

RECOBRIMENTO CERÂMICO COM GRADIENTE DE COMPOSIÇÃO COMO PROTEÇÃO ANTIOXIDANTE DO COMPÓSITO CARBONO-CARBONO

C. A. A. Cairo*, M. L. A. Graça*, C. R. M. Silva*, J. C. Bressiani**

(*) Centro Técnico Aeroespacial – IAE – AMR CEP: 12228-904 - São José dos Campos – SP E-mail – iaeamr@tecsat.com.br
(**) Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEM/SP Caixa Postal 11049 CEP: 05347-970 – São Paulo – SP E-mail – jbressia@net.ipen.br

RESUMO

A aplicação de um recobrimento cerâmico com gradiente funcional fornece uma proteção antioxidante efetiva para o compósito carbono-carbono, na faixa de temperaturas intermediárias (entre 600°C e 1000°C), pela formação do vidro de boro proveniente da oxidação das fases ricas em boro que estão presentes no recobrimento. O vidro flui e sela as trincas evitando a penetração do oxigênio. A camada de proteção constituída das fases SiC, B_4C e $Al_8B_4C_7$ foi obtida pela conversão do carbono da superfície do compósito empregando a técnica de cementação ou reação química em fase vapor, utilizando-se uma mistura de pós cementantes do sistema ZrB_2 - SiC - Al_2O_3 . A caracterização microestrutural da camada foi realizada por microscopia eletrônica de varredura e difração de raios-X. a resistência à oxidação do compósito protegido foi avaliada pela perda de massa por análise termogravimétrica.

ABSTRACT

Functionally gradient ceramic coating provides an effective antioxidant protection to carbon carbon composites at intermediate temperatures (600 to 1000° C) by the formation of a B₂O₃ glass from oxidation of a boron rich phase present in the coating. The glass flows and seals the cracks to prevent a further oxigen penetration. The protection layer based on SiC, B₄C and Al₈B₄C₇ phases was obtained by conversion of the superficial carbon on the composite using pack cementation process or chemical vapour reaction with powder mixture of the sistem ZrB₂ - SiC - Al₂O₃. The microstrutural characterization of the coating was performed utilizing the techniques of scanning electron microscopy and x-ray diffraction analysis. The oxidation behaviour of the coated composite was evaluated by the weight loss in a thermogravimetris analysis.

INTRODUÇÃO

Recobrimentos cerâmicos de SiC e Si_3N_4 constituem uma excelente proteção antioxidante para o compósito carbono-carbono em altas temperaturas. Ambos são refratários e resistentes à oxidação devido à formação de uma fina camada de SiO₂ que possui uma baixa difusividade do oxigênio[1,2].

A principal dificuldade na aplicação desse sistema esta associada às diferenças entre os coeficientes de expansão térmica entre os materiais de recobrimento, $\alpha_{SiC} = 5 \times 10^{-6} \text{K}^{-1}$ e $\alpha_{Si3N4} = 3 \times 10^{-6} \text{K}^{-1}$, e do substrato, $\alpha_{C/C} = 1 \times 10^{-6} \text{K}^{-1}$ na direção das fibras, podendo chegar a 10 x 10^{-6}K^{-1} na direção do eixo sem o reforço das fibras, como é o caso dos compósitos bidirecionais. Por causa desta diferença, tensões de tração são desenvolvidas na camada de recobrimento, levando à formação de microtrincas durante o resfriamento [3].

A presença de microtrincas permitem a penetração do oxigênio ocasionando a falha na proteção antioxidante numa determinada faixa de temperaturas compreendida entre aquela do início da oxidação do carbono ($\cong 600^{\circ}$ C) e a temperatura de proteção intrínseca do recobrimento ($\cong 1000^{\circ}$ C). Nestas temperaturas, o vidro de sílica não possui a fluidez necessária para selar efetivamente as trincas [4].

A solução encontrada mais freqüentemente tem sido a aplicação de selantes vítreos sobre a superfície do recobrimento [4]. Vidros de boro, fosfatos, zirconita, mulita e sílica modificada com TiO₂, LiO₂ e Al₂O₃ são utilizados e normalmente são necessários alguns ciclos de impregnações e tratamentos térmicos de calcinação para a obtenção de uma camada de vidro coerente [5,6,7]. Outra solução apresentada tem sido o recobrimento multicamadas formado pela deposição via fase vapor de materiais formadores de vidro, tanto interna como externamente à camada de SiC. Geralmente são necessários longos períodos para a formação de camadas com espessuras satisfatórias e é comum a ocorrência de descamação e descolamento da camada por causa da fraca aderência na superfície do substrato [8,9,10].

