as espécies nucleares inicial e final;

Z é o número de prótons:

A é o número de massa, ou o número total de partículas nucleares;

 $\overline{\mathbf{v}}$ é o antineutrino.

Quando houver menos nêutrons que prótons no núcleo. a procura da estabilidade nuclear ocorrerá através da mudança de um próton em um nêutron, ocorrendo o decaimento β^+ ; este é emitido e a carga nuclear decresce de uma unidade, de Z para Z-1: o elemento é deslocado uma posição para a esquerda na tabela periódica:

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + \beta^{+} + \nu$$

A emissão de partículas beta pode ocorrer de diferentes maneiras. Os nuclídeos podem decair de um núcleo pai em um núcleo filho diretamente para o estado fundamental, como é o caso dos emissores beta puros. Pode também ocorrer que o núcleo pai venha a popular os níveis excitados do núcleo filho, o qual decai pela emissão de radiação gama ou pelo processo de conversão interna, os emissores beta-gama.

Além dos decaimentos β^+ e β^- , um outro processo de decaimento beta é a captura de elétrons. Neste processo, quando o núcleo absorve um dos elétrons de uma camada atômica, sua carga Z é alterada para Z-1. O átomo permanece neutro, mas é deixado num estado excitado devido à vacância que foi criada em uma de suas camadas internas. Essas vacâncias levam à emissão de raio X característico [Venverloo, 1971].

A propriedade mais característica da desintegração beta é a distribuição contínua em energia dos elétrons emitidos, propriedade que é única das partículas beta. Ao contrário dos espectros α e γ , onde o núcleo mostra estados definidos de energia, o espectro β apresenta a transição de um estado a outro descrevendo a distribuição primária de energias da radiação beta. Este caráter contínuo do espectro vem do fato de que, no decaimento beta, a energia é dividida entre as partículas beta e os neutrinos [Venverloo, 1971].

As partículas beta são emitidas com esta distribuição contínua com energias que se estendem de zero até um valor máximo, que varia, para emissores beta conhecidos, entre 15 keV a 15 MeV [Friedlander, 1981].

1.2 Decaimento gama

.

.

۴

As radiações γ são radiações eletromagnéticas que acompanham as transições nucleares.

Quando um núcleo está excitado pode perder sua energia de excitação, voltando ao estado fundamental, de diferentes formas. A forma mais comum de perda de energia é a emissão de radiação eletromagnética, ou radiação y, sendo que ocorre mudança de energia sem alteração nos valores de Z e A. Esta desexcitação pode acontecer diretamente de um estado de energia excitado ao estado fundamental, ou, o que é mais freqüente, pode envolver estados excitados intermediários.

As radiações γ possuem uma freqüência determinada por sua energia E=hv, cujos valores se encontram no intervalo de aproximadamente 10 keV a 7 MeV [Friedlander,1981].

1.2.1 Processo de conversão interna

A emissão de radiação gama concorre com a emissão de elétrons de conversão interna. Neste processo, ao se encontrar excitado após a emissão de radiação beta, por exemplo, o núcleo não emite uma radiação gama para atingir o estado fundamental. Ao invés disso, a energia de excitação é transferida a um dos elétrons do átomo, que é ejetado com a energia

 $E_{e} = E_{ex} - E_{b}$

onde:

Eex é a energia de excitação transferida ao elétron ejetado;

E_b é a energia de ligação na camada em que estava o elétron ejetado.

1.3 Interação das partículas beta com a matéria

As partículas β interagem com a matéria desde o momento em que são emitidas pelo núcleo até que sejam absorvidas. Sua absorção ocorre envolvendo ionização e excitação ou produção de radiação. No caso de uma absorção por ionização e excitação, a interação se dará entre as partículas β e os elétrons dos átomos do absorvedor. A partícula β perde sua energia cinética nas colisões, e uma pequena parte se espalha, refazendo aproximadamente o mesmo caminho, o retroespalhamento [Venverloo, 1971].

As partículas beta de baixa energia são rapidamente absorvidas mesmo em absorvedores de pouca espessura [Knoll, 1999]. Para partículas beta de alta energia há um mecanismo adicional de perda de energia: quando um elétron é acelerado no campo Coulombiano de um núcleo, este perde energia por emissão de radiação. Esta energia aparece como um espectro contínuo de raio X, é a chamada radiação de Bremsstrahlung.

Os efeitos combinados de espectro contínuo e espalhamento levam a uma lei de absorção aproximadamente exponencial para partículas beta de uma dada energia máxima [Knoll, 1999]:

$$\frac{\mathbf{l}}{\mathbf{l}_0} = \mathbf{e}^{-\mathbf{n}\mathbf{l}}$$

onde:

I é a taxa de contagem com absorvedor;

 I_0 é a taxa de contagem sem absorvedor;

n é o coeficiente que correlaciona a energia máxima de β com um dado absorvedor; t é a espessura do absorvedor em g/cm².

1.4 Interação da radiação gama com a matéria

Ao interagir com a matéria, a radiação γ não perde energia continuamente ao longo de sua trajetória, como no caso das partículas carregadas. A absorção da radiação γ pela matéria é exponencial, e a distância que percorre é muito maior que a percorrida por uma partícula beta de mesma energia.

Existem três processos principais responsáveis pela perda de energia das radiações γ : Efeito Fotoelétrico, Efeito Compton e Produção de Pares. Esses processos levam a transferência completa ou parcial da energia do raio gama à energia do elétron [Knoll, 1999]. <u>Efeito Fotoelétrico</u> Neste processo, há uma interação entre um fóton e um átomo, sendo que o fóton desaparece completamente. Em seu lugar, um fotoelétron é ejetado por uma das camadas eletrônicas do átomo com uma energia dada por

 $E_e = hv - \varepsilon_b$

onde ε_b é a energia de ligação do elétron.

A camada da qual o elétron foi ejetado fica com uma vacância, preenchida em seguida. Pode ocorrer assim a emissão de fótons de raio X característico, ou a emissão de um elétron Auger.

<u>Efeito Compton</u>: Este processo ocorre quando o gama incidente colide com um elétron, de ligação ou livre; neste caso, o fóton transfere somente uma parte de sua energia ao elétron, desviando-se de seu caminho anterior. A energia perdida pode ter qualquer valor entre zero e um valor máximo.

A relação entre perda de energia e ângulo de espalhamento pode ser obtida de condições relativísticas para conservação do momento e energia. A expressão relativística relaciona a energia total E de uma partícula com seu momento p:

$$E = (E^{2}_{0} + c^{2}p^{2})^{1/2}$$

A quantidade E_0 é a energia total da partícula quando esta estiver parada e é dada por mc^2 , onde m é a massa da partícula.

<u>Produção de pares</u>: Este processo ocorre somente no campo elétrico Coulombiano do núcleo da substância a interagir, quando a energia gama for acima de 1,02 Mev. e com um material de número atômico alto [Venverloo, 1971].

Neste processo, um gama é completamente absorvido e convertido em um elétron e em um pósitron. A energia que permanece após a formação das duas partículas é subtraída da energia do gama e dividida entre os dois. O pósitron recombina-se com um elétron e ambos desaparecem, produzindo dois fótons de 0,51 MeV.

1.5 Detectores de radiação

.

Para a medida da atividade de um radionuclídeo são utilizados sistemas de medição, que consistem em um detector de radiação, onde acontece a interação da radiação com o sistema, e um equipamento de medição, sua parte eletrônica. Tais sistemas de medição podem ter diferentes tipos de detectores e metodologias de medida, conforme o tipo de radiação e a precisão desejada.

•

O princípio de funcionamento dos detectores é baseado nas interações das partículas carregadas com a matéria que atravessam, ou seja, nas ionizações e excitações provocadas por elas ao longo de seu caminho.

Existem vários tipos de detectores, com diferentes geometrias de construção, podendo-se classificá-los em dois tipos básicos: detectores a gás e detectores sólidos. Os detectores a gás são as câmaras de ionização, detectores proporcionais e Geiger-Mueller: os detectores sólidos são os detectores cintiladores e semicondutores.

Uma outra forma de classificação relaciona o tipo de operação, em ser ou não do tipo pulso. Na operação de tipo pulso, é utilizado o pulso da saída do detector, que é uma série de sinais separados no tempo, onde cada sinal representa a interação da partícula com o detector. Este é o caso da contagem por um contador eletrônico. No tipo de operação não-pulso de um sistema de detecção, a quantidade medida diretamente é o efeito médio das interações da radiação com o detector.

Atualmente, os detectores utilizados para a medição da radiação beta são o detector proporcional, detector Geiger-Mueller e detector cintilador.

Detectores proporcionais: são detectores a gás desenvolvidos nos anos quarenta que operam através da ionização produzida neles pela passagem de partículas carregadas. Operam sempre no modo pulso e tem sua carga, formada pelo par de íons originais, amplificada através do fenômeno da multiplicação gasosa. Quando a intensidade do campo elétrico no eletrodo central tem um aumento acima de um certo nível, cada elétron original leva a uma avalanche, sendo esta independente de outras avalanches formadas por outros elétrons que não pertençam ao grupo de elétrons originais: sua carga, representada pelo par de íons originais, é amplificada, produzindo pulsos grandes; a carga coletada permanece proporcional ao número de elétrons originais, ou à ionização inicial [Knoll, 1999]. A dependência do tamanho do pulso com a ionização primária possibilita a discriminação entre energias diferentes, ou tipos de radiação diferentes.

O detector proporcional pode, portanto, ser utilizado para determinar a energia de radiações e para a contagem de partículas sem a determinação da energia. Consegue detectar uma ionização inicial muito baixa, sendo um detector adequado para a medição da radiação beta; além disso, possui grande altura de pulso ao mesmo tempo em que mantém a proporcionalidade.

Sendo seus pulsos grandes, não é necessária muita amplificação; a tensão aplicada, porém, deve ser muito estável, pois o fator de amplificação do gás depende desta tensão, e, sendo assim, a altura do pulso será proporcional à energia da radiação incidente [Venverloo, 1971].

Num detector proporcional com geometria 4π , a eficiência de detecção pode ser mantida muito próxima a 100%. Com esta geometria e utilizando-se fontes de partículas beta de pouca massa e confeccionadas em substratos de filmes finos. as correções para espalhamento e absorção fora da fonte são eliminadas. Seu uso é, portanto, adequado para a contagem da radiação beta, onde a auto-absorção desta é minimizada.

Este tipo de sistema é utilizado principalmente como um detector de grande eficiência no método de contagem de coincidência $4\pi\beta$ - γ .

<u>Detectores cintiladores:</u> criados também nos anos quarenta e utilizados até os dias atuais. se baseiam na excitação combinada com ionização, que produz luminescência. Como algumas substâncias emitem luz visível quando expostas à radiação ionizante, a detecção da radiação acontece pela cintilação da luz produzida em certos materiais.

.

Quando as partículas ionizantes passam através de certos cristais. são emitidas cintilações. No detector de cinvilação, esta luz é colhida por um tubo fotomultiplicador, que produz um pulso. Sob condições adequadas, a carga resultante será proporcional à energia da partícula absorvida [Price, 1958].

Como o contador proporcional e a câmara de ionização, o detector cintilador pode ser utilizado para medir a distribuição de energia das partículas, além de contá-las. Pode ser utilizado com todos os tipos de partículas e, atualmente, é o tipo de detector de radiação mais versátil.

Os detectores cintiladores podem ser orgânicos ou inorgânicos:

Detectores cintiladores orgânicos são mais rápidos e produzem menos luz. sendo utilizados para espectroscopia beta. Existem diferentes tipos de detectores orgânicos. entre eles. cristais orgânicos puros, soluções orgânicas líquidas. cintiladores plásticos, etc. Detectores cintiladores inorgânicos possuem tempo de resposta mais lento, mas melhor saída de luz, sendo utilizados para espectroscopia gama. São adicionadas pequenas quantidades de uma impureza, ou ativadores, para que seja possível a visualização dos fótons na desexcitação. Entre estes detectores estão NaI(Tl), CsI(Tl) e CsI(Na) e LiI(Eu).

Detector cintilador de NaI(TI)

O NaI(Tl) é um cristal higroscópico que pode deteriorar quando exposto ao ar. devendo portanto estar encapsulado quando for utilizado. Adicionando-se um traço de iodeto de tálio a um iodeto de sódio cristalino, é produzida uma cintilação de luz muito grande, quando comparada a outros materiais orgânicos. Tal fato é fundamental na espectrometria de radiação gama. Sua resposta para elétrons e radiação gama é praticamente linear, e vem sendo utilizado como padrão nas medições de espectrocopia gama [Knoll,1999].

1.6 Métodos de Medida de radionuclídeos

Um método de medição da atividade independente de qualquer padrão de radioatividade, baseando-se apenas nas contagens e no padrão do tempo são chamados métodos diretos, ou absolutos [NCRP Report, 1984].

O mais utilizado desses métodos é o método de coincidência: este método pode medir diretamente a atividade dos radionuclídeos que decaein pela emissão de duas ou mais radiações coincidentes, sem que haja a necessidade de se conhecer qualquer outro parâmetro.

1.6.1 Método de Coincidência

O método de coincidência foi desenvolvido nos anos 60 [Baerg. 1966: Campion. 1959] para a padronização de radionuclídeos que decaem por emissão de particulas beta seguidas pela emissão de radiação gama.

Para isto foi proposta a utilização de dois detectores, um para cada tipo de radiação, e do uso de um módulo que detectasse os eventos coincidentes. Deste modo, é possível obter-se a atividade somente com o conhecimento de dados observáveis.

No caso simples (uma partícula β seguida de uma radiação γ). as equações que descrevem o método podem ser escritas como:

$$N_{\beta} = N_{0}\varepsilon_{\beta} \tag{1.1}$$

$$N_{\chi} = N_{0} \varepsilon_{\chi} \tag{1.2}$$

$$N_{c} = N_{0} \varepsilon_{\beta} \varepsilon_{\gamma} \tag{1.3}$$

Onde:

4

N₀ é a taxa de desintegração da fonte;

 N_{β} é a taxa de contagem obtida no detector beta;

 N_{γ} é a taxa de contagem obtida no detector gama:

 ε_{β} é a probabilidade de detecção no detector β ;

 ε_{γ} é a probabilidade de detecção no detector γ ;

N_c são as taxas de coincidência registradas no módulo de coincidências, correspondendo ao produto das probabilidades de detecção beta e gama.

Multiplicando-se N_{β} por N_{γ} e dividindo-se por N_c , tem-se:

$$\frac{N_{\beta}N_{\gamma}}{N_{c}} = N_{0}$$
(1.4)

Pode-se então obter a atividade N_0 sem o conhecimento das eficiências dos detectores β e γ para as energias das radiações consideradas.

