INTRODUÇÃO

A interação hiperfina é aquela que ocorre entre os momentos nucleares e os campos eletromagnéticos gerados fora do núcleo, pelas partículas carregadas ao seu redor. A Hamiltoniana da interação hiperfina H_{hi} pode ser escrita como tendo 2 componentes: uma parte magnética e outra elétrica:

$$H_{hi} = H_{mag} + H_{el}$$

Cada uma das partes é escrita como o produto dos momentos nucleares e dos campos hiperfinos, para um núcleo com spin I, momento magnético $\mu = \gamma(h/2\pi)I$ e momento de quadrupolo nuclear Q, a interação com o campo hiperfino magnético B é dada por:

$$H_{mag} = -\mu B = -\gamma (h/2\pi)B.I$$

onde $\gamma = g\mu_N/(h/2\pi)$, g é o fator g nuclear e μ_N é o magneton nuclear. A Interação entre o momento de quadrupolo Q e o tensor gradiente de campo elétrico (EFG) $V_{a,b}$ que é a segunda derivada do potencial eletrostático V(r), é dada por:

$$\mathbf{H}_{el} = \frac{eQ}{6I(2I+1)} \sum_{a,b} \mathbf{V}_{a,b} [3/2(\mathbf{I}_a \mathbf{I}_b + \mathbf{I}_b \mathbf{I}_a) - \delta_{ab} \mathbf{I}^2]$$

Escolhendo um sistema de eixos para o qual $V_{a,b} = 0$ para a \neq b, o tensor gradiente de campo elétrico fica mais simplificado e a hamiltoniana fica:

$$H_{el} = \frac{eQ}{4l(2l+1)} [V_{zz}(3\mathbf{I}_{z}^{2} - \mathbf{I}^{2}) + \frac{1}{2}(V_{xx} - V_{yy})(\mathbf{I}_{x}^{2} - \mathbf{I}_{y}^{2})]$$

Portanto, 2 parâmetros são suficientes para caracterizar o tensor gradiente de campo elétrico: sua maior componente V_{zz} e a diferença V_{xx} - V_{yy} , que são expressos pelo parâmetro de assimetria η :

$$\eta = \frac{V_{yy} - V_{xx}}{V_{zz}}$$

com $|V_{xx}| \le |V_{yy}| \le |V_{zz}|$, tal que $0 \le \eta \le 1$. Assim a Hamiltoniana pode ser escrita em termos do parâmetro de assimetria η :

$$H_{Q} = \frac{eQ}{4I(2I+1)} [3I_{z}^{2} - I(I+1) + \frac{\eta}{2}(I_{+}^{2} - I_{-}^{2})]$$

onde I_{+}^2 e I_{-}^2 são operadores de momento angular. Quanto aos auto-valores de energia da Hamiltoniana, o efeito da interação hiperfina é o de levantar a degenerescência dos 2I + 1 substados m do spin I do núcleo. A interação magnética produz um desdobramento Zeeman equidistante energeticamente cujos autovalores de energia são: $E_m = -\gamma(h/2\pi)B_z$, m = -I,...,+I. No caso da interação elétrica, os autovalores de energia dependem do parâmetro de assimetria η e devese distinguir entre dois casos:

i) $\eta = 0$

$$E_{m} = [3m^{2} - I(I+1)] \frac{eQV_{zz}}{4I(2I-1)}$$

que produz um desdrobamento nos subní veis de energia, sendo que o espaçamento de energia entre cada subnível é:

$$\Delta E = E_{m} - E_{m'} = \frac{3eQV_{zz}}{4l(2I-1)} \left| m^{2} - m'^{2} \right|$$

A menor frequência de precessão de spin é:

$$\omega_0 = \frac{3\pi e Q V_{zz}}{2I(2I-1)h} = 3\omega_Q$$
, para I inteiro

$$\omega_0 = \frac{6\pi e Q V_{zz}}{2I(2I-1)h} = 6\omega_Q$$
, para I semi-inteiro

Para I = 5/2, ocorrem 3 frequências $\omega_1 = \omega_0$, $\omega_2 = 2\omega_0$, $\omega_3 = 3\omega_0$, onde

$$\omega_{\rm Q} = \frac{\pi e \rm Q V_{zz}}{2 \rm I (2 \rm I - 1) h}$$

A frequência da interação quadrupolar é usualmente dada por:

$$v_{Q} = \frac{eQV_{zz}}{h}$$

ii)
$$\eta > 0$$

Neste caso a Hamiltoniana deve ser diagonalizada para cada valor de η pois os operadores de momento angular $I_{\pm} = I_x \pm iI_y$ projetam transições entre substados m diferentes, como consequência as frequências de transição ω_n mudam com h.