No presente trabalho, tentou-se a formação de um recobrimento funcionalmente ativo utilizando uma camada com gradiente de composição entre as fases SiC e B_4C obtida pela reação química via vapor, em altas temperaturas, entre o carbono superficial do compósito carbono-carbono bidirecional e as espécies reagentes formadas pelas reações de oxidação-redução dos componentes ZrB₂, SiC e Al₂O₃. Por meio desta técnica, conhecida por cementação, a superfície do compósito e convertida em refratário cerâmico sem que ocorra uma interrupção abrupta entre esta fase e o carbono, evitando assim os problemas de aderência na interface.

Com a aplicação deste sistema de recobrimento buscou-se a proteção do compósito em temperaturas abaixo da temperatura de proteção intrínseca do SiC, pela oxidação da fase rica em boro, cujo produto é um vidro de baixa viscosidade que contribui para o fechamento de trincas e poros do recobrimento.

MATERIAIS E MÉTODOS

O compósito carbono reforçado com fibras de carbono (CRFC) bidirecional da Kkarb, fabricado com tecido de fibras de carbono 4HS e matriz formada pela mistura de resina com piche, carbonizada e grafitizada foi utilizado como substrato para a aplicação do recobrimento.

O CRFC foi colocado em um cadinho de grafite completamente envolvido pela mistura de pós de composição 40% $ZrB_2 + 50\%$ SiC + 10% Al_2O_3 em peso, previamente homogeneizada, compactada manualmente em sucessivas etapas de modo a se obter um compacto homogêneo. Os pós utilizados foram o α SiC e o ZrB_2 da EKG, com tamanho

médio de partículas de 1 μ m e 15 μ m , respectivamente e a alumina A-16 SG da Alcoa, com 0,4 μ m.

Uma tampa com um orifício central foi utilizada de forma a permitir a saída do excesso de gases. Após a secagem em 200°C por 16 horas, o sistema foi aquecido até 1600°C, com taxa de aquecimento de 10°C/min com patamar de 6 horas, em forno de grafite com fluxo de 100 ml/min de argônio. Após o tratamento térmico as amostras foram lavadas com acetona em banho de ultra som para eliminar o excesso de pó na superfície.

A análise microestrutural do recobrimento foi realizada em microscópio eletrônico de varredura utilizando imagem de elétron retroespalhado (BSE) e a análise química por energia dispersiva de raios-X (EDS). A identificação das fases ao longo da espessura da camada foi realizada pelo método de difração de raios-X, utilizando radiação Cu K α e varrendo a amostra de 0 a 70° com velocidade de 1°/min. A cada ensaio, uma quantidade de material do recobrimento foi retirada por técnicas convencionais de polimento. Em cada etapa do polimento foi retirada uma camada de aproximadamente 50 µm.

A efetividade da proteção antioxidante foi avaliada pela perda de massa do compósito submetido à oxidação na temperatura de 800°C, com uma taxa de aquecimento de 10°C/min, com fluxo de ar sintético seco (<5000 ppm de umidade) de 100 ml/min. O registro da variação de massa foi feito em uma balança termogravimétrica e a amostra condicionada em um cesto de platina vazado, de forma a expor toda a superfície da amostra ao gás oxidante.

RESULTADOS E DISCUSSÃO

A conversão do carbono superficial em refratário cerâmico ocorre pela reação deste com os gases de silício, boro e alumínio gerados pelas reações que ocorrem na mistura de pós cementantes. A profundidade da camada convertida esta relacionada com a facilidade com que os gases penetram no corpo do compósito. A natureza e a cinética das reações de conversão ainda não foram completamente esclarecidas.

A conversão da camada é maior na região do compósito onde os feixes de fibras de carbono estão posicionadas perpendicularmente à superfície do compósito como é mostrado na figura 1 (a). Nesta região, a penetração dos gases é favorecida pelo caminho livre deixado pelas trincas na interface fibra/matriz causadas pela contração da matriz durante a carbonização.