No caso prático, os detectores utilizados são sensíveis a mais de um tipo de radiação. Assim, mesmo para um radionuclídeo que decai apenas por um beta seguido por um gama, poderá ocorrer a detecção do gama pelo detector da radiação beta, caso o beta não seja detectado, com uma certa eficiência ε_{Bz} .

As equações são então alteradas como:

$$N_{\beta} = N_{0} \left[\epsilon_{\beta} + \left(1 - \epsilon_{\beta} \right) \epsilon_{\beta \gamma} \right]$$
(1.5)

$$N_{\gamma} = N_0 \varepsilon_{\gamma} \tag{1.6}$$

$$N_{c} = N_{0} \left[\varepsilon_{\beta} \varepsilon_{\gamma} + \left(1 - \varepsilon_{\beta} \right) \varepsilon_{c} \right]$$
(1.7)

Desse modo obtém-se:

$$\frac{N_{\beta}N_{\gamma}}{N_{c}} - \frac{N_{0}\left[\varepsilon_{\beta} + \left(1 - \varepsilon_{\beta}\right)c_{\beta\gamma}\right]c_{\gamma}}{\left[\varepsilon_{\beta} \varepsilon_{\gamma} + \left(1 - \varepsilon_{\beta}\right)c_{c}\right]}$$
(1.8)

onde ε_c é a eficiência de detectar uma coincidência γ - γ .

Neste caso, não seria mais possível obter a atividade apenas dos valores observáveis. No entanto, quando é feita a medida da via gama apenas no pico de absorção total, a possibilidade de uma coincidência γ - γ é eliminada e teremos a equação como:

$$\frac{N_{\beta}N_{\gamma}}{N_{c}} = \frac{\left[1 + \left(1 - \epsilon_{\beta}\right) \epsilon_{\beta\gamma}\right]}{\epsilon_{\beta}}$$
(1.9)

sendo $\varepsilon_{\beta} = N_c/N_{\gamma}$.

2

Porém, são raros os radionuclídeos com esquemas de decaimento simples. Em sua maioria os radionuclídeos apresentam esquemas complexos, com n ramos beta. Neste caso, as equações que descrevem o método sofrem algumas alterações:

$$N_{\beta} = N_{0} \sum_{r=1}^{n} a_{r} \left[\varepsilon_{3_{r}} + \left(1 - \varepsilon_{\beta_{r}}\right) \left(\frac{\alpha \varepsilon_{ee} + \varepsilon_{\beta\gamma}}{1 + \alpha}\right)_{\tau} \right]$$
(1.10)

$$N_{\gamma} = N_0 \sum_{r=1}^{n} a_r \left(\frac{\varepsilon_{\gamma}}{1 + \alpha} \right)_r$$
(1.11)

$$N_{c} = N_{0} \sum_{r=1}^{n} a_{r} \left(\frac{\varepsilon_{\beta} \varepsilon_{\gamma}}{1 + \alpha} \right)_{r}$$
(1.12)

A combinação destas equações é dada por:

$$\frac{N_{\beta}N_{\gamma}}{N_{c}} = \frac{N_{0}\Sigma a_{r} \left[\epsilon_{\beta_{r}} + \left(1 - \epsilon_{\beta_{r}}\right) \left(\alpha \epsilon_{ec} + \epsilon_{\beta_{\gamma}}\right)_{r} / (1 + \alpha)_{r}\right] N_{0}\Sigma a_{r} \left(\epsilon_{\gamma} / (1 + \alpha)_{r}\right)}{N_{0}\Sigma a_{r} \left[\epsilon_{\beta_{r}} \left(\epsilon_{\gamma} / (1 + \alpha)_{r}\right)_{r}\right]}$$
(1.13)

onde :

۰.

ar são as abundâncias relativas do r-ésimo grupo beta;

 $\epsilon_{\beta r}$ é a eficiência para a radiação beta do r-ésimo grupo beta:

 α_r é o coeficiente de conversão interna total associado ao r-ésimo grupo beta:

 ϵ_{ec} é a eficiência do detector beta para elétrons de conversão;

 $\epsilon_{\beta\gamma}$ é a eficiência do detector beta para a radiação gama:

 \mathbf{r}

 ε_{π} é a eficiência para a radiação gama do r-ésimo grupo beta.

Simplificando-se as equações, considerando-se implícitas as somatórias, teremos:

$$N_{\beta} = N_{0} \left[\epsilon_{\beta} + \left(1 - \epsilon_{\beta}\right) \frac{\left(\frac{\omega \epsilon_{ec} + \epsilon_{\beta\gamma}}{\left(1 + \alpha\right)}\right)}{\left(1 + \alpha\right)} \right]$$
(1.14)

$$N_{\gamma} = N_0 \left(\frac{\varepsilon_{\gamma}}{1+\alpha}\right) \tag{1.15}$$

$$N_{c} = N_{0} \left(\frac{\epsilon_{\beta} \epsilon_{\gamma}}{1 + \alpha} \right)$$
(1.16)

$$\frac{\mathbf{N}_{\beta}\mathbf{N}_{\gamma}}{\mathbf{N}_{p}} = \mathbf{N}_{0} \left[1 + \frac{1 - \varepsilon_{\beta}}{\varepsilon_{\beta}} \left(\frac{\alpha \varepsilon_{ee} + \varepsilon_{\beta\gamma}}{1 + \alpha} \right) \right]$$
(1.17)

Como pode ser visto pela equação 1.17, a determinação da atividade depende não somente das eficiências de detecção, como da eficiência de detecção para elétrons de conversão, parâmetros do esquema de decaimento, e do coeficiente de conversão interna, o que implica no uso de dados da literatura.

Visando manter o princípio do método, Baerg e Campion [Baerg, 1967; Campion, 1959] propuseram a aplicação da técnica de extrapolação da eficiência.

1.6.1.1 Técnica da extrapolação da eficiência

,

Nesta técnica, que pode ser aplicada à maioria dos radionuclídeos. é utilizada a medida de N_{β} em função da variação do parâmetro da eficiência. N_c/N_y. Desta forma. variando-se N_c/N_y, obtém-se uma relação funcional entre N_{β} e este parâmetro. tal que:

$$N_{\beta} \rightarrow N_0$$
 quando $N_c/N_{\gamma} \rightarrow 1$

Baerg impôs para a validade desta função a condição de que as eficiências de deteção dos grupos beta estejam relacionadas de forma que:

$$\varepsilon_{\beta r} = F(\varepsilon_{\beta s})$$
 onde $F \rightarrow 1$ quando $\varepsilon_{\beta s} \rightarrow 1$

onde $\epsilon_{\beta r}$ são as eficiências de detecção para os diferentes grupos beta e $\epsilon_{\beta s}$ é a eficiência de um grupo beta arbitrário.

Para que $\epsilon_{\beta s} \rightarrow 1$ deve haver discriminação das baixas energias como parâmetro de variação das eficiências, o que na prática se consegue com a absorção beta pelo uso de absorvedores.

Além disso, como condição imposta pelo método, os valores das probabilidades de detecção ε_{ec} , ε_{γ} , e $\varepsilon_{\beta\gamma}$ devem permanecer constantes ou nulos no intervalo de variação N_c/N_{γ} .

Para um intervalo limitado de variação do parâmetro da eficiência, e no caso de ser possível isolar apenas um grupo beta por discriminação gama, esta função é linear.

Escrevendo N_{β} de forma generalizada, como o resultado de uma função F do parâmetro de eficiência N_c/N_{γ} :

$$N_{\beta} = N_0 F(N_c/N_{\gamma})$$
(1.18)

denominada função generalizada, onde:

$$F \rightarrow 1 \in N_{\beta} \rightarrow N_0$$
 quando $N_c/N_{\gamma} \rightarrow 1$.

Esta equação generalizada pode ser escrita de forma mais conveniente para uma solução gráfica utilizando-se a razão $N_{\beta}N_{\gamma}/N_{c}$ como variável dependente e (1- N_{c}/N_{γ})/(N_{c}/N_{γ}) como variável independente, obtendo-se uma função G, cuja variação é mais lenta que a função F:

$$\frac{N_{\beta}N_{\gamma}}{N_{c}} = N_{0}G\left(\frac{1-N_{c}/N_{\gamma}}{N_{c}/N_{\gamma}}\right)$$
(1.19)

Onde:

,

.

•

.

 $G \rightarrow 1 \text{ e } N_{\beta}N_{\gamma}/N_c \rightarrow N_0 \text{ quando } (1-N_c/N_{\gamma})/(N_c/N_{\gamma}) \rightarrow 0$

Quando esta função é um polinômio de grau 1, pode-se determinar através de seu coeficiente angular a correção para o esquema de desintegração. e através de seu coeficiente linear, obtém-se o valor de N_0 .

1.6.2 Método do Traçador

Apesar da grande variedade de radionuclídeos que podem ser medidos através do método de coincidência, os emissores beta puros representam uma exceção dentro dos elementos susceptíveis a ser medidos por este método. Por apresentarem apenas um tipo de

radiação, tornam impraticável a medição de coincidência. Não seria possível, portanto, a determinação da eficiência do detector diretamente da medida.

Neste contexto, foi desenvolvido por Baerg o método do traçador. no qual faz-se a combinação do emissor β puro com um emissor β - γ , denominado traçador [Campion. 1960; Baerg, 1963; Williams, 1964]. Este método torna possível a medição dos radionuclídeos emissores beta puros pelo método de coincidência, já que a eficiência da medida será fornecida pelo traçador.

O radionuclídeo utilizado como traçador deve possuir energia beta máxima de valor próximo à energia beta máxima do emissor beta puro, de forma que apresentem um comportamento semelhante [Baerg, 1963]. Além disso, ambos os radionuclídeos devem ser quimicamente compatíveis.

Para medidas de radionuclídeos com esquemas de decaimento complexo num detector $4\pi\beta$ - γ , a eficiência do detector β de um dado grupo β pode ser representado, sob certas condições, por uma função F da eficiência do traçador ε_{tr} [Baerg, 1973]. Assim, a eficiência de detecção β , $\varepsilon_{\beta p}$, pode ser aproximada de um polinômio de ineficiência (1- ε_{tr}) da seguinte forma:

$$\varepsilon_{\beta p} = f(1 - \varepsilon_{tr}) = 1 + c_1(1 - \varepsilon_{tr}) + c_2(1 - \varepsilon_{tr})^2 + \dots$$

onde f \rightarrow 1 quando $\varepsilon_{tr} \rightarrow$ 1

No caso da medição de uma fonte mista, composta por ambos os radionuclídeos, o número de eventos detectados no detector beta é dado por:

$$N_{\beta(\beta_{p}+tr)} = N_{0\beta_{p}} \varepsilon_{\beta\beta_{p}} + N_{0tr} \left[\varepsilon_{\beta_{tr}} + (1 - \varepsilon_{\beta_{tr}}) \left(\frac{\alpha_{tr} \varepsilon_{ec_{tr}} + \varepsilon_{\beta\gamma_{tr}}}{1 + \alpha_{tr}} \right) \right]$$
(1.20)

No detector gama, o número de eventos detectados, provenientes do traçador, será dado por:

$$N_{\gamma} = N_0 \varepsilon_{\gamma tr} \left(\frac{1}{1 + \alpha_{tr}} \right)$$
(1.21)

Os eventos detectados no canal de coincidência serão dados por:

16

$$N_{ctr} = N_0 \varepsilon_{\beta tr} \varepsilon_{\gamma tr} \frac{1}{1 + \alpha_{tr}}$$
(1.22)

onde:

 $N_{\beta \ (\beta p+tr)}$ é a taxa de contagem do contador proporcional devido à fonte mista; N_{0tr} é a atividade do traçador da fonte mista;

 $N_{0\beta p}$ é a atividade do beta puro;

 $\epsilon_{\beta_{\beta_n}}$ é a eficiência β para o beta puro.

 $\epsilon_{\gamma_{tr}}$ é a eficiência gama para o traçador na fonte mista;

N_c são os eventos de coincidência detectados no canal de coincidência:

 $\epsilon_{\beta_{\rm tr}}$ é a eficiência beta para o traçador na fonte mista.

Quando um emissor beta puro e um traçador são combinados, existe uma relação entre suas eficiências de detecção. Esta relação pode ser definida por uma função polinomial G, onde:

$$\frac{\left(1-\varepsilon_{\beta\beta p}\right)}{\varepsilon_{\beta\beta p}} = G\left(\frac{1-\varepsilon_{\beta tr}}{\varepsilon_{\beta tr}}\right)$$
(1.23)

Como a eficiência do traçador $\varepsilon_{\beta tr}$ não pode ser sempre obtida com a precisão desejada dos dados de contagem, é conveniente escrever a expressão envolvendo as taxas de contagem:

$$\frac{N_{\beta(\beta p+tr)}N_{\gamma tr}}{N_{c_{tr}}} - N_{0_{tr}} = N_{0\beta p} \left[1 + G' \left(\frac{1 - N_{c_{tr}}/N_{\gamma_{tr}}}{N_{c_{tr}}/N_{\gamma_{tr}}} \right) \right]$$
(1.24)

A função G' é ajustada pelo método dos mínimos quadrados e a extrapolação fornece o valor de $N_{0\beta p}$.

Sendo que $(N_{\beta(\beta p+tr)} N_{\gamma tr}/N_{ctr})-N_{0tr}$ estará em função de $(1-N_{ctr}/N_{\gamma tr})/(N_{ctr}/N_{\gamma tr})$, teremos que:

 $quando~(1-N_{ctr}/N_{\gamma tr})/~(N_{ctr}/N_{\gamma tr}) \rightarrow 0 \ , \ (N_{\beta(\beta p+tr)}N_{\gamma tr}/N_{ctr})-N_{0tr} \rightarrow N_{0\beta p}.$

Nestas equações, já estão incluídas as correções para a radiação de fundo. decaimento, tempo morto e coincidências acidentais.

2 PARTE EXPERIMENTAL

A parte experimental foi desenvolvida utilizando-se o sistema de coincidência 4π (PC)-NaI(Tl) tanto para a padronização do radionuclídeo emissor β - γ (traçador) como para a padronização do emissor beta puro, pela medida das fontes mistas beta puro e traçador.

As fontes do traçador e as fontes mistas (traçador + beta puro) utilizadas foram confeccionadas em filmes finos para minimizar a auto-absorção beta, conforme descrito no item a seguir.