A Técnica de Correlação Angular Perturbada

A técnica de correlação angular perturbada é baseada no fato de que um conjunto de núcleos emite radiação gama isotropicamente e um padrão de anisotropia só é alcançado a partir de um conjunto de núcleos cujos spins estão todos orientados na mesma direção. Esta situação é alcançada quando um amostra radioativa é resfriada a uma temperatura próxima do zero absoluto e submetida a

um campo magnético. Outro modo de se conseguir um conjunto de núcleos com spins alinhados vem do fato de que a direção de emissão de uma radiação gama depende da orientação do spin do estado excitado do núcleo emissor, e a probabilidade de emissão do raio gama depende do ângulo entre o eixo do spin e a direção de emissão.

Considerando uma amostra radioativa cujos núcleos decaem por meio da emissão de duas radiações gama sucessivas $\gamma_1 e \gamma_2$ (cascata gama). Fixando-se a direção de observação de γ_1 , selecionamos um subconjunto de núcleos da amostra cujos spin estão alinhados e que emitirão a segunda radiação γ_2 com um padrão anisotrópico.

Experimentalmente, a técnica de correlação angular gama-gama consiste em escolher uma direção de emissão pela detecção da radiação γ_1 num detector 1. A segunda radiação emitida em cascata, γ_2 é detectada pelo detector 2, colocado no mesmo plano, formando um ângulo θ em relação a direção de emissão de γ_1 . Nesta situação, o importante é determinar a probabilidade relativa W(θ)d Ω de que a segunda radiação seja emitida numa certa direção dentro de um ângulo sólido d Ω segundo um ângulo θ relativo à direção de detecção de γ_1 . Assim, o número de coincidências entre as radiações γ_1 - γ_2 são registradas em função do ângulo θ formado pelos detectores. A função correlação angular é escrita na forma:

$$W(\theta) = \sum_{k} A_{kk} P_{k} (\cos \theta)$$

onde k é par e $0 < k < \min(2I,2L_1,2L_2)$, $P_k(\cos\theta)$ é o polinômio de Legendre de ordem k e A_{kk} são os coeficientes de correlação gama-gama definidos por: $A_{kk} = A_k(\gamma_1)A_k(\gamma_2)$. Usualmente somente dois coeficientes são necessários para descrever a função correlação angular gama-gama, e além disso, costuma-se normalizar em relação a A_{00} , obtendo-se

16

$W(\theta) = 1 + A_{22}P_2(\cos\theta) + A_{44}P_4(\cos\theta)$

Se o núcleo emissor da cascata gama está inserido dentro de um material, ele ficará sujeito à ação dos campos hiperfinos gerados pelas distribuições de carga ao seu redor. Estes campos ocasionam o desdobramento do nível intermediário da cascata gama. Se a meia-vida deste nível é suficientemente longa para sentir a interação com os campos hiperfinos, o spin do nível precessiona ao redor da direção do campo hiperfino. Com esta mudança na direção do spin, a população dos subestados magnéticos m é alterada o que provoca uma alteração na direção de emissão do segundo raio gama perturbando a correlação angular.

As perturbações causadas por campos extra-nucleares podem ser divididas em duas classes de acordo com o comportamento temporal dos campos: a) interações estáticas devidas ao acoplamento dos momentos nucleares com campos extra-nucleares estáticos, campos que são constantes durante o tempo de existência do nível nuclear (campos magnéticos externos e gradientes eletrostáticos em cristais não cúbicos); b) interações dependentes do tempo causadas por campos variáveis no tempo, tais como, campos sentidos pelos núcleos num líquido.