A figura 1 (b) mostra o detalhe da microestrutura do recobrimento. As análises por EDS nas regiões indicadas estão apresentadas na figura 2. Estes resultados mostram claramente a superfície do substrato (1) rica em carbono, e o recobrimento formado por duas fases distintas: uma matriz clara (2), rica em silício e carbono, e partículas escuras (3), ricas em boro e carbono, sendo que pequenas quantidades de alumínio foram detectadas nas duas regiões.

Os difratogramas de raios-X obtidos em diferentes regiões, a partir da superfície do recobrimento e a cada 50 μ m de profundidade estão mostrados na figura 3. As fases encontradas na superfície foram: β SiC, Al₈B₄C₇ e ZrB₂ sendo que as duas primeiras são o produto das reações de conversão e o diboreto de zircônio proveniente das partículas do pó cementante que ficaram aderidas ao recobrimento. A 50 μ m da superfície foram identificadas somente as fases β SiC e Al₈B₄C₇. Além destas duas fases, o carbeto de boro também foi detectado na região localizada a 100 μ m da superfície. Esta região coincide com aquela mostrada na figura 1 (a) onde estão concentradas as partículas escuras ricas em boro.

(a)

(b)

Figura 1 – Seção transversal do compósito recoberto. [a] aspectos da profundidade da camada convertida (região clara) [b] Detalhes da microestrutura do recobrimento.

Figura 2 – Espectrogramas obtidos por EDS das regiões identificadas pelos números (1) substrato carbono-carbono, (2) matriz de SiC e (3) partículas de B_4C .

Figura 3 - Fases formadas no recobrimento obtido com a mistura cementante 40% ZrB₂ + 50% SiC + 10% Al₂O₃, em função da profundidade da camada, com variações de 50 μ m entre as regiões analisadas.

O recobrimento obtido é constituído, portanto, de uma matriz de β SiC com o carbeto de boro e alumínio disperso em toda a extensão da camada e uma região localizada a 100 μ m abaixo da superfície rica em carbeto de boro. Uma varredura dos elementos alumínio e silício feita por EDS em diversos pontos da camada mostraram ainda um aumento na concentração de alumínio em regiões próximas da superfície do substrato, sugerindo que a quantidade da fase Al₈B₄C₇ aumenta no sentido da superfície para o interior do recobrimento.

A efetividade da proteção antioxidante obtida com a aplicação do recobrimento funcionalmente ativo no compósito foi avaliada em comparação com o recobrimento tradicional de SiC desenvolvido por Rogers [6]. A figura 4 mostra a variação de massa desses dois compósitos quando submetidos à oxidação em 800°C com fluxo de ar sintético seco de 100 ml/min.

Enquanto o compósito com o recobrimento de SiC começa a perder massa a partir de 700°C por causa da reação do substrato com o oxigênio que penetra pelas trincas. O compósito com o recobrimento de SiC-B₄C ganha massa rapidamente entre 700°C e 800°C devido à oxidação do B₄C com a formação de vidro de B₂O₃. Com o tempo de exposição em 800°C, ocorre uma perda gradual de massa pela volatilização do óxido.

O B_2O_3 é líquido em temperaturas acima de 450°C, e portanto, todo o vidro formado nas paredes das trincas do recobrimento pode fluir e cobrir tanto a região exposta do substrato na base da trinca como toda a extensão da trinca até a superfície do recobrimento. A oxidação do substrato então é limitada pela difusão do oxigênio através da camada de B_2O_3 líquido. A figura 5 mostra aspectos do preenchimento das trincas do recobrimento com o vidro. As regiões escuras das fotos evidenciam a presença de elementos de mais baixo número atômico. O corte na seção transversal do compósito mostra que o vidro está presente em toda a extensão da trinca até aflorar na superfície como pode ser vista na foto da superfície do recobrimento após a oxidação.

A eficácia deste mecanismo de auto proteção do recobrimento funcionalmente ativo de SiC-B₄C pode ser avaliado pela medida de perda de massa total do C-C/SiC-B₄C que foi de 1,56% da massa inicial, incluindo o ganho obtido pela formação do vidro, comparado com o C-C/SiC cuja perda total foi de 15,57%.