2.1 Preparação das fontes

1

2.1.1 Confecção dos substratos de Collodion

Para o preparo das fontes é necessária inicialmente a confecção dos substratos, que são filmes finos de nitrato de celulose (Collodion elástico).

Estes filmes são feitos gotejando-se alíquotas de collodion elástico diluído em acetato de isoamila na proporção de 1:1 sobre uma superfície líquida (H₂O destilada e deionizada). formando um filme com espessura de aproximadamente 10 μ g cm⁻². Sobre o filme são colocadas arandelas de aço inox de 4 cm de diâmetro externo e diâmetro interno de 2 cm com espessura de 0,1 mm. Ao entrar em contato com as arandelas, o filme adere a elas, e estas são recortadas cuidadosamente, a fim de não romper a película aderida. Estes substratos são retirados e colocados para secar à temperatura ambiente. Posteriormente, os filmes são metalizados com ouro nas duas faces de modo a torná-los condutores, uma vez que as fontes radioativas são colocadas no centro do detector proporcional.

2.1.2 Confecção das fontes radioativas

As fontes radioativas são preparadas depositando-se alíquotas conhecidas da solução em estudo na parte central dos substratos. Utiliza-se para isso um picnômetro de polietileno (Figura 2.1).

Figura 2.1: Picnômetro

Para a determinação das massas das fontes emprega-se a técnica do picnômetro [Campion, 1975]. Nesta técnica, o picnômetro é pesado antes e depois da deposição da alíquota no substrato. A diferença entre esses dois valores é a massa da fonte. A pesagem é feita em uma balança analítica Sartorius MC 21S, com incerteza de 20 µg (figura 2.2).

A secagem das fontes é feita em dessecador ou com jato de nitrogênio aquecido à temperatura aproximada de 45°C [Willye, 1970].

Figura 2.2 - Balança analítica

2.1.3 Técnicas de preparação das fontes

As fontes de ⁴⁵Ca e ¹³⁷Cs foram preparadas empregando-se duas técnicas distintas, descritas a seguir, para sua comparação e validação.

2.1.3.1 Técnica da Solução

A técnica da solução consiste em preparar uma solução mista homogênea com alíquotas conhecidas de emissor beta-gama (traçador) e beta puro, de modo a conhecer-se a proporção das duas soluções (figura 2.3).

Figura 2.3- Vidros com as soluções

As massas de beta puro e traçador de cada fonte são determinadas pelas expressões 2.1 e 2.2, respectivamente:

$$m_{\beta p} = \frac{m_{\beta \rho}}{m_{s_{\beta p}} + m_{str}} m_{f}$$
(2.1)

$$m_{tr} = \frac{m_{str}}{m_{s\beta} + m_{str}} m_{f}$$
(2.2)

onde:

 $m_{\beta p}^{}$ é a massa de beta puro na fonte da solução mista: $m_{s\beta}^{}$ é a massa da solução de beta puro na solução mista; $m_{str}^{}$ é a massa da solução de traçador na solução mista; $m_{f}^{}$ é a massa da fonte da solução mista;

m_{tr} é a massa de traçador na fonte da solução mista.

2.1.3.2 Técnica das Gotas

Esta técnica consiste em depositar-se, individualmente e sobrepostas, alíquotas conhecidas de cada uma das soluções, beta puro e traçador, sobre os substratos. Esta técnica requer menos etapas na preparação das fontes, já que os radionuclídeos são depositados diretamente sobre os filmes de Collodion.

A massa das fontes foi determinada pelo método do picnômetro.

2.2 Arranjo Experimental

¢

O sistema de coincidência $4\pi\beta$ - γ utilizado neste trabalho consiste de dois tipos de detectores; um contador proporcional, utilizado para a medição das partículas beta. e dois cristais cintiladores, para detecção da radiação gama.

O contador proporcional, com geometria 4π , é preenchido com gás P-10 (90% de argônio com 10% de metano), operado a uma pressão de 0,1 MPa e a uma tensão de 2050V.

Este contador é constituído por dois semi-cilindros de latão simétricos: entre eles há uma placa de latão deslizante com um orifício para o posicionamento da fonte. No momento da medida. a fonte colocada na placa deslizante fica no centro do detector (figura 2.4). Cada um dos semi-cilindros possui como anodo um fio de aço inoxidável de diâmetro de 25µm, fixado por isoladores de teflon. Estes anodos possuem conexões soldadas, que permitem o fornecimento da alta tensão e a coleta dos sinais [Lavras, 2002].

Figura 2.4 : Sistema de detecção

Os detectores cintiladores utilizados são um par de cristais planos de NaI(Tl) de 76mm \times 76 mm, colocados sobre e sob o detector proporcional. Os NaI(Tl) foram operados a 1100V, e apresentam uma resolução de 10% para 795 keV do ¹³⁴Cs.

2.2.1 Sistema eletrônico

O sistema eletrônico utilizado, cujo diagrama de blocos é apresentado na figura 2.6, pode ser dividido em três canais principais: a via beta, que corresponde ao sinal proveniente do detector proporcional; a via gama, que corresponde ao sinal proveniente dos cristais cintiladores; e a via TAC (time to amplitude converter), correspondente à coleção dos dados.

A figura 2.5 mostra o sistema eletrônico utilizado nas padronizações.

Figura 2.5: Sistema eletrônico associado ao método de coincidência

25

4

1

۰.

CONNECTOR AND AND AND THE FUELD AND TADIED IDEN.

Via Beta

A medida na via beta é feita de modo integral, isto é, o sinal do detector proporcional é pré-amplificado e depois enviado ao amplificador, sendo estabelecido um ganho tal que permita que todas as partículas beta detectadas sejam coletadas. Este sinal é por sua vez enviado a um módulo discriminador, analisador de altura de pulso, monocanal (timing single channel analyzer-SCA). Este módulo, com controle de tempo, é operado de modo integral, discriminando-se apenas o ruído eletrônico. Após a discriminação, o sinal é enviado a dois geradores de porta e atraso (gate and delay generator 1 e 2). para a formação do pulso lógico posicionado no tempo, sendo em seguida enviado ao módulo TAC, conforme o diagrama de blocos (figura 2.6).

<u>Via Gama</u>

Os sinais provenientes dos detectores cintiladores são enviados, depois de préamplificados, para dois amplificadores, onde é feito o ajuste para que as amplitudes dos pulsos possam ser somadas em um módulo soma. O sinal do módulo soma é enviado a um discriminador (SCA) operado em modo diferencial, onde será discriminado o intervalo de amplitude correspondente ao fotopico de absorção total selecionado. Este sinal é enviado simultaneamente para os dois geradores de porta e atraso (1 e 2). O sinal a ser enviado ao gerador 2 passa por um módulo atrasador (delay amplifier), recebendo atraso adicional de modo que não ocorram sobreposições no tempo. Os sinais dos dois geradores são enviados ao módulo TAC.

Via TAC

4

Para registro dos pulsos, o sistema utiliza um conversor de tempo para amplitude de pulso (TAC) associado ao analisador multicanal (MCA). Os pulsos enviados pelos dois módulos geradores provenientes das vias beta e gama são enviados para o TAC em suas entradas início (start) e término (stop). O módulo TAC, após receber o sinal de início fica aguardando um sinal de término; ao recebê-lo, transforma esta informação de tempo em amplitude de pulso, e a envia ao MCA, dando origem no espectro aos picos beta, gama e de coincidência.

Na figura 2.7 é apresentado um espectro típico utilizando o TAC. O primeiro pico corresponde aos pulsos do contador proporcional, o segundo corresponde a pulsos de coincidência e o terceiro é devido a pulsos gama. O primeiro e o terceiro picos não incluem eventos de coincidência.

Figura 2.7: Espectro do TAC registrado pelo multicanal

As contagens beta são obtidas pela integração do primeiro pico $(N_{\beta}-N_c)$ com o pico de coincidências (N_c) ; as contagens gama são obtidas pela integração do terceiro pico $(N_{\gamma}-N_c)$ com o pico de coincidências e as contagens de coincidência são obtidas pela integração do pico central (N_c) .

A escolha dos atrasos dos pulsos beta e gama é feita em função das taxas de contagens e do tempo morto do multicanal, que dependem do canal. Como as contagens beta são sempre maiores, uma vez que a eficiência beta é alta comparada com a eficiência gama, para que o tempo morto seja o menor possível, posiciona-se o sinal beta nos canais iniciais.

2.3 Procedimento de Medida

Para a padronização dos radionuclídeos no sistema de coincidência $4\pi\beta$ - γ . inicialmente foram medidas as fontes contendo apenas o elemento traçador, determinandose sua atividade específica. Posteriormente, foram medidas as fontes dos elementos beta puro misturados com o traçador, preparadas pelas técnicas descritas em 2.1.3.

Na medição propriamente dita, após a introdução da fonte no detector, devem ser estabelecidas as condições de medida tanto da via beta como da via gama, conforme descrito a seguir:

2.3.1 Ajuste das condições eletrônicas da via beta

Para a escolha do ganho de amplificação adequado e verificação do nível de discriminação para eliminação do ruído, utiliza-se um sistema eletrônico auxiliar (figura 2.8).

Neste sistema, o sinal do amplificador é enviado simultaneamente para um módulo atrasador (delay amplifier) e para o discriminador, passando para o gerador de porta e atraso. Estes sinais são enviados ao MCA, no qual pode ser visualizado o espectro beta diretamente do amplificador ou após passar pela discriminação. Esta seleção é feita no MCA, com o módulo porta (gate) posicionado em medida direta ou em medida em coincidência.

O módulo atrasador é utilizado para permitir que o sinal direto do amplificador e o sinal do gerador cheguem ao mesmo tempo no MCA.

2.3.2 Ajuste das condições eletrônicas da via gama

Como no sistema são empregados dois cristais de NaI(Tl), inicialmente faz-se a escolha dos ganhos dos amplificadores, para que os espectros gama sejam coincidentes. Os sinais são enviados ao módulo somador.

Posteriormente, utiliza-se o sistema eletrônico auxiliar apresentado na figura 2.8 para discriminação dos níveis de energia do fotopico de absorção total selecionado para a medida. Utiliza-se o MCA de modo semelhante ao descrito para a via beta.

Após estes ajustes, faz-se a escolha dos tempos de atraso das duas vias, de modo que os sinais enviados ao TAC e posteriormente ao MCA não fiquem sobrepostos.

O tempo de cada medida é fixado no MCA, sendo da ordem de 2000 segundos.

A medida da radiação de fundo é feita de modo análogo, retirando-se a fonte do detector. O tempo de medida da radiação de fundo é da ordem de 1000 segundos.

Os espectros resultantes das medidas da fonte e da radiação de fundo são gravados no microcomputador acoplado ao MCA.

Figura 2.8: Sistema eletrônico auxiliar utilizado para discriminação das energias selecionadas

2.4 Cálculo da atividade do emissor beta puro e traçador

2.4.1 Cálculo da atividade do traçador

×

-

O cálculo da atividade do traçador é feito pelo programa CONTAC desenvolvido no laboratório de Metrologia Nuclear [Dias, 2001].

Este programa faz a leitura do espectro da fonte e do espectro da radiação de fundo. subtraindo a radiação de fundo ponto a ponto, fornecendo a razão $N_{\beta}N_{\gamma}/N_c$, os parâmetros de eficiência N_c/N_{γ} e de ineficiência $(1-N_c/N_{\gamma})/(N_c/N_{\gamma})$ com as respectivas incertezas.

Nos resultados são aplicadas as seguintes correções:

 Correção para tempo morto obtida da razão tempo de medida/tempo real. fornecidos pelo MCA ;

- Correção de decaimento, que considera o decaimento durante a medida obtido pela expressão:

$$N_{r} = N \frac{\lambda t}{1 - e^{-\lambda t}} e^{\lambda (tm - tr)}$$
(2.3)

onde:

Nr é a taxa de desintegração na data de referência:

N é a taxa de desintegração na data da medida:

COMMISSÃO NACIONAL DE ENERGIA HUCLEAR/SP-IPEN

t é o tempo da medida:

 t_r é a data de referência;

 t_m é a data da medida:

 λ é a constante de decaimento.

- Correção para coincidências espúrias, calculado pelo formalismo de Cox- Isham [Cox- Isham, 1977];

- As incertezas são calculadas utilizando-se a metodologia de análise de covariância, que é uma forma de representação das incertezas em dados experimentais. Fornece a incerteza total e informações sobre a existência de um nível de correlação entre as incertezas dos parâmetros da medida.

A análise de covariância é realizada pelo programa LINFIT (Dias, 1999).

2.4.2 Cálculo da atividade do emissor beta puro

Para este cálculo, foi desenvolvido um programa denominado CONTACT [Dias. 2004] que é uma modificação do programa CONTAC descrito no sub-item anterior.

Neste programa, é fornecido como dado de entrada a atividade do traçador previamente determinada. O programa fornece a razão $[N_{\beta(\beta p+tr)}N_{\gamma tr} /N_{ctr}]-N_{0tr}$, assim como os parâmetros de ineficiência, que são posteriormente analisados para obtenção da atividade do emissor beta puro.

Após a medida de todas as fontes, é selecionada a fonte que apresenta maior eficiência beta. Com esta fonte faz-se a variação da eficiência pelo uso de absorvedores externos de Collodion e de alumínio. colocados sobre e sob a fonte. Em uma medida típica são colocados inicialmente de um a três filmes de Collodion, com a espessura média de 35 µg cm⁻², alternando-se os lados da fonte.

Tal procedimento é repetido a cada medida até que o valor da eficiência inicial varie em aproximadamente quatro vezes. Caso a fonte em estudo fique danificada, recomeça-se o procedimento com outra fonte.

Com os diferentes valores de atividade e ineficiência $(1-Nc/N\gamma) / (Nc/N\gamma)$ das diferentes fontes, os dados medidos são analisados pelo programa LINFIT [Dias, 1999], que utiliza o método dos mínimos quadrados. Os resultados são colocados num gráfico.

cuja ordenada são as contagens beta e a abscissa os valores das ineficiências obtidas nas medidas. Segundo a técnica da extrapolação linear da eficiência, o valor da atividade é o valor extrapolado.

-

.

.

.

3 PADRONIZAÇÃO DOS RADIONUCLÍDEOS BETA EMISSORES

3.1 Padronização do ²⁰⁴Tl

A padronização de uma solução do emissor β^{-} puro ²⁰⁴Tl foi realizada . sendo que o ¹³⁴Cs foi o radionuclídeo utilizado como traçador. A escolha do ¹³⁴Cs para traçador se deve ao valor semelhante de suas energias β máximas: 763,4 keV do ²⁰⁴Tl e 657.8 keV do ¹³⁴Cs.