Se a perturbação da correlação angular é causada pela interação do momento elétrico ou magnético nuclear com um campo externo estático, a expressão geral para a correlação angular gama-gama perturbada é dada por:

$$W(\mathbf{k}_{1},\mathbf{k}_{2},t) = \sum_{\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{N}_{1},\mathbf{N}_{2}} A_{\mathbf{k}_{1}}(\boldsymbol{\gamma}_{1}) A_{\mathbf{k}_{2}}(\boldsymbol{\gamma}_{2}) G_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{N}_{1}\mathbf{N}_{2}}(t) [(2\mathbf{k}_{1}+1)(2\mathbf{k}_{2}+1)]^{-1/2} XY_{\mathbf{k}_{1}}^{\mathbf{N}_{1}*}(\boldsymbol{\theta}_{1},\boldsymbol{\varphi}_{1})Y_{\mathbf{k}_{2}}^{\mathbf{N}_{2}}(\boldsymbol{\theta}_{2},\boldsymbol{\varphi}_{2})$$

onde os ângulos $\theta \in \phi$ se referem à direção de propagação da radiação em relação ao eixo de quantização z arbitrariamente escolhido. O termo $G_{k_1k_2}^{N_1N_2}(t)$ é o fator

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP IPEN

que descreve a influência da perturbação extranuclear sentida pelo núcleo no estado intermediário, definido por:

$$\begin{split} G_{k_{1}k_{2}}^{N_{1}N_{2}}(t) &= \sum_{m_{a},m_{b}} (-1)^{2I+m_{a}+m_{b}} [(2k_{1}+1)(2k_{2}+1)]^{\frac{1}{2}} \begin{pmatrix} I & I & k_{1} \\ m_{a'}-m_{a'} & N_{1} \end{pmatrix} \\ & X \begin{pmatrix} I & I & k_{2} \\ m_{b'}-m_{b'} & N_{2} \end{pmatrix} \langle m_{b} |\Lambda(t)| m_{a} \rangle \langle m_{b'} |\Lambda(t)| m_{a'} \rangle^{*} \end{split}$$

onde os símbolo entre parênteses são os coeficientes 3-j de Wigner.

Para o caso em que a interação seja invariante à uma rotação (simetria axial), e amostras policristalinas, o fator de perturbação pode ser escrito como:

$$G_{kk}(t) = \frac{1}{2k+1} \sum_{N=-k}^{k} G_{kk}^{NN}(t)$$

e a função correlação angular perturbada pode ser escrita na sua forma mais simplificada e usual por:

$$W(\theta, t) = \sum_{k} G_{kk}(t) A_{kk} P_{k}(\cos\theta)$$

A presença dos campos hiperfinos causa um desdobramento do nível intermediário da cascata γ - γ em subníveis magnéticos m. A precessão do spin induz transições entre os subní veis magnéticos m de tal forma que a frequência de precessão ω_L (frequência de Larmor) é determinada pela relação $\Delta E =$ $(h/2\pi)\omega_L$, onde ΔE é o espaçamento em energia entre os subníveis. A frequência de Larmor ω_L altera a função correlação angular W(θ ,t) através do fator de perturbação G_{kk}(t) cuja forma depende do tipo de interação - magnética ou elétrica - e da simetria dos campos locais:

$$G_{kk}(t) \approx \exp[\frac{2\pi i}{h}(E_m - E_{m'})t]$$

Para uma amostra ferromagnética policristalina, com os seus domínios magnéticos orientados aleatoriamente, o fator de perturbação $G_{kk}(t)$ pode ser escrito como:

$$G_{kk}(t) = \frac{1}{2k+1} [1 + 2\sum_{N=1}^{k} \cos(N\omega_{L}t)]$$

A interação quadrupolar elétrica separa o nível intermediário em subníveis duplamente degenerados, cuja energia depende do parâmetro de assimetria η . Na situação onde $\eta = 0$ os autovalores de energia E_m são dados diretamente pelo hamiltoniano H_Q . A interação não produz nenhuma rotação no padrão de correlação angular, mas introduz uma atenuação. Para uma amostra policristalina com $\eta = 0$, essa atenuação é descrita pelo fator de perturbação dado por:

$$G_{kk}(t) = \sum_{n} S_{kn} \cos(nw_0 t)$$

com $S_{kn} = \sum_{m,m'} \begin{pmatrix} I & I & k \\ m'-m-m'+m \end{pmatrix}$

Para I = 5/2, o fator atenuação G_{kk} pode ser reescrito explicitamente por:

$$G_{kk}(t) = S_{k0} + S_{k1}\cos(\omega_1 t) + S_{k2}\cos(\omega_2 t) + S_{k3}\cos(\omega_3 t)$$

onde os coeficientes S_{kn} são funções de η e são tabelados.