Em temperaturas superiores a 1000° C, o mecanismo de proteção do recobrimento obtido é baseado na formação de um filme fino de SiO₂ na superfície da camada pela oxidação do SiC. A figura 6 mostra o filme de SiO₂ formado após a oxidação em 1100°C em ar sintético seco.

O recobrimento funcionalmente ativo obtido pela técnica de cementação dispensa a aplicação de selantes vítreos para a selagem das trincas inerentes ao processo, de modo a melhorar a proteção em temperaturas abaixo daquela em que o filme de SiO₂ é formado. O mecanismo de auto proteção desenvolvido por causa da oxidação do B₄C é suficiente para prover a proteção necessária nesta faixa de temperaturas. É evidente também que a aplicação deste recobrimento em uma única operação, como é descrito neste trabalho, torna esta tecnologia economicamente mais interessante e de mais fácil aplicação do que os diversos ciclos de impregnação e tratamentos térmicos necessários para a obtenção de uma camada homogênea do selante, como é feita com o recobrimento tradicional de carbeto de silício.

Em comparação com os recobrimentos multicamadas obtidos pela deposição via fase vapor, o mesmo desempenho é conseguido pela aplicação desta técnica, com a vantagem de se eliminar os problemas de aderência nas interfaces das diferentes camadas depositadas.

Figura 4 – Variação de massa por oxidação do compósito recoberto a 800° C, com taxa de aquecimento de 10° C/min e fluxo de ar sintético de 100 ml/min.

(a) (b) Figura 5 – Trincas na superfície do recobrimento seladas com vidro após a oxidação, (a) seção transversal e (b) superfície.

Figura 6 – Filme de SiO₂ formado após oxidação em 1100°C do compósito C-C/SiC-B₄C.

O recobrimento funcionalmente ativo obtido pelo gradiente de composição das fases SiC e B_4C na camada formada na superfície do compósito carbono-carbono por cementação, utilizando a mistura de pós cementantes na proporção 40% $ZrB_2 + 50\%$ SiC + 10% Al_2O_3 em peso, desenvolve um mecanismo de auto proteção pela oxidação da fase rica em boro, de forma a prover a necessária proteção do compósito em temperaturas abaixo da temperatura de proteção intrínseca do recobrimento de SiC, e dispensa a aplicação dos selantes vítreos usualmente aplicados na superfície do recobrimento.

REFERÊNCIAS:

[1] - Shiroky, G. H.; Price, R. J.; Sheehan, J. E. – "Oxidation Characteristics of Silicon Carbide and Silicon Nitride"- G. A. Technologies Report N° G. A. – A18696, Dec, 1986.

[2] – Hirai, T.; Niihara, K.; Goto, T. – "Oxidation of CVD Si_3N_4 at $1550^{\circ}C$ to $1650^{\circ}C$ " – J. Am. Ceram. Soc., 419 [63] 1980.

[3] – Bines, E. B. – in "Essentials of Carbon-Carbon Composites", pp. 204, Edited by Thomas, C. R., Royal Soc. Chem., Great Britain, 1993.

[4] – Savage, G. – "Carbon-carbon Composites", pp. 193, Chapman & Hall, ed. 1, London, 1993.

[5] – Depine, L. C. – PhD Thesis, University of Bath, 1991.

[6] – Rogers, D. C.; Scott, R. O.; Shuford, D. M. – "Material Development Aspects of na Oxidation Protection System for a Reinforced Carbon-Carbon Composite, in Proceedings of the 8th National SAMPE Technical Conference, pp. 308, 1976.

[7] – Wei, W. C. J.; Wu, T. M. – "Oxidation of Carbon-Carbon Composite Coated With SiC-(Si/ZrSi₂)-ZrSi₂, Carbon 605 (32) 1994.

[8] – Fergus, J. W.; Worrel, W. L., "Silicon-carbide/Boron Containing Coatings for the Oxidation Protection of Graphite", Carbon, 537 (33) 1995.

[9] – Buchanan, F. J.; Little, J. A. – "Particulate-Containing Glass Sealantes for carbon-Carbon Composites", Carbon, 49 (33) 1995.

[10] – Morimoto, T.; Ogura, Y.; Kondo, M.; Ueda, T. – "Multilayer Coating for Carbon-Carbon Composites", Carbon, 351 (33) 1995.