O ²⁰⁴Tl decai com uma meia-vida de (1381 ± 7) dias [Lagoutine, 1984] para o estado fundamental do ²⁰⁴Pb pela emissão β^- (97%), e para o estado fundamental do²⁰⁴Hg por captura de elétrons (3%), como mostrado na figura 3.1 [Lagoutine, 1984].

Figura 3.1: Esquema de Decaimento do ²⁰⁴Tl [Lagoutine, 1984] – Energias em keV

Na tabela 3.1 são apresentadas as radiações, principais energias e intensidades absolutas emitidas no decaimento do ²⁰⁴Tl [Lagoutine, 1984].

	Energia (keV)	Intensidade Absoluta(%)
Radiação β ⁻ máxima	763,4 ± 0,2	97.4 ± 0.1
Captura eletrônica	349,0 ± 5	2.6 ± 0.1
Rendimento de luminescência ω _K	$0,966 \pm 0,020$	
Rendimento de luminescência ω _L	$0,37 \pm 0.04$	

Tabela 3.1: Dados do esquema de decaimento do ²⁰⁴Tl

Tabela 3.1: Dados do esquema de	decaimento do ²⁰⁴ Tl - Continuação
Probabilidade relativa para captura de	0,588 ± 0,006
elétrons P _K	
Probabilidade relativa para captura de	$0,300 \pm 0,004$
elétrons P _L	

O ¹³⁴Cs é um radionuclídeo emissor β - γ , que decai com uma meia-vida de (2.066 ± 0.001) anos [Lagoutine, 1984] com emissão beta, populando os estados excitados do ¹³⁴Ba, como mostrado na figura 3.2.

Figura 3.2: Esquema de Decaimento do ¹³⁴Cs [Lagoutine, 1984] – Energias em keV

Na tabela 3.2 são apresentadas as principais energias e intensidades absolutas emitidas no decaimento do ¹³⁴Cs [Lagoutine, 1984].

Tipos de Radiação	Energia (keV)	Intensidade Absoluta(%)
β_1 máxima	88,5 ± 0,4	$27,2 \pm 0,2$
$\beta_2 m$ áxima	$415,1 \pm 0,4$	$2,50 \pm 0,05$
β_3 máxima	$657,8 \pm 0,4$	$70,2 \pm 0,4$
β ⁻ 4 máxima	$890,5 \pm 0,4$	$0,04 \pm 0,03$
β ⁻ 5 máxima	$1453,7 \pm 0,4$	$0,008 \pm 0,006$
Captura eletrônica	369 ± 3	$0,0003 \pm 0,0001$.
γ ₁ (Ba)	$242,8 \pm 0,1$	$0,021 \pm 0,001$
γ_2 (Ba)	$326,5 \pm 0,1$	$0,014 \pm 0,001$
γ ₃ (Ba)	$475,34 \pm 0,02$	$1,52 \pm 0,02$
γ4 (Ba)	$563,23 \pm 0,02$	$8,\!44 \pm 0,\!03$
γ5 (Ba)	$569,32 \pm 0,02$	$15,54 \pm 0,05$
γ ₆ (Ba)	$604,\!69 \pm 0,\!02$	$98,21 \pm 0,04$
γ ₇ (Ba)	795,84 ± 0,01	$85,78\pm0,03$
γ ₈ (Ba)	801,93 ± 0,02	$8,73 \pm 0,02$
γ(Xe)	847,0 ± 0,2	$0.0003 \pm 0,0001$
γ9 (Ba)	1038,555±0,020	$0,993 \pm 0,004$
γ ₁₀ (Ba)	1167,92,±0,02	$1,794 \pm 0,008$
γ11 (Ba)	$1365, 16 \pm 0, 02$	3,018 ± 0,013

Tabela 3.2: Dados do esquema de decaimento do ¹³⁴Cs

As equações para o método do traçador na padronização do ²⁰⁴Tl são:

$$N_{\beta_{(T1+Cs)}} = N_{0_{T1}} \varepsilon_{\beta_{T1}} + N_{0Cs} \left[\varepsilon_{\beta_{Cs}} + (1 - \varepsilon_{\beta_{Cs}}) \left(\frac{\alpha_{Cs} \varepsilon_{ecCs} + \varepsilon_{\beta_{\gamma_{Cs}}}}{1 + \alpha_{Cs}} \right) \right]$$
(3.1)

$$N_{\gamma} = N_0 \varepsilon_{\gamma_{Cs}} \left(\frac{1}{1 + \alpha_{Cs}} \right)$$
(3.2)

$$N_{c} = N_{0} \varepsilon_{\beta C_{s}} \varepsilon_{\gamma C_{s}} \frac{1}{1 + \alpha_{C_{s}}}$$
(3.3)

onde:

 $N_{\beta(TI + Cs)}$ é a taxa de contagem do contador proporcional devido a fonte mista: N_{0TI} é a taxa de desintegração beta do ²⁰⁴TI;

 ε_{BTI} é a eficiência beta do ²⁰⁴TI;

 N_{0Cs} é a atividade do traçador ¹³⁴Cs depositado na fonte mista;

 $\epsilon_{\beta Cs}$ é a eficiência do traçador na fonte mista, obtida por N_c/N_{γ} ;

 α_{Cs} é o coeficiente de conversão interna total associado ao traçador ¹³⁴Cs;

 ϵ_{ecCs} é a eficiência de detecção do elétron de conversão associada ao traçador ¹³⁴Cs;

 $\epsilon_{\beta\gamma Cs}$ é a eficiência da detecção gama do detector beta para o traçador ¹³⁴Cs;

 N_{γ} é a taxa de contagem gama;

 ε_{yCs} é a eficiência da detecção gama;

N_c é a taxa de contagem de coincidências.

Quando o emissor β puro e o traçador β - γ são combinados en uma única fonte, uma relação funcional existe entre as eficiências de detecção [ICRU, 1994]. Esta relação pode ser definida por uma função polinomial G onde:

$$(1 - \varepsilon_{\beta T I}) / \varepsilon_{\beta T I} = G((1 - \varepsilon_{\beta C S}) / \varepsilon_{\beta C S})$$
(3.4)

Aplicando a técnica de extrapolação, pode-se escrever a expressão como:

$$\frac{N_{\beta(TI+Cs)}N_{\gamma}}{N_{c}} - N_{0Cs} = N_{0\beta TI} \left[1 + G'((1 - \varepsilon_{\beta Cs}) / \varepsilon_{\beta Cs}) \right]$$
(3.5)

A função G' foi ajustada pelo método dos mínimos quadrados utilizando-se o programa LINFIT [Dias, 1999]. A extrapolação para (1- $\epsilon_{\beta Cs}$)/ $\epsilon_{\beta Cs} = 0$ fornece o valor esperado N_{0β TI}.

No cálculo da atividade foram incluídas as correções para radiação de fundo, decaimento, tempo morto e coincidências acidentais.

A atividade final é dada por:

$$N_{0} = \frac{N_{0\beta TI}}{I_{\beta} + \varepsilon_{ce} I_{ce}}$$
(3.6)

onde:

 N_0 é a taxa de desintegração do ²⁰⁴Tl;

 I_{β} and I_{ce} são as intensidades absolutas do decaimento beta e da captura de elétrons;

 ϵ_{ce} é a eficiência dos eventos da captura de elétrons.

No caso do ²⁰⁴Tl, a eficiência dos eventos de captura de elétrons é dominada pela detecção de elétrons Auger, porque o contador proporcional possui baixa eficiência para raios X de 8 - 83 keV.

Negligenciando as transições acima da camada L, o valor de ε_{ce} é dado por aproximadamente:

$$\varepsilon_{ce} = \varepsilon_{AeK} P_K (1 - \omega_k) + \varepsilon_{AeL} P_L (1 - \omega_L) - \varepsilon_{AeK} \varepsilon_{AeL} P_K P_L (1 - \omega_k) (1 - \omega_L)$$
(3.7)

Onde:

K e L correspondem às camadas K e L, respectivamente;

 $\omega_{\rm K}$ e $\omega_{\rm L}$ são os rendimentos de luminescência;

 ϵ_{AeK} e ϵ_{AeL} são as eficiências de detecção para elétrons Auger;

 P_K e P_L são as probabilidades relativas para captura de elétrons.

A parte final desta equação leva em conta a detecção simultânea de elétrons Auger K e L, que no caso do ²⁰⁴Tl é pequena.

Para esta padronização foram preparadas 8 fontes de ¹³⁴Cs e 8 fontes mistas de ²⁰⁴Tl e ¹³⁴Cs pela técnica de deposição de gotas descrita em 2.1.3.2. A solução de ²⁰⁴Tl foi alvo de

uma comparação internacional patrocinada pelo BIPM (Bureau International de Poids et Mesures).

A medida, seja das fontes mistas como do traçador 134 Cs, foi feita selecionando-se as energias gama na faixa de (795,84 + 801,93) keV do 134 Cs, por apresentar menor valor da correção para o esquema de decaimento.

3.2 Padronização do ⁴⁵Ca

÷

Para a padronização do ⁴⁵Ca foi selecionado como traçador o ⁶⁰Co, pois este emite um β máximo de 317,89 keV, próximo do valor do β máximo do ⁴⁵Ca, que é de 256,9 keV.

O ⁴⁵Ca decai com uma meia-vida de (163 \pm 1) dias [Lagoutine,1984] por emissão beta, 0,0017% populando o estado excitado do ⁴⁵Sc e 99,9983% decaindo para o estado fundamental, com energia de (256,9 \pm 1,0) keV como mostra a figura 3.3. Como a probabilidade de emissão gama é muito baixa, ele pode ser considerado um radionuclídeo emissor beta puro.

Figura 3.3: Esquema de decaimento do ⁴⁵Ca [Lagoutine,1984] – Energias em keV

Na tabela 3.3 são apresentadas as principais energias e intensidades absolutas emitidas no decaimento do ⁴⁵Ca [Lagoutine, 1984].

Tipos de Radiação	Energia (keV)	Intensidade Absoluta(%)
β ⁻ ı máxima	$244,5 \pm 1,3$	0.0017 ± 0.0008
$\beta_2 m$ áxima	$256,9 \pm 1,0$	99,9983
γι	$12,40 \pm 0,3$	0.0017 ± 0.0008

Tabela 3.3: Dados do esquema de decaimento do ⁴⁵Ca

O ⁶⁰Co decai com uma meia-vida de $(5,271 \pm 0,002)$ anos [Lagoutine,1984] por emissão beta, populando os níveis excitados do ⁶⁰Ni, que decai para o estado fundamental com emissão de radiação gama de (1332,503 ± 0,005) keV e (1173,239 ± 0,004) keV, conforme mostrado na figura 3.4.

Figura 3.4: Esquema de Decaimento do ⁶⁰Co [Lagoutine,1984] – Energias em keV

Na tabela 3.4 são apresentadas as principais energias e intensidades absolutas das radiações emitidas no decaimento do ⁶⁰Co [Lagoutine, 1984].

Tipos de Radiação	Energia (keV)	Intensidade Absoluta(%)
β_1 máxima	$197,5 \pm 0,2$	≤ 0,002
β_2 máxima	317,89 ± 0,11	99,92 ± 0,03
β ⁻ 3 máxima	$664,83 \pm 0,20$	≤ 0,002
β ⁻ 4 máxima	$1491,13 \pm 0,12$	$0,08 \pm 0,02$
γι	$346,93 \pm 0,07$	$0,0075 \pm 0,0005$
γ2	$467,3 \pm 0,2$	≤ 0,002
γ3	$826,\!28\pm0,\!09$	$0,0076 \pm 0,0008$
γ4	$1173,239 \pm 0,004$	$99,91 \pm 0,02$
γ5	$1332,503 \pm 0,005$	99,9989 ± 0,0006
γ ₆	$2158,77 \pm 0,09$	$0,0011 \pm 0,0002$
γ ₇	$2505,75 \pm 0,03$	$(2,0\pm0,4) \ge 10^{-6}$

Tabela 3.4: Dados do esquema de decaimento do ⁶⁰Co

As equações para o método do traçador na padronização do ⁴⁵Ca são:

$$N_{\beta_{(Ca+Co)}} = N_{0_{Ca}} \varepsilon_{\beta_{Ca}} + N_{0_{Co}} \left[\varepsilon_{\beta_{Co}} + (1 - \varepsilon_{\beta_{Co}}) \left(\frac{\alpha_{Co} \varepsilon_{ecCo} + \varepsilon_{\beta_{\gamma_{Co}}}}{1 + \alpha_{Co}} \right) \right]$$
(3.8)

$$N_{\gamma} = N_0 \varepsilon_{\gamma_{Co}} \left(\frac{1}{1 + \alpha_{Co}} \right)$$
(3.9)

$$N_{c} = N_{0} \varepsilon_{\beta Co} \varepsilon_{\gamma Co} \frac{1}{1 + \alpha_{Co}}$$
(3.10)

Os termos estão definidos conforme nas equações 3.1, 3.2 e 3.3, considerando-se as modificações para os radionuclídeos beta puro e traçador.

A função polinomial G existente entre as eficiências de detecção pode ser definida como:

$$\left(1 - \varepsilon_{\beta Ca}\right) / \varepsilon_{\beta Ca} = G\left(\left(1 - \varepsilon_{\beta Co}\right) / \varepsilon_{\beta Co}\right)$$
(3.11)

Reescrevendo a função, envolvendo apenas as taxas β - γ observadas e as taxas de coincidência:

$$\frac{N_{\beta(Ca+Co)}N_{\gamma_{Co}}}{N_{cCo}} - N_{0Co} = N_{0Ca} \left[1 + G' \left(\left(1 - \frac{N_{cCo}}{N_{\gamma_{Co}}} \right) / \frac{N_{cCo}}{N_{\gamma_{Co}}} \right) \right]$$
(3.12)

O valor de N₀Ca é obtido através da extrapolação :

$$\left(1 - N_{cCo} / N_{\gamma Co}\right) / N_{cCo} / N_{\gamma Co} = 0$$
(3.13)

No cálculo da atividade foram incluídas as correções para radiação de fundo, decaimento, tempo morto e coincidências acidentais.

Para a padronização do ⁴⁵Ca foram feitas fontes utilizando as duas técnicas de preparo, técnica de solução e a técnica de gotas.

Foram preparadas três fontes da solução de traçador (⁶⁰Co). Pela técnica de solução, foram preparadas duas soluções com diferentes proporções de traçador e beta puro: 1:1 e 1:2, identificadas como solução S1 e S2. Tal procedimento foi adotado para que se pudesse verificar eventuais diferenças em seus resultados.

