Divalent Uranium and Cobalt Saturable Absorber Q-switches at 1.5 μm R. D. Stultz,* M. B. Camargo,† and M. Birnbaum Center for Laser Studies University of Southern California DRB 17, University Park Los Angeles, CA 90089-1112 (213) 740-4235 and Milan Kokta Union Carbide Corp. 750 South 32nd Street Washougal, WA 98671 Production Wientiffic We report on passive Q-switching of the Er:glass laser using both slowly-relaxing (U^{2+} in BaF₂, CaF₂, and SrF₂) and fast-relaxing (Co^{2+} in Y3Sc₂Ga₃O₁₂(YSGG) and Y3Al₅O₁₂ (YAG)) saturable absorbers.^{1,2} Divalent uranium ions possess a broad absorption band, 3-5 in the di-fluoride crystals, which peaks close to the Er:glass emission wavelength (see Figure 1). Divalent cobalt ions in garnet crystals also have a broad band absorption near 1.5 μm (see Figure 2). Figure 1. Room temperature absorption spectra of $U^{2*}\!:\!CaF_2,\ U^{2*}\!:\!SrF_2,\ and\ U^{2*}\!:\!BaF_2$ near 1.5 $\mu m.$ The U²⁺ absorption cross-sections were determined by bleaching the crystals using a Ramanshifted Nd:YAG laser at 1543 nm. The Full-Width at Half-Maximum (FWHM) pulsewidth of the bleaching radiation was 14 nanoseconds, and the FWHM spectral linewidth was less than one nanometer. The excited-state lifetimes of U²⁺ in CaF₂, SrF₂, and BaF₂ (see Table I) are long compared to the 1543 nm pulse duration, therefore the Frantz-Nodvik equation.⁷ modified for absorption, was used to analyze the bleaching results. The measured cross sections are summarized in Table I. Figure 2. Co2+:YSGG and Co2+:YAG absorption spectra. Table I. Spectroscopic parameters of Q-switch | | | naterials. | | |--------------------|--|-----------------------------|---| | Material | α ₀ at
1533nm
(cm ⁻¹) | 300 K
lifetime
(µsec) | Cross-section
(x 10 ⁻²⁰ , cm ²) | | U:BaF2 | 0.58 | 40 | 5 | | U:CaF2 | 1.26 | 5 | 7 | | U:SrF ₂ | 1,05 | 25 | 7 | The relaxation lifetime of the Co²⁺-doped crystals was determined to be fast compared to the 1543 nm bleaching pulse duration, using a pump-probe method. The saturation intensities at 1543 nm for both Co:YSGG and Co:YAG are given in Table II. Transmittance as a function of incident intensity for Co:YSGG is shown in Figure 3. The Co²⁺:YSGG crystal used in this work was grown using the standard Czochralski method. The crystal boule was 1.3" x 6", grown along the <111> direction, using an undoped YSGG seed. The cobalt concentration was 2% at. wt., and silicon was added to the melt for charge compensation. The Co:YAG crystal was grown in a similar fashion. Advanced Solid State Lasers Conference 1995 Technical Digest, page 60, paper MD5-1 Memphis, February 1995 (USA) IPEN-DOC- 2741 Table II. Saturation intensities of Co2+-doped crystals | Crystal | Sample
thickness
(mm) | Small-signal
internal
transmittance
@ 1543 nm | 1543 nm
α _o
(cm ⁻¹) | 1543 nm
saturation
intensity
(x10 ⁶
MW/cm ²) | |---------|-----------------------------|--|--|---| | Co:YSGG | 8.92 | 0.054 | 3.27 | 180 | | Co:YAG | 3.91 | 0.80 | 0.57 | 140 | Figure 3. Absorption saturation of Co:YSGG at 1543 nm. Fluorescence lifetime measurements for the U²⁺-doped crystals were carried out by pumping the crystals with the Raman-shifted Nd:YAG laser. The fluorescence (~2.6 µm)³ was measured using an InAs detector with a germanium crystal filter to block the pump light. The observed fluorescence started immediately following the excitation pulse and was a single exponential to at least three e⁻¹ lifetimes. Lifetime measurements have been made from about 300 K to 400 K and are plotted in Figures 4 and 5. The room temperature values are summarized in Table I. Figure 4. U2+:SrF₂ and U2+:BaF₂ fluorescence lifetime as a function of temperature. The U:SrF2, U:CaF2 and U:BaF2 crystals (provided by Dr. Robert Sparrow, Optovac) were evaluated as Q-switches in an Er:glass laser resonator. A Kigre 3 x 50 mm (QE-7S) Er:glass rod was used for the SrF2 and BaF2 Q-switches. The rod was flashlamp-pumped in a Kigre pump head. U:CaF₂ Q-switch was used in conjunction with a 4 k 76 mm (OE-7S) Kigre rod in an unoptimized pump head designed for a much larger rod. The resonator cavities consisted of two flat mirrors with physical lengths of 10 cm for the U:SrF₂ and U:BaF₂, and 15.5 cm for U:CaF2. The resonator output mirror reflectivity was 80% for the SrF2 Q-switch, and 94% for CaF2 and BaF2. The Q-switching results are summarized in Table III. A typical pulse observed for the U:CaF₂ Q-switch is shown in Figure 5. No damage to the U:CaF2 crystal was observed even after several shots. The Q-switched pulse (4mJ, 20ns), shown in Fig. 6, was obtained for the Co:YSGG crystal with the same Er:glass pump head used for the U:CaF₂ Q-switch. However, a 94%R concave (+2.5 cm curvature) outcoupler and an intracavity +5cm lens were used to provide focussing into the Q-switch crystal. The cavity length was 22.5 cc. Q-switching did not occur with either of the Co²⁺-doped crystals in an (unfocussed) plane-parallel cavity. Threshold, with the Q-switch inserted in the cavity, was approximately 40 J, and the threshold for the free-running laser (i.e. after removal of the Q-switch) was 27 J. The 20 ns Q-switched pulse was obtained without damage to the Co:YSGG crystal. Co:YAG was also tested as a Q-switch, and the shortest pulse obtained was 88 nsec, FWHM, and output energy of about 1 mJ. However, the Co:YAG crystal damaged when we attempted to obtain shorter pulses by increasing the focussing in the crystal. Only a single sample Co:YAG was available and attempts to obtain Co:YAG with improved damage resistance are in progress. Figure 5. U2+ fluorescence lifetime as a function of temperature for U2+:CaF₂. Table III. Uranium Q-switch results. | Q-
Switch
Matl. | Thickness
(mm) | Internal
Transmit.