Pela técnica de gotas foram preparadas seis fontes, e este grupo foi denominado G.

As medidas foram realizadas selecionando-se as duas radiações gama principais do 60 Co, (1332,503 ± 0,005) keV e (1173,239 ± 0,004) keV.

Para a obtenção da curva de extrapolação foram selecionadas as fontes de maior eficiência. Estas fontes tiveram sua eficiência variada pelo uso de absorvedores externos.

3.3 Padronização do ¹³⁷Cs

Com o intuito de utilizar o método do traçador com outro radionuclídeo emissor β puro, foi selecionado o ¹³⁷Cs, utilizando-se como traçador o ¹³⁴Cs.

O decaimento deste nuclídeo, mostrado na figura 3.5. ocorre com uma meia-vida de $(30,15 \pm 0,06)$ anos [Lagoutine,1984]. O ¹³⁷Cs decai para o estado fundamental com emissão beta de $(1173,2 \pm 0.9)$ keV, (5,4 %), e pela emissão beta de $(511,5 \pm 0.9)$ keV, (94,6 %), populando o estado meta-estável do ^{137m}Ba, que decai com meia-vida de $(2,554 \pm 0.002)$ minutos [Lagoutine,1984] para o estado fundamental pela emissão de uma radiação gama de $(661,662 \pm 0,003)$ keV.

Figura 3.5: Esquema de decaimento do ¹³⁷Cs [Lagoutine,1984] – Energias em keV

Na tabela 3.5 são apresentadas as principais energias e intensidades absolutas das radiações emitidas no decaimento do ¹³⁷Cs [Lagoutine, 1984].

Tipos de Radiação	Energia (keV)	Intensidade Absoluta(%)
β ⁻ ı máxima	511,5 ± 0,9	94,6 ± 0.3
β_2 máxima	$1173,2 \pm 0,9$	5.4 ± 0.3
γ	$661,662 \pm 0,003$	94.6 ± 0.3

Tabela 3.5: Dados do esquema de decaimento do ¹³⁷Cs

Apesar da existência da radiação gama, o decaimento beta do 137 Cs não é acompanhado desta radiação, devido ao valor da meia-vida do estado meta-estável, de (2,554 ± 0.002) minutos.

A meia-vida longa do estado meta-estável torna o método de coincidência impraticável, sendo que a eficiência de detecção beta não pode ser medida diretamente. Contudo, a medição da coincidência será possível utilizando-se o método do traçador [Sahagia, 1981; Srivastava, 1977].

A escolha do ¹³⁴Cs como traçador se deve ao fato deste nuclídeo ter preferência no caso da padronização do ¹³⁷Cs [Rytz, 1985], pois, por ser o mesmo elemento químico que o ¹³⁷Cs, assegura a uniformidade da mistura de ambos, além da proximidade dos valores de suas energias máximas, (657,8 ± 0,4) keV do ¹³⁴Cs e (511,5 ± 0,9) keV do ¹³⁷Cs.

A descrição do ¹³⁴Cs, utilizado como traçador, encontra-se no item 3.1, por ter sido utilizado nas duas padronizações.

As medidas foram realizadas selecionando-se as energias gama na faixa de (795,84 + 801,93) keV do 134 Cs.

As equações de coincidência aplicadas à mistura ¹³⁴ Cs e ¹³⁷Cs são dadas por:

$$N_{\beta(CS7+CS4)} = N_{0CS7} \left(\varepsilon_{\beta_{CS7}} + C \right) + N_{0CS4} \left[\varepsilon_{\beta_{CS4}} + \left(1 - \varepsilon_{\beta_{CS4}} \right) \left(\frac{\alpha_{CS4} \varepsilon_{ecCS4} + \varepsilon_{\beta\gamma CS4}}{1 + \alpha_{CS4}} \right) \right]$$
(3)

$$N_{\gamma} = N_0 \varepsilon_{\gamma C_{S} 4} \frac{1}{1 + \alpha_{C_S 4}}$$
(3.15)

$$N_{c} = N_{0} \varepsilon_{\beta C s 4} \varepsilon_{\gamma C s 4} \frac{1}{1 + \alpha_{C s 4}}$$
(3.16)

Os termos estão definidos conforme nas equações 3.1, 3.2 e 3.3, considerando-se as modificações para os radionuclídeos beta puro e traçador.

A função polinomial G existente entre as eficiências de detecção pode ser definida como:

$$\left(1 - \varepsilon_{\beta C s 7}\right) \middle/ \varepsilon_{\beta C s 7} = G\left(\left(1 - \varepsilon_{\beta C s 4}\right) \middle/ \varepsilon_{\beta C s 4}\right)$$
(3.17)

Reescrevendo a função, envolvendo apenas as taxas β - γ observadas e as taxas de coincidência:

$$\frac{N_{\beta}(c_{s7+C_{s4}})N_{\gamma}}{N_{cC_{s4}}} - N_{0}_{Cs4} = N_{0}_{Cs7} \left[1 + C + G' \left(\left(\frac{1 - N_{c}}{N_{\gamma}} \right) / \frac{N_{c}}{N_{\gamma}} \right) \right) \right]$$
(3.18)

O termo C expressa a contribuição dos elétrons de conversão contados no detector β com eficiência ϵ_{β} e das radiações gama não convertidas contados com eficiência $\epsilon_{\beta\gamma}$:

$$C = \frac{b}{(1+\alpha)_{Cs7}} \left(\alpha_{p} \varepsilon_{ec} + \varepsilon_{\beta\gamma} \right)$$
(3.19)

Onde:

b é a probabilidade de emissão beta ao nível meta-estável do ^{137m}Ba;

 $\epsilon_{\beta\gamma}$ é a eficiência de detecção gama do $^{137m}Ba~$ no detector beta;

 ϵ_{ec} é a eficiência de detecção do elétron de conversão associada ao^{137m}Ba no detector beta;

 α_{Cs7} é o coeficiente de conversão interna total associado ao 137m Ba.

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP-JPEN

Para a padronização das fontes mistas de ¹³⁷Cs e ¹³⁴Cs, foram utilizadas as duas técnicas de preparação de fontes anteriormente citadas. Adotou-se o procedimento de medir-se três vezes cada uma das fontes a cada acréscimo de filmes, a fim de se evitar erros sistemáticos de medida, tendo sido todos os resultados utilizados na análise dos dados.

Na confecção das fontes para esta padronização foi utilizada somente a razão 1:1.

Foram preparadas um total de 24 fontes, sendo 6 fontes de traçador (¹³⁴Cs), 6 fontes de beta puro (¹³⁷Cs), e 6 fontes de cada técnica com as fontes mistas beta puro e traçador.

O grupo de fontes preparadas pela técnica de solução utilizando o ¹³⁴Cs como traçador foi denominado S e o grupo preparado pela técnica de gotas que utilizou o mesmo traçador foi denominado G.

Ao se fazer as medidas das fontes de ¹³⁷Cs com o traçador ¹³⁴Cs, foi necessário evitar a detecção no canal γ do pico de 661,6 keV do ¹³⁷Cs, que se localiza muito próximo ao pico de 604,9 keV do ¹³⁴Cs (figura 3.6), aumentando o nível de discriminação. Assim fica assegurado que os eventos associados ao decaimento do ¹³⁷Cs não interfiram nesta medida.

Figura 3.6: Espectro do ¹³⁷Cs e ¹³⁴Cs registrado no multicanal

Na figura pode-se notar a proximidade dos espectros mencionados. A curva na cor rosa representa o espectro do 134 Cs e na cor azul o espectro do 137 Cs.

As setas indicam o local do espectro onde foi feita a discriminação da janela gama, a fim de que o 137 Cs não interferisse na medida.

4 RESULTADOS E DISCUSSÕES

.....

4.1 Padronização do ²⁰⁴Tl

ŝ

Na tabela 4.1 são apresentados os valores de atividade com respectiva eficiência obtidos para o 134 Cs. O valor da atividade obtida considerada foi a média dessas medidas, e a incerteza considerada foi o desvio-padrão. A medida, tanto das fontes mistas como do 134 Cs, foi feita selecionando-se as energias gama de (795,84 + 801,93) keV.

Fonte	Eficiência	Atividade Espec. (kBqg ⁻¹)	Incerteza (%)
1	0,8561	96,35	0,13
2	0,8551	96,62	0,13
3	0,8541	96,00	0,18
4	0,8536	96,05	0,26
5	0,8368	95,90	0,17
6	0,8319	95,63	0,10
7	0,8280	96,16	0,19
8	0,7892	96,80	0,16
9	0,7704	96,45	0,16
10	0,7699	96,37	0,12
11	0,7679	95,52	0,17
12	0,7635	96,84	0,17
13	0,7584	95,80	0,17
14	0,7408	96,08	0,25
	Valor médio	96,18	0,33

Tabela 4.1: Resultados da padronização do ¹³⁴Cs

Na tabela 4.2 são apresentados os resultados da calibração do ²⁰⁴Tl com o traçador ¹³⁴Cs, bem como os valores das eficiências e ineficiências beta. Para a determinação do valor $N_{0\beta}$, os valores apresentados na tabela 4.2 foram combinados com os valores adicionais obtidos de uma medida anteriormente feita (pontos 37-54) [Dias, 2003], empregando-se a função normalizada:

$$\left(\frac{N_{\beta}N_{\gamma}}{N_{c}} - N_{0Cs}\right)\frac{1}{N_{0T1}}$$
(4.1)

em função do parâmetro de ineficiência.

•

1

A eficiência β foi variada de 82% a 62% utilizando-se absorvedores de Collodion sobre e sob a fonte.

Med	lida N _c / N _y	$(1-N_c/N_\gamma)/N_c/N_\gamma$	$(N_{\beta}N_{\gamma}/N_{c})$	$((N_{\beta}N_{\gamma}/N_{c})-N_{\alpha})/N_{\alpha}$
8		<u> </u>	x10*	1 (0(F))/1 (0
1	$0,8195 \pm 0,0024$	0.2203 ± 0.0036	1.137 ± 0.007	1.160 ± 0.006
2	$0,8163 \pm 0,0023$	$0,2251 \pm 0,0035$	$1,140 \pm 0,007$	1.164 ± 0.006
3	$0,8047 \pm 0,0023$	$0,2427 \pm 0,0030$	$1,141 \pm 0,007$	1.164 ± 0.006
4	$0,7860 \pm 0,0037$	$0,2723 \pm 0,0061$	$1,165 \pm 0,007$	1.189 ± 0.006
5	$0,7828 \pm 0,0048$	$0,2775 \pm 0,0079$	$1,172 \pm 0,007$	1.196 ± 0.006
6	0,7759 ± 0,0049	$0,2888 \pm 0,0081$	$1,186 \pm 0,007$	1.210 ± 0.006
7	0,7976 ± 0,0038	$0,2537 \pm 0,0060$	$1,166 \pm 0,007$	1.190 ± 0.006
8	$0,7929 \pm 0,0030$	0.2613 ± 0.0048	$1,171 \pm 0,007$	1.195 ± 0.006
9	0,7876 ± 0,0029	0.2697 ± 0.0047	$1,178 \pm 0,007$	$1,202 \pm 0,006$
10	$0,7774 \pm 0,0040$	0.2864 ± 0.0066	$1,186 \pm 0.007$	1.211 ± 0.006
11	$0,7810 \pm 0,0036$	0.2804 ± 0.0060	$1,198 \pm 0.008$	1.222 ± 0.006
12	$0,7760 \pm 0,0039$	0.2886 ± 0.0065	$1,212 \pm 0,008$	1.237 ± 0.006
13	$0,7751 \pm 0,0039$	$0,2901 \pm 0,0065$	$1,216 \pm 0.008$	1.241 ± 0.006
14	0,7648 ± 0,0040	$0,3075 \pm 0,0068$	$1,216 \pm 0.008$	1.241 ± 0.006
15	$0,7894 \pm 0,0037$	$0,2667 \pm 0,0060$	$1,184 \pm 0.007$	1.208 ± 0.006
16	$0,7940 \pm 0.0040$	$0,2595 \pm 0,0056$	$1,172 \pm 0.007$	1.196 ± 0.006
17	0,7909 ± 0,0036	$0,2644 \pm 0,0057$	$1,177 \pm 0,007$	1.201 ± 0.006
18	$0,7810 \pm 0,0039$	$0,2804 \pm 0,0063$	$1,180 \pm 0,007$	1.204 ± 0.006
19	$0,7745 \pm 0,0037$	$0,2911 \pm 0,0061$	1.199 ± 0.008	1.223 ± 0.006
20	$0,7922 \pm 0,0037$	$0,2623 \pm 0,0058$	$1,183 \pm 0.007$	1.207 ± 0.006
21	$0,7861 \pm 0,0026$	$0,2721 \pm 0,0058$	$1,199 \pm 0,008$	1.224 ± 0.006
22	$0,7689 \pm 0,0026$	0.3006 ± 0.0058	$1,193 \pm 0,008$	1.218 ± 0.006
23	$0,7271 \pm 0,0026$	0.3754 ± 0.0058	1.233 ± 0.008	1.258 ± 0.006
24	$0,6504 \pm 0,0020$	0.5374 ± 0.0048	$1,284 \pm 0,008$	1.310 ± 0.007
25	0.6252 ± 0.0020	0.5996 ± 0.0052	1.283 ± 0.008	1.309 ± 0.007
26	0.6528 ± 0.0015	0.5318 ± 0.0035	1.281 ± 0.008	1.308 ± 0.007
27	0.7931 ± 0.0025	0.2609 ± 0.0040	1.158 ± 0.007	1.181 ± 0.006
28	$0,7924 \pm 0.0025$	0.2620 ± 0.0040	1.162 ± 0.007	1.186 ± 0.006
29	0.7695 ± 0.0026	0.2996 ± 0.0043	1.185 ± 0.007	1.209 ± 0.006
30	0.7690 ± 0.0026	0.3005 ± 0.0044	$1,172 \pm 0.007$	1.196 ± 0.006
31	0.7599 + 0.0018	0.3159 + 0.0031	1.181 ± 0.007	1.205 ± 0.006

Tabela 4.2: Resultados da padronização do ²⁰⁴Tl com ¹³⁴Cs

T	abela 4.2: Resultado	os da padronização do	²⁰⁴ Tl com ¹³⁴ Cs -	Continuação
32	$0,7502 \pm 0,0026$	$0,3330 \pm 0,0047$	$1,199 \pm 0,008$	$1,224 \pm 0,006$
33	$0,7574 \pm 0,0027$	$0,3203 \pm 0,0047$	$1,189 \pm 0,007$	$1,213 \pm 0,006$
34	$0,7502 \pm 0,0026$	$0,3330 \pm 0,0047$	$1,201 \pm 0,008$	$1,225 \pm 0,006$
35	$0,7474 \pm 0,0026$	$0,3381 \pm 0,0047$	$1,207 \pm 0,008$	$1,232 \pm 0,002$
36	0,6949 ± 0,0021	$0,4391 \pm 0,0043$	$1,238 \pm 0,008$	$1,263 \pm 0,002$
37	$0,9167 \pm 0,0024$	0,0909 ± 0,0036	$6,579 \pm 0,036$	$1,073 \pm 0,002$
38	$0,9132 \pm 0,0023$	0,0951 ± 0,0035	$6,612 \pm 0,021$	$1,078 \pm 0,002$
39	$0,9104 \pm 0,0023$	$0,0985 \pm 0,0030$	$6,665 \pm 0,023$	$1,087 \pm 0,002$
40	$0,9101 \pm 0,0037$	$0,0988 \pm 0,0061$	$6,661 \pm 0,027$	$1,086 \pm 0,002$
41	0,9060 ± 0,0048	$0,1037 \pm 0,0079$	$6,621 \pm 0,021$	$1,080 \pm 0,002$
42	$0,9059 \pm 0,0049$	$0,1039 \pm 0,0081$	$6,676 \pm 0,027$	$1,089 \pm 0,002$
43	0,9009 ± 0,0038	$0,1099 \pm 0,0060$	$6,728 \pm 0,026$	$1,097 \pm 0,002$
44	0,8932 ± 0,0030	0,1196 ± 0,0048	$6,719 \pm 0,030$	$1,096 \pm 0,002$
45	0,8845 ± 0,0029	$0,1306 \pm 0,0047$	$6,770 \pm 0,028$	$1,104 \pm 0,002$
46	0,8616 ± 0,0040	0,1607 ± 0,0066	$6,968 \pm 0,031$	$1,136 \pm 0,002$
47	0,8487 ± 0,0036	$0,1783 \pm 0,0060$	$7,011 \pm 0,031$	$1,143 \pm 0,002$
48	$0,8395 \pm 0,0039$	0,1913 ± 0,0065	$7,028 \pm 0,027$	$1,146 \pm 0,002$
49	$0,8163 \pm 0,0039$	$0,2250 \pm 0,0065$	$7,202 \pm 0,023$	$1,174 \pm 0,002$
50	0,8045 ± 0,0039	0,2430 ± 0,0065	$7,278 \pm 0,044$	$1,187 \pm 0,002$
51	0,7719 ± 0,0040	0,2956 ± 0,0068	$7,454 \pm 0,042$	$1,215 \pm 0,002$
52	0,7528 ± 0,0037	$0,3285 \pm 0,0060$	$7,532 \pm 0,038$	$1,228 \pm 0,002$
53	0,7328 ± 0,0036	0,3646 ± 0,0060	$7,722 \pm 0,031$	$1,259 \pm 0,003$
54	0,7154 ± 0,0040	0,3979 ± 0,0056	$7,790 \pm 0,031$	$1,270 \pm 0,003$

O valor de $N_{0\beta TI-204}$ foi obtido por meio de um processo iterativo de busca de χ^2 mínimo [Dias, 2003].

Na figura 4.1 é apresentada a curva de extrapolação onde todos os pontos normalizados foram incluídos. A curva ajustada foi obtida pelo programa LINFIT, tendo ajustado um polinômio de grau 2.

A atividade final foi obtida dividindo-se o valor extrapolado pelas abundâncias dos ramos β e captura eletrônica como descrito na equação 3.4.

Na tabela 4.3 são apresentados os valores das eficiências consideradas para captura eletrônica e elétron Auger para o sistema de coincidências $4\pi\beta$ - γ do LMN.

s,

Figura 4.1:Curva de extrapolação da solução de ²⁰⁴Tl e ¹³⁴Cs

Tabela 4.3: Eficiências consideradas para o sistema de coincidência $4\pi\beta$ - γ do LMN para captura eletrônica e elétron Auger

Eficiências (Lagoutine, 1983)	Valores	
Ece	1 para elétrons Auger K	
	$0,75 \pm 0.25$ para elétrons Auger L	
ε _{ΑΚ}	0.00065 ± 0.00008	
ε _{AL}	0.0169 ± 0.0005	

O fator de correção ($I_{\beta} + \epsilon_{ce}I_{ce}$), descrito na equação 3.6, obtido foi de 0,9843 + 0,0054.

Pela comparação internacional de 1997, o valor extrapolado $N_{0\beta} = a_{01} =$

61,33 kBq g^{-1} , sendo a função do ajuste: $y = a_0 + a_1x + a_2x^2$.

O melhor valor encontrado no método iterativo foi aquele que apresentou ao mesmo tempo menor χ^2 e valor mais próximo de 1, conforme a tabela 4.4:

$a_{01}(x10^3)$	$a_{02}(x10^5)$	a ₀	χ²
61,33	1,0	1,0106 (31)	4,84
61,33	0,985	0,9981 (31)	2,61
61,33	0,975	0,9898 (31)	2,41
61,33	0,980	0,9940 (31)	2.37
61,33	0,978	0,9923 (31)	2,35

Tabela 4.4: Valores utilizados no método iterativo em busca do menor χ^2

O melhor valor encontrado para a_{02} foi 0,985 x10⁵.

O valor final da atividade foi de $(100,07 \pm 0,92)$ kBq g⁻¹.

Padronização do ⁴⁵Ca 4.2

÷

Na tabela 4.5 são apresentados os valores de atividade com respectiva eficiência obtidos para o ⁶⁰Co. O valor da atividade obtida considerada foi a média dessas medidas. A medida. seja das fontes mistas como do 60Co, foi feita selecionando-se as duas energias gama principais.

Fonte	Eficiência	Atividade Espec. (kBq/g)	Incerteza (%)
1	0,92277	204,74	0,16
2	0,92344	204,59	0,16
3	0,91715	205,15	0,17
4	0,91117	204,55	0,13
5	0,92320	204,25	0,12
	Valor médio	204,66	0,07

Tabela 4.5: Resultados da padronização do ⁶⁰Co

49

A atividade do traçador foi obtida pela média de cinco fontes.

As eficiências foram variadas de 89% a 75% para o grupo S1, conforme a tabela 4.6, de 91% a 82% para o grupo S2, conforme tabela 4.7 e 90% a 77% para o grupo G1, conforme a tabela 4.8, utilizando-se absorvedores de Collodion.

Medida	N_c/N_γ	$(1 - N_c / N_\gamma) / (N_c / N_\gamma)$	$(N_{\beta} N_{\gamma} / N_c) \ge 10^3$ (cps)
1	0,8690 ± 0,0013	0,1507 ± 0,0017	155,76 ± 0.56
2	$0,8696 \pm 0,0010$	$0,1500 \pm 0,0013$	$154,46 \pm 0.52$
3	$0,8926 \pm 0,0005$	$0,1203 \pm 0,0006$	$152,69 \pm 0.50$
4	$0,8434 \pm 0,0005$	$0,1857 \pm 0,0008$	$151,51 \pm 0.50$
5	$0,8358 \pm 0,0007$	$0,1964 \pm 0,0011$	$149,68 \pm 0.51$
6	$0,8241 \pm 0,0005$	$0,2134 \pm 0,0008$	$150,49 \pm 0.50$
7	$0,8020 \pm 0,0008$	$0,2469 \pm 0,0013$	$149,72 \pm 0.51$
8	$0,7990 \pm 0,0008$	$0,2516 \pm 0,0013$	$150,04 \pm 0.51$
9	$0,7489 \pm 0,0009$	$0,3353 \pm 0,0016$	$147,98 \pm 0.50$
10	$0,7544 \pm 0,0009$	$0,3256 \pm 0,0015$	$145,77 \pm 0.50$

Tabela 4.6: Resultados da padronização do 45 Ca com 60 Co- S1

Tabela 4.7: Resultados da padronização do ⁴⁵Ca com ⁶⁰Co- S2

Medida	N_c / N_γ	$(1 - N_c / N_\gamma) / (N_c / N_\gamma)$	$(N_{\beta} N_{\gamma} / N_c) \ge 10^3$ (cps)
1	$0,9096 \pm 0,0008$	$0,0994 \pm 0,0009$	$159,54 \pm 0.53$
2	$0,9137 \pm 0,0008$	$0,0945 \pm 0,0009$	$161,20 \pm 0.53$
3	$0,8873 \pm 0,0007$	$0,1270 \pm 0,0009$	$155,86 \pm 0.51$
4	$0,8987 \pm 0,0006$	$0,1127 \pm 0,0007$	$157,18 \pm 0.52$
5	$0,8922 \pm 0,0008$	$0,1208 \pm 0,0010$	$154,56 \pm 0.53$
6	$0,8763 \pm 0,0005$	$0,1411 \pm 0,0007$	155.90 ± 0.51
7	$0,8670 \pm 0,0009$	$0,1534 \pm 0,0012$	$154,39 \pm 0.52$
8	0.8341 ± 0.0009	$0,1989 \pm 0,0014$	$156,46 \pm 0.53$
9	0.8233 ± 0,0010	$0,2146 \pm 0,0014$	156.86 ± 0.55
10	$0,8330 \pm 0,0010$	$0,2005 \pm 0.0014$	$154,82 \pm 0.53$

Medida	N_c / N_γ	(1- $N_c / N_\gamma / (N_c / N_\gamma)$	$(N_{\beta} N_{\gamma} / N_c) \ge 10^3 (cps/g))$
1	0,8857 ± 0,0007	0,1291 ± 0.6632	147.39 ± 0.49
2	$0,8560 \pm 0,0005$	$0,1682 \pm 0.4277$	$144,74 \pm 0.48$
3	$0,8321 \pm 0.0008$	$0,2018 \pm 0.5697$	$144,45 \pm 0,49$
4	$0,8006 \pm 0,0008$	$0,2491 \pm 0.5241$	$143,75 \pm 0,49$
5	$0,7910 \pm 0,0008$	$0,2643 \pm 0.5128$	145.15 ± 0.49
6	$0,7724 \pm 0,0006$	$0,2947 \pm 0.3560$	$142,45 \pm 0,48$
7	$0,8965 \pm 0,0009$	$0,1154 \pm 0,9245$	$156,25 \pm 0,53$
8	$0,8954 \pm 0,0006$	$0,1168 \pm 0.6484$	155.14 ± 0,53

Tabela 4.8: Resultados da padronização do ⁴⁵Ca com ⁶⁰Co- Gotas 1

Com esses dados foram construídas as curvas apresentadas nas figuras 4.2, 4.3 e 4.4. O ajuste das curvas foi obtido a partir do programa LINFIT (Dias, 1999), que, utilizando o método dos mínimos quadrados, fornece a matriz de covariância dos parâmetros de ajuste, apresentados nas tabelas 4.9, 4.10 e 4.11.

Tabela 4.9: Parametros e matriz de covariância relativos à curva do S1-45Ca

Parâmetro	Valor obtido	Incerteza	Matriz de Covariância	
A	158,35	0,54	288,81	
В	-34,89	2,33	-1195,92	5443,28

Tabela 4.10: Parâmetros e matriz de covariância relativos à curva do S2-45Ca

Parâmetro	Valor obtido	Incerteza	Matriz de Covariância	
А	158.97	0,57	322,10	C.
В	-16,39	3,86	-2096,63	14930.90

Parâmetro	Valor obtido	Incerteza	Matriz de Covariância	
A	158,16	0,55	302,01	
В	-56,68	2,67	-1389,70	7121,69

Tabela 4.11: Parâmetros e matriz de covariância relativos à curva do G1-⁴⁵Ca

Os resultados da padronização estão na tabela 4.12:

Técnica	Atividade (kBq/g)
S1	$158,3 \pm 1,5$
S2	$159,0 \pm 2,3$
G1	$158,2 \pm 2,4$

Tabela 4.12: Resultados da padronização do ⁴⁵Ca

Figura 4.2: Curva de extrapolação da solução de ⁴⁵Ca e ⁶⁰Co -S1

Figura 4.3: Curva de extrapolação da solução de ⁴⁵Ca e ⁶⁰Co S2

Figura 4.4: Curva de extrapolação da solução de ⁴⁵Ca e ⁶⁰Co - Gotas 1

A atividade das duas soluções mistas de ⁴⁵Ca foi concordante dentro da incerteza experimental, o que demonstra que a variação da proporção de traçador para emissor beta puro não é relevante.

Do mesmo modo os resultados obtidos com as fontes preparadas pela técnica de gotas são concordantes com os resultados das duas soluções mistas.

O resultado demonstra a validade dos dois métodos adotados.

4.3 Padronização do ¹³⁷Cs

Na tabela 4.13 são apresentados os valores de atividade com respectiva eficiência obtidos para o traçador ¹³⁴Cs. O valor da atividade obtida considerada foi a média dessas medidas. A medida, seja das fontes mistas como do ¹³⁴Cs, foi feita selecionando-se as energias gama na faixa de (795,84 + 801,93) keV.

A atividade do traçador, obtida pela média de seis fontes, foi de $(61,45 \pm 0,13)$ kBq g⁻¹.

Como não houve alteração significativa nos resultados da padronização do ⁴⁵Ca utilizando-se diferentes proporções de beta puro e traçador, na padronização do ¹³⁷Cs foi utilizada somente a razão 1:1.

Fonte	Eficiência	Atividade espec. (kBq g ⁻	¹) Incerteza (%)
1	0.83964	61,09	0,13
2	0.86850	61,55	0,13
3	0.88052	61,37	0,17
4	0.86298	61,47	0,23
5	0.85665	61,56	0,18
6	0.83469	61,66	0,24
	Valor méd	io 61,45	0,13
	v alor meu	10 01,45	0,13

Tabela 4.13 : Resultados da padronização do ¹³⁴Cs

Para a padronização do ¹³⁷Cs com traçador de ¹³⁴Cs foram medidas as fontes de tipo G e S. Os resultados das padronizações estão apresentados nas tabelas 4.14 e 4.15.