(%) | Output
energy
(m.J) | Measured
pulsewidth
(ns) | Threshold
(J) | |-----------------------|-------------------|------------------------------|---------------------------|--------------------------------|------------------| | U:BaF2 | 1 | 94 | l | 280 | 10.5 | | U:SrF ₂ | (Brewster) | 87 | 11 | 45 | 15 | | U:CaF2 | + | 60 | 3 | 21 | 86 | Table IV. Cobalt O-switch results. | Q-
Switch
Matl. | Q-switch
thickness
(mm) | Int.
Trans.
(%) | FWHM
(ns) | Output
energy
(mJ) | Threshold (J) | |-----------------------|-------------------------------|-----------------------|--------------|--------------------------|---------------| | Co:
YSGG | 0.5 | 85 | 20 | 4 | 40 | | Co:
YAG | 8.1 | 58 | 88 | ≈l | 107 | We modeled the Q-switch operation using saturable absorber Q-switch rate equations. 8.9 The uranium-doped crystals were modeled in the slowly-relaxing regime and the cobalt-doped crystals as fast-relaxing absorbers. The agreement between theory and experiment was very good, especially for the (optically-thin) U:SrF₂ and U:BaF₂ Q-switches. In conclusion, we have demonstrated that U²⁺:SrF₂ and U²⁺:BaF₂ are efficient Q-switches for the Er:glass laser at 1533 nm. We have also demonstrated that 20 nanosecond pulses can be obtained with U²⁺:CaF₂ and Co²⁺:YSGG Q-switches, without damage. More efficient operation with the latter Q-switches are anticipated in an optimized Er:glass laser system. ## References - R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, "U⁴⁺:SrF₂ Efficient Saturable Absorber Q-Switch for the 1.54 μm Erbium:Glass Laser", Appl. Phys. Lett. 64 (8), 948 (1994). - M. B. Camargo, R. D. Stultz, M. Birnbaum, and M. Kokta, "Co²⁺:YSGG Saturable Absorber Q-Switch for Infrared Erbium Lasers," (accepted for publication in Optics Letters). - W. A. Hargreaves, "High-Resolution Measurements of Absorption, Fluorescence, and Crystal-Field Splittings of Solutions of Divalent, Trivalent, and Tetravalent Uranium Ions in Fluoride Crystals", Phys. Rev. 156, 331(1967). - W. A. Hargreaves, "Energy Levels of Uranium Ions in Calcium Fluoride Crystals", Phys. Rev. B 2, 2273 (1970). - W. A. Hargreaves, "Optical Spectra of U²⁺, U³⁺, and U⁴⁺ Ions in Calcium Fluoride Crystals", Phys. Rev. B 44, 5293 (1991). - V. P. Mikhailov and N. V. Kuleshov, "Picosecond Spectroscopy of Excited States in Transition-Metal-Ion Doped New Laser Materials", OSA Proceedings on <u>Advanced Solid-State Lasers</u> 15, A. A. Pinto and T. Y. Fan, eds., 320 (1993). - L. Frantz and J. Nodvik, "Theory of Pulse Propagation in a Laser Amplifier", J. Appl. Phys. 34, 2346(1963). - 8. A. Szabo and R. A. Stein, J. Appl. Phys. 36 (5), 1562 (1965). - A. Siegman, <u>Lasers</u> (University Science Books, Mill Valley, California, 1986), chapter 26. Figure 5. Experimental pulse for U:CaF2 Q-switch, Figure 6. Experimental pulse for Co:YSGG Q-switch. (20 ns, full-width at half maximum). ^{*}also with Hughes Aircraft Co. at El Segundo, CA 90245. [†] M. B. Camargo is on leave of absence from the Brazilian Institute of Energetical and Nuclear Research (IPEN-CNEN/SP) and under a grant from the Brazilian National Science Foundation (CNPq/RHAE Program).