Medida	Ne/Ny	$(1-N_c/N_\gamma)/(N_c/N_\gamma)$	$(N_{\beta} N_{\gamma} / N_c)$ (cps)
1	0,8218 ± 0,0012	0,2168 ± 0,0018	183,95 ± 0,42
2	0,8228 ± 0,0012	$0,2153 \pm 0,0018$	$184,39 \pm 0,42$
3	0,8161 ± 0,0012	$0,2254 \pm 0,0018$	187,01 ± 0,43
4	$0,8303 \pm 0,0013$	$0,2044 \pm 0,0019$	$185,03 \pm 0,43$
5	$0,8280 \pm 0,0013$	$0,2078 \pm 0,0019$	$185,63 \pm 0,43$
6	0,83 00 ± 0,0013	$0,2048 \pm 0,0019$	$184,02 \pm 0.42$
7	$0,7905 \pm 0,0013$	$0,2650 \pm 0,0021$	$190,19 \pm 0,44$
8	$0,7906 \pm 0,0013$	$0,2649 \pm 0,0021$	$190,17 \pm 0,44$
9	$0,7931 \pm 0,0009$	$0,2608 \pm 0,0015$	$188,50 \pm 0,40$
10	0,7887 ± 0,0013	$0,2678 \pm 0,0021$	$190,01 \pm 0,46$
11	$0,8195 \pm 0,0009$	$0,2202 \pm 0,0014$	187,63 ± 0,37
12	0,8126 ± 0,0019	$0,2306 \pm 0,0029$	$185,22 \pm 0,56$
13	$0,8155 \pm 0,0019$	$0,2262 \pm 0,0029$	1 84 ,08 ± 0,55
14	0,8103 ± 0,0019	$0,2341 \pm 0,0029$	$186,04 \pm 0,56$
15	$0,8086 \pm 0,0020$	$0,2367 \pm 0,0030$	185.97 ± 0.56
16	$0,8098 \pm 0,0020$	$0,2348 \pm 0,0030$	184,87 ± 0,55
17	$0,8092 \pm 0,0020$	$0,2358 \pm 0,0030$	$185,39 \pm 0.56$
18	$0,8055 \pm 0,002$	$0,2415 \pm 0,0031$	$184,94 \pm 0,55$
19	$0,8042 \pm 0,0020$	$0,2435 \pm 0,0031$	$185,68 \pm 0,56$
20	$0,7749 \pm 0,0021$	0,2904 ± 0,0036	1 89 ,12 ± 0,62
21	$0,7739 \pm 0,0021$	$0,2922 \pm 0,0036$	189,95 ± 0,63
22	$0,7776 \pm 0,0021$	$0,2860 \pm 0,0035$	1 87 ,61 ± 0,60
23	$0,8290 \pm 0,0012$	$0,2063 \pm 0,0017$	$180,20 \pm 0,40$
24	$0,8194 \pm 0,0022$	$0,2204 \pm 0,0003$	$183,62 \pm 0,59$
25	$0,8089 \pm 0,0022$	$0,2362 \pm 0,0003$	$184,81 \pm 0.59$
26	$0,8064 \pm 0,0022$	$0,2400 \pm 0,0003$	186.02 ± 0.59
27	$0,7953 \pm 0,0011$	$0,2573 \pm 0,0018$	187.71 ± 0.41
28	$0,7967 \pm 0,0022$	0.2552 ± 0.0035	$187,74 \pm 0.62$

Tabela 4.14: Resultados da padronização do ¹³⁷Cs com ¹³⁴Cs- Gotas (G)

•

.

•

•

•

.

	2.	1	z	1
2		1	5	1
-	1	۰.	۲.	,
-	• •		-	

Tabela 4.14: Resultados da padronização do ¹³⁷Cs com ¹³⁴Cs- Gotas (G)-Continuação

1

.

•

60 3

.

.

29	$0,7999 \pm 0,0022$	$0,2501 \pm 0.0034$	$186,34 \pm 0,61$
30	$0,7920 \pm 0,0022$	$0,2626 \pm 0,0036$	$188,03 \pm 0,62$
31	$0,7920 \pm 0,0023$	$0,2626 \pm 0,0036$	$187,92 \pm 0,62$
32	$0,7899 \pm 0,0023$	$0,2660 \pm 0,0036$	$188,62 \pm 0,64$
33	$0,7834 \pm 0,0019$	$0,2765 \pm 0.0031$	$189,76 \pm 0,55$
34	$0,7634 \pm 0,0018$	$0,3100 \pm 0.0031$	$192,73 \pm 0,56$
35	$0,7542 \pm 0,0016$	$0,3260 \pm 0.0027$	$192,90 \pm 0,52$
36	$0,7311 \pm 0,0019$	$0,3677 \pm 0.0036$	$195,63 \pm 0,63$
37	$0,7245 \pm 0,0020$	$0,3802 \pm 0.0038$	$195,77 \pm 0,63$
38	$0,6414 \pm 0,0020$	$0,5590 \pm 0.0049$	$206,62 \pm 0,72$
39	$0,6217 \pm 0,0021$	$0,6086 \pm 0.0054$	$204,13 \pm 0,75$
40	$0,7110 \pm 0,0020$	$0,4066 \pm 0.0039$	197,71 ± 0,65
41	$0,6985 \pm 0,0017$	$0,4316 \pm 0.0036$	$200,72 \pm 0,60$
42	$0,6852 \pm 0,0020$	$0,4595 \pm 0.0042$	204,21 ± 0,69
43	$0,6295 \pm 0,0021$	$0,5886 \pm 0.0053$	$206,72 \pm 0,76$
44	$0,6010 \pm 0,0022$	$0,6640 \pm 0.0061$	$208,48 \pm 0,83$
45	$0,6763 \pm 0,0021$	$0,4786 \pm 0.0046$	$207,11 \pm 0,72$
46	$0,6779 \pm 0,0021$	$0,4752 \pm 0.0047$	$205,52 \pm 0,74$
47	$0,6190 \pm 0,0017$	$0,6155 \pm 0.0045$	$211,46 \pm 0,70$
48	$0,5986 \pm 0,0018$	$0,6706 \pm 0.0050$	$209,38 \pm 0,71$
49	$0,5721 \pm 0,0021$	$0,7478 \pm 0.0065$	$211,22 \pm 0,87$
50	$0,6754 \pm 0,0021$	$0,4806 \pm 0.0045$	$203,60 \pm 0,71$

Medida	N_c / N_γ	(1- N_c / N_γ)/ (N_c / N_γ)	$(N_{\beta} N_{\gamma} / N_c)$ (cps)
1	$0,7812 \pm 0,0025$	$0,2801 \pm 0,0041$	$187,79 \pm 0,72$
2	$0,7640 \pm 0,0026$	$0,3088 \pm 0,0044$	$193,04 \pm 0,66$
3	$0,7707 \pm 0,0018$	$0,2975 \pm 0,0031$	$191,32 \pm 0,46$
4	$0,7730 \pm 0,0018$	$0,2936 \pm 0,0030$	$190,29 \pm 0,46$
5	$0,7720 \pm 0,0025$	$0,2953 \pm 0,0041$	$189,45 \pm 0,61$
6	$0,7713 \pm 0,0025$	$0,2966 \pm 0,0041$	$189,62 \pm 0,61$
7	$0,7755 \pm 0,0024$	$0,2895 \pm 0,0041$	$188,32 \pm 0,60$
8	0,7731 ± 0,0039	$0,2934 \pm 0,0065$	$191,73 \pm 0,98$
9	$0,7768 \pm 0,0038$	$0,2873 \pm 0,0064$	$189,70 \pm 0,95$
10	$0,7851 \pm 0,0037$	$0,2738 \pm 0,0060$	$187,44 \pm 0,90$
11	$0,7661 \pm 0,5012$	$0,3053 \pm 0,0065$	$190,88 \pm 0,97$
12	$0,7688 \pm 0,5002$	$0,3008 \pm 0,0065$	$190,07 \pm 0,95$
13	$0,7903 \pm 0,0049$	$0,2653 \pm 0,0078$	185,96 ± 1,15
14	$0,7877 \pm 0,0049$	$0,2696 \pm 0,0079$	186,81 ± 1,18
15	$0,7916 \pm 0,0049$	$0,2633 \pm 0,0079$	$185,83 \pm 1,17$
16	$0,7681 \pm 0,0038$	$0,3018 \pm 0,0064$	$190,04 \pm 0,95$
17	$0,7727 \pm 0,0023$	$0,2941 \pm 0,0038$	$188,55 \pm 0.57$
18	$0,7477 \pm 0,0038$	$0,3374 \pm 0,0068$	$193,30 \pm 1,00$
19	$0,7463 \pm 0,0038$	$0,3399 \pm 0,0069$	$193,65 \pm 1,01$
20	$0,7476 \pm 0,0038$	$0,3377 \pm 0,0068$	$193,20 \pm 1,00$
21	$0,7301 \pm 0,0039$	$0,3696 \pm 0,0073$	$196,31 \pm 1,06$
22	$0,7293 \pm 0,0038$	$0,3712 \pm 0,0072$	$196,15 \pm 1,04$
23	$0,7340 \pm 0,0039$	$0,3625 \pm 0,0072$	$194,79 \pm 1.03$
24	$0,7212 \pm 0,0021$	$0,3866 \pm 0,0040$	$197,24 \pm 0.57$
25	$0,7220 \pm 0,0039$	$0,3850 \pm 0,0074$	$197,19 \pm 1,06$
26	$0,7270 \pm 0,0039$	$0,3755 \pm 0,0073$	$195,57 \pm 1,06$
27	$0,7138 \pm 0,0040$	$0,4010 \pm 0,0078$	197,75 ± 1.11

Tabela 4.15: Resultados da padronização do ¹³⁷Cs com ¹³⁴Cs- Solução (S)

•

÷

5

•

×

5

28 $0,7142 \pm 0,0040$ $0,4002 \pm 0,0078$ $197,90 \pm 1,11$ 29 $0,7125 \pm 0,0040$ $0,4034 \pm 0,0078$ $198,79 \pm 1,11$ 30 $0,7105 \pm 0,0041$ $0,4075 \pm 0,0081$ $197,98 \pm 1,15$ 31 $0,7096 \pm 0,0041$ $0,4093 \pm 0,0081$ $198,57 \pm 1,15$ 32 $0,7058 \pm 0,0041$ $0,4169 \pm 0,0083$ $199,45 \pm 1,18$ 33 $0,6993 \pm 0,0040$ $0,4300 \pm 0,0082$ $199,78 \pm 1,16$ 34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,60$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
29 $0,7125 \pm 0,0040$ $0,4034 \pm 0,0078$ $198,79 \pm 1,11$ 30 $0,7105 \pm 0,0041$ $0,4075 \pm 0,0081$ $197,98 \pm 1,15$ 31 $0,7096 \pm 0,0041$ $0,4093 \pm 0,0081$ $198,57 \pm 1,15$ 32 $0,7058 \pm 0,0041$ $0,4169 \pm 0,0083$ $199,45 \pm 1,18$ 33 $0,6993 \pm 0,0040$ $0,4300 \pm 0,0082$ $199,78 \pm 1,16$ 34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,600$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
30 $0,7105 \pm 0,0041$ $0,4075 \pm 0,0081$ $197,98 \pm 1,15$ 31 $0,7096 \pm 0,0041$ $0,4093 \pm 0,0081$ $198,57 \pm 1,15$ 32 $0,7058 \pm 0,0041$ $0,4169 \pm 0,0083$ $199,45 \pm 1,18$ 33 $0,6993 \pm 0,0040$ $0,4300 \pm 0,0082$ $199,78 \pm 1,16$ 34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,60$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
31 $0,7096 \pm 0,0041$ $0,4093 \pm 0,0081$ $198,57 \pm 1,15$ 32 $0,7058 \pm 0,0041$ $0,4169 \pm 0,0083$ $199,45 \pm 1,18$ 33 $0,6993 \pm 0,0040$ $0,4300 \pm 0,0082$ $199,78 \pm 1,16$ 34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,600$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
32 $0,7058 \pm 0,0041$ $0,4169 \pm 0,0083$ $199,45 \pm 1,18$ 33 $0,6993 \pm 0,0040$ $0,4300 \pm 0,0082$ $199,78 \pm 1,16$ 34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,600$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
33 $0,6993 \pm 0,0040$ $0,4300 \pm 0,0082$ $199,78 \pm 1,16$ 34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,60$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
34 $0,6970 \pm 0,0040$ $0,4347 \pm 0,0083$ $200,54 \pm 1,16$ 35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,60$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
35 $0,6996 \pm 0,0021$ $0,4294 \pm 0,0043$ $199,62 \pm 0,60$ 36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
36 $0,6539 \pm 0,0041$ $0,5292 \pm 0,0095$ $203,21 \pm 1,28$ 37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
37 $0,6682 \pm 0,0040$ $0,4967 \pm 0,0090$ $199,64 \pm 1,22$	
38 0,6592 ± 0,0041 0,5170 ± 0,0093 201,64 ± 1,25	
39 $0,6502 \pm 0,0041$ $0,5380 \pm 0,0096$ $204,91 \pm 1,29$	
40 $0,6363 \pm 0,0047$ $0,5717 \pm 0,0116$ $203,52 \pm 1,51$	
41 0,6319 ± 0,0046 0,5826 ± 0,0116 205,50 ± 1,52	
42 0,6961 ± 0,0041 0,4366 ± 0,0084 198,27 ± 1,17	
43 $0,6903 \pm 0,0025$ $0,4486 \pm 0,0052$ $200,34 \pm 0,72$	
44 $0,6893 \pm 0,0025$ $0,4508 \pm 0,0052$ $200,90 \pm 0,72$	
45 $0,6892 \pm 0,0241$ $0,4510 \pm 0,0086$ $198,90 \pm 0,12$	
46 $0,6761 \pm 0,0041$ $0,4790 \pm 0,0090$ $203,57 \pm 1,24$	
47 $0,6844 \pm 0,0042$ $0,4612 \pm 0,0089$ $200,46 \pm 1,22$	
48 $0,6711 \pm 0,0030$ $0,4900 \pm 0,0067$ $203,10 \pm 0,93$	
49 $0,6723 \pm 0,0042$ $0,4874 \pm 0,0093$ $202,86 \pm 1,28$	
50 $0,6734 \pm 0,0042$ $0,4851 \pm 0,0093$ $202,23 \pm 1,27$	
51 $0,6192 \pm 0,0043$ $0,6149 \pm 0,0111$ $207,52 \pm 1,43$	
52 $0,6184 \pm 0,0044$ $0,6171 \pm 0.0115$ $208,03 \pm 1.48$	
53 $0,6113 \pm 0.0044$ $0,6357 \pm 0.0117$ $210,70 \pm 1.52$	
54 $0,5888 \pm 0.0043$ $0,6985 \pm 0.0125$ $211,11 \pm 1.56$	
55 $0,5996 \pm 0,0043$ $0,6677 \pm 0.0120$ $206,55 \pm 1.49$	
56 $0,5936 \pm 0.0043$ $0,6847 \pm 0.0122$ 209.38 ± 1.53	

Tabela 4.15: Resultados da padronização do ¹³⁷Cs com ¹³⁴Cs- Solução (S) - Continuação

4

•

-

.

•

ł

57 $0,6611 \pm 0,0030$ $0,5127 \pm 0,0069$ $205,22 \pm 0.94$ 58 $0,6586 \pm 0,0043$ $0,5185 \pm 0,0100$ $205,52 \pm 1,36$ 59 $0,6568 \pm 0,0044$ $0,5226 \pm 0,0102$ $202,90 \pm 1,38$ 60 $0,6220 \pm 0,0044$ $0,6077 \pm 0,0114$ $205,76 \pm 1,46$ 61 $0,6156 \pm 0.0044$ $0,6245 \pm 0,0117$ $208,21 \pm 1,52$ 62 $0,6131 \pm 0,0044$ $0,6312 \pm 0,0118$ $209,37 \pm 1,53$	
58 $0,6586 \pm 0,0043$ $0,5185 \pm 0,0100$ $205,52 \pm 1,36$ 59 $0,6568 \pm 0,0044$ $0,5226 \pm 0,0102$ $202,90 \pm 1,38$ 60 $0,6220 \pm 0,0044$ $0,6077 \pm 0,0114$ $205,76 \pm 1,46$ 61 $0,6156 \pm 0.0044$ $0,6245 \pm 0,0117$ $208,21 \pm 1,52$ 62 $0,6131 \pm 0,0044$ $0,6312 \pm 0,0118$ $209,37 \pm 1,53$	
59 $0,6568 \pm 0,0044$ $0,5226 \pm 0,0102$ $202,90 \pm 1,38$ 60 $0,6220 \pm 0,0044$ $0,6077 \pm 0,0114$ $205,76 \pm 1,46$ 61 $0,6156 \pm 0.0044$ $0,6245 \pm 0,0117$ $208,21 \pm 1,52$ 62 $0,6131 \pm 0,0044$ $0,6312 \pm 0,0118$ $209,37 \pm 1,53$	
60 $0,6220 \pm 0,0044$ $0,6077 \pm 0,0114$ $205,76 \pm 1,46$ 61 $0,6156 \pm 0.0044$ $0,6245 \pm 0,0117$ $208,21 \pm 1,52$ 62 $0,6131 \pm 0,0044$ $0,6312 \pm 0,0118$ $209,37 \pm 1,53$	
61 $0,6156 \pm 0.0044$ $0,6245 \pm 0,0117$ $208,21 \pm 1,52$ 62 $0,6131 \pm 0,0044$ $0,6312 \pm 0,0118$ $209,37 \pm 1,53$	
62 $0,6131 \pm 0,0044$ $0,6312 \pm 0,0118$ $209,37 \pm 1,53$	
63 $0,5892 \pm 0,0043$ $0,6972 \pm 0,0123$ $209,44 \pm 1,53$	
64 0,5927 ± 0,0043 0,6871 ± 0,0122 206,58 ± 1,51	
65 $0,5886 \pm 0,0043$ $0,6990 \pm 0,0124$ $208,30 \pm 1,52$	
66 $0,6401 \pm 0,0042$ $0,5623 \pm 0,0103$ $207,23 \pm 1,37$	
67 $0,6419 \pm 0,0042$ $0,5579 \pm 0,0102$ $206,76 \pm 1,36$	
68 $0,6508 \pm 0,0042$ $0,5367 \pm 0,010$ $203,30 \pm 1,34$	
69 $0,6017 \pm 0,0043$ $0,6618 \pm 0,0119$ $209,96 \pm 1,51$	
70 $0,6042 \pm 0,0043$ $0,6550 \pm 0,0118$ $209,00 \pm 1,48$	
71 $0,5932 \pm 0,0043$ $0,6858 \pm 0,0122$ $206,06 \pm 1,50$	
72 $0,5904 \pm 0,0043$ $0,6937 \pm 0,0123$ $207,40 \pm 1,51$	
73 $0,5856 \pm 0,0043$ $0,7076 \pm 0,0125$ $209,49 \pm 1,55$	
74 $0,5748 \pm 0,0043$ $0,7397 \pm 0,0131$ $210,51 \pm 1,60$	
75 $0,5649 \pm 0,0044$ $0,7701 \pm 0,0137$ $209,78 \pm 1,64$	
76 $0,5709 \pm 0,0032$ $0,7517 \pm 0,0098$ $209,29 \pm 1,17$	
77 $0,5526 \pm 0,0044$ $0,8296 \pm 0,0146$ $207,96 \pm 1,64$	
78 $0,5443 \pm 0,0043$ $0,8372 \pm 0,0147$ $212,28 \pm 1,70$	
79 $0,5519 \pm 0,0043$ $0,8120 \pm 0,0142$ $208,24 \pm 1,64$	
80 $0,5286 \pm 0,0043$ $0,8918 \pm 0,0154$ $212,42 \pm 1,74$	
81 0.5314 ± 0.0043 0.8817 ± 0.0152 210.82 ± 1.71	
82 $0,5314 \pm 0,0043$ $0,8817 \pm 0,0152$ $210,81 \pm 1,71$	

Tabela 4.15: Resultados da padronização do ¹³⁷Cs com ¹³⁴Cs- Solução (S)- Continuação

4

٢.

...

•

.

Nas figuras 4.5 e 4.6 são apresentadas as curvas de extrapolação obtidas a partir destes dados. A eficiência foi variada de 83% a 57% no caso do método direto e de 79% a 53% para o método de mistura.

O ajuste das curvas foi obtido a partir do programa LINFIT (Dias, 1999), que, utilizando o método dos mínimos quadrados, fornece a matriz de covariância dos parâmetros de ajuste, apresentados nas tabelas 4.16 e 4.17.

Os resultados finais da extrapolação do ¹³⁷Cs estão na tabela 4.18.

Figura 4.5: Curva de extrapolação da solução de ¹³⁷Cs e ¹³⁴Cs - G

Figura 4.6: Curva de extrapolação da solução de ¹³⁷Cs e ¹³⁴Cs - S

Tabela 4.16: Parâmetros e matriz de covariância relativos à curva do ¹³⁷Cs com ¹³⁴Cs: Gotas (G)

Parâmetro	Valor obtido	Incerteza	Matriz de Covariância	<u>-</u>	
A	161,31	0,65	417,63		
В	122,42	3,40	-1929,07	11575.80	
С	-75,39	4,13	2304,64	-13864,30	17093,50

Tabela 4.17: Parâmetros e matriz de covariância relativos à curva do ¹³⁷Cs com ¹³⁴Cs:

Sol	lucão	(S)
00	i uyuo	$\langle \nabla \rangle$

Parâmetro	Valor obtido	Incerteza	Matriz de Covariância		
A	159,03	1,11	1232,67		
В	128,47	4,67	-4906.40	21801,10	
С	-80,84	4,56	4644.05	-21019,10	20833,90

Técnica	Valor extrapolado 161,3 ± 2.6	
G		
S	$159,0 \pm 1.1$	
Média	$159,4 \pm 1,0$	

Tabela 4.18: Resultados da padronização do ¹³⁷Cs

Os valores apresentados nesta tabela apresentam o resultado do valor extrapolado do ajuste polinomial obtido para as duas curvas, que tem o valor $N_0(1+C)$.

Para a obtenção da taxa de desintegração, o valor extrapolado foi dividido por (1+C).

Os valores dos parâmetros da literatura utilizados para o cálculo do fator C (equação 3.14) estão apresentados na tabela 4.19.

Tabela 4.19: Valores de b, $\alpha_t \in \epsilon_{\beta\gamma}$ da liter	atura
---	-------

V	Parâmetros	Valores
Rytz (1985)	b (grupo β^{-} para o ^{137m} Ba)	0.9461± 0.0023
Lagoutine (1984)	α_t (do ^{137m} Ba)	0.1097 ± 0.0010
Moura (1969)	$\epsilon_{\beta\gamma}$ (para raios γ de 661,6 keV)	0.0025 ± 0.0002
	٤ _{=c}	I

Através desses parâmetros foi calculado o fator C, cujo valor é 0.0957 ± 0.0007 .

O valor da atividade final do ¹³⁷Cs foi calculado a partir da média dos valores obtidos entre as duas técnicas de preparação de fontes: (145.6 ± 1.4) kBq g⁻¹.

Como esperado, os resultados obtidos para os dois modos de preparação de fontes foram concordantes dentro da incerteza experimental.

5. CONCLUSÕES

4

۰,

r

٠

No presente trabalho, foram padronizados os radionuclídeos ⁴⁵Ca, ¹³⁷Cs e ²⁰⁴Tl pelo método do traçador no sistema de coincidência $4\pi\beta$ - γ conforme objetivo proposto.

O uso das duas técnicas de preparação de fontes tanto para a medida da atividade da solução de ⁴⁵Ca como para a da solução de ¹³⁷Cs apresentaram resultados concordantes, mostrando sua validade.

Podemos ressaltar no entanto a vantagem do uso da técnica de gotas devido à sua simplicidade, uma vez que não requer a preparação de uma solução mista, além do fato de necessitar menor quantidade de solução, seja do traçador, seja do emissor beta puro.

Observamos também que a proporção utilizada das soluções de traçador e de emissor beta puro no preparo das soluções mistas não é importante. Os resultados das padronizações do ⁴⁵Ca, em que as proporções foram variadas, não sofreram modificações relacionadas a este aspecto.

Para trabalhos futuros, sugere-se a aplicação da metodologia, recentemente desenvolvida no laboratório de metrologia nuclear (LMN), do IPEN, de simulação do processo de detecção do sistema de coincidências pelo cálculo de Monte Carlo.

Esta simulação prediz o comportamento da curva de extrapolação, podendo ser utilizada como ferramenta auxiliar, principalmente para definir a região de alta eficiência, dificilmente alcançada com os dados experimentais.

63

REFERÊNCIAS BIBLIOGRÁFICAS

4

ø

ŝ

đ

Þ

BAERG, A.P., MEGHIR, S. AND BOWES, G.C. (1963) Extension of the Efficiency Tracing Method for the Calibration of Pure β-Emitters. **Int.J.Appl.Radiat.Isot**, 15, 279.

BAERG. A.P., (1966) Measurement of radioactive desintegration rate by the coincidence method. **Metrologia**, 2 (1) 23-32.

BAERG, A.P., (1967) Absolute Measurement of Radioactivity. Metrologia, 3 (4) 105-108.

BAERG, A.P., (1973) The efficiency extrapolation method in coincidence counting. Nuclear Instruments and Methods, 112, 143-150.

CAMPION, P.J., (1975) Procedures for accurately diluting and dispersing radioactive solutions. Bureau Internacional de Poids et Mesures. (Monografie BIPM-l.

CAMPION, P.J., (1959) The standardization of radioisotopes by the beta-gamma coincidence methods using high efficiency detectors. Int.J.Appl.Radiat.Isot., 4, 232-248.

CAMPION, P.J., (1960) The efficiency tracing technique for eliminating selfabsorption errors in 4 $\pi\beta$ -counting. Int.J.Appl.Radiat.Isot., 8, 8-19.

COX, D.R.; ISHAM, V. (1977) A bivariate point process connected with electronic counters. **Proc. Roy. Soc. A**, 356, 149-160.

DIAS, M.S., KOSKINAS, M.F. (2003) Standardization of a ²⁰⁴Tl radioactive solution. Applied Radiation and Isotopes, 58, 235-238.

DIAS, M.S., (2001) CONTAC: relatório interno - LMN (IPEN) - não publicado

DIAS, M.S., (2004) CONTACT1: relatório interno - LMN (IPEN) - não publicado

DIAS, M.S., (1999) LINFIT: relatório interno - LMN (IPEN) - não publicado
FRIEDLANDER, G. AND KENNEDY, J.W. (1981) Nuclear and Radiochemistry. Third Edition. John Wiley & Sons, Inc.

.

٩.

٢

۵

INTERNATIONAL COMISSION IN RADIOACTIVITY MEASUREMENTS – Particle Counting in Radioactivity Measurements. (1994) ICRU REPORT 52

KNOLL, G.F.(2000) Radiation detection and measurement. Third Edition. John Wiley & Sons, Inc.

LAGOUTINE, F., LAGOUTINE, N. AND LEGRAND , J. (1984). Table of **Radionucléides**. Laboratoire de Métrologie des Rayonnements Ionisants. Bureau National de Métrologie.

LAVRAS, W.O. (2002) Desenvolvimento de métodos de medida de atividade de radionuclídeos utilizados em medicina nuclear – aplicação na padronização do ⁵¹Cr e ¹⁵³Sm. **Dissertação (mestrado)** – Instituto de Pesquisas Energéticas e Nucleares.

MOURA,L.P. (1969) Método de coincidência generalizado para a medida absoluta da atividade de radionuclídeos – aplicação na determinação do coficiente de conversão interna de 279 Kev do ²⁰³Tl. **Tese(Doutoramento)** – Universidade de Campinas.

NATIONAL COUNCII ON RADIATION PROTECTION AND MEASUREMENTS-A handbook of radioactivity measurementes procedures. (1984) (NCRP REPORT N°58)

PRICE, W.J.(1958) - Nuclear Radiation Detection. McGraw-Hill.

RYTZ, A. (1985) Activity concentration of a solution of ¹³⁷Cs: an international comparison. Nuclear Instruments and Methods in Physics Research 228, 506-511.

SAHAGIA, M.(1981) Some practical applications of tracing and extrapolation methods in absolute standardization. Isotopenpraxis 17, 211.

SAHAGIA, M., RAZDOLESCU, A., GRIGORESCU, A., LUCA A. AND IVAN C. (2000) The standardization of a ²⁰⁴Tl solution. **Int J.Appl.Radiat.Isot**. 52, 487.

SRIVASTAVA, P.K., (1977) Primary standardization of ¹³⁷Cs for international intercomparison. **BARC** 949.

4

۹

۲

,

VENVERLOO, L.A.J.(1971) Practical measuring techniques for beta radiation . Macmillan.

WILLIAMS, A.(1964) An estimation of the inherent accuracy of the tracer technique for measurements of disintegration rate. Int J.Appl.Radiat.Isot., 15, 709-712.

WILLYE, H.A., JOHNSON, E.P. AND LOWENTHAL, G.C. (1970) A procedure for stirring aliquots of radioactive solutions when making thin 4π counting sources. Int.J.Appl.Radiat.Isot.,21,497.