PROCEDIMENTO EXPERIMENTAL

As amostras de Háfnio metálico e óxido de háfnio foram irradiadas no reator IEA-R1 do IPEN por 40 h com um fluxo de nêutrons de ~ 10^{13} n/cm²s. A amostra de HfO₂ foi feita a partir de pó compactado e após a irradiação sofreu um tratamento térmico de 800°C por 24 h. O núcleo de ¹⁸¹Hf formado na irradiação decai para os estados excitados do ¹⁸¹Ta que se desexcita pela emissão da bem conhecida cascata gama 131-482 keV, usada para as medidas de PAC. Os espectros de coincidências gama-gama atrasadas foram obtidos no espectrômetro de 4 detectores de BaF₂ do laboratório de interações hiperfinas da Supervisão de Física Nuclear do IPEN. Os detectores são posicionados num mesmo plano formando um ângulo de 90° entre eles. Cada detector é usado para registrar tanto o raio gama de start, quanto o raio gama de stop. O sistema eletrônico do espectrômetro é constituído de um ramo de energia (slow) e um ramo de tempo (fast). São registrados simultaneamente 8 espectros de coincidências atrasadas.

Para o ¹⁸¹Ta, $A_{22} \ll A_{44}$, e a função perturbação $A_{22}G_{22}(t)$ é obtida a partir da seguinte relação:

$$A_{22}G_{22}(t) = 2 \frac{C(180^\circ, t) - C(90^\circ, t)}{C(180^\circ, t) + 2C(90^\circ, t)}$$

com,

$$C(180^{\circ},t) = [W_1(180^{\circ},t) \times W_2(180^{\circ},t) \times \dots \times W_n(180^{\circ},t)]^{1/n} = e_{\pi}$$

$$C(90^{\circ},t) = [W_1(90^{\circ},t) \times W_2(90^{\circ},t) \times \dots \times W_n(90^{\circ},t)]^{1/n}$$

20

onde $W_n(\theta,t)$ são os espectros de coincidências para as diversas combinações de detectores nos ângulos $\theta = 90^\circ$, 180° levando-se em conta os efeitos devidos a eventos de coincidências acidentais $W_A(t)$:

$$W_n(\theta,t) = W_n(\theta,t) - W_A(t)$$

RESULTADOS E DISCUSSÕES

As amostras foram medidas a temperatura ambiente e os resultados são mostrados nas figuras que mostram a função perturbação $A_{22}G_{22}(t)$ bem como o espectro de freqüências obtido pela transformada de Fourier e $A_{22}G_{22}(t)$. A curva cheia é o resultado do ajuste de mínimos quadrados da função $G_{kk}(t)$ aos dados experimentais.

Os resultados do ajuste são mostrados na tabela I e comparados com valores da literatura(1). A amostra de óxido de háfnio HfO₂ apresentou duas freqüências de precessão de spin ω_0 com valores distintos, embora a diferença entre eles seja pequena, da ordem de 10%, o que indica que os núcleos de ¹⁸¹Ta estão sentindo campos diferentes e, portanto estejam em posições um pouco

	HfO ₂		Hf metal	
	Este trabalho	Ref. (1)	Este trabalho	Ref. (1)
ω_0 (Mrad/s)	746(4)	761.4(7.8)	299(30)	333(3)
ω_Q (Mrad/s)	124(2)	126.9(1.3)	50(5)	52.1(6)
η	0,38(9)	0,35(3)	0,29(6)	0,30(2)
$V_{zz} \times 10^{17} \text{ V.cm}^{-2}$	13,9(5)	14,2(6)	5,56(20)	5,82(6)

Tabela I: Resultados obtidos para as amostras de HfO₂ e Hf metálico

diferentes dentro da rede cristalina. Este fato pode ser resultado de danos produzidos durante a irradiação com nêutrons que o tratamento térmico da amostra não conseguiu remover. Para o cálculo do gradiente de campo elétrico Vzz foi usado o valor de Q = 2.36(5) b da referência (2).

CONCLUSÕES

O ajuste da amostra de HfO_2 apresentou parâmetro de assimetria $\eta = 0.38$ indicando que a estrutura da amostra não tem simetria axial, o que concorda com a estrutura conhecida para este composto, que é monoclínico.

A amostra de Hf metálico apresentou $V_{zz} = 5,56 \times 10^{17} \text{ Vcm}^{-2}$, valor que concorda com aqueles encontrados na literatura, assim como o valor de $\eta = 0,29$. À estrutura do Háfnio é hexagonal e, portanto o valor de η deveria ser zero. O fato de se encontrar um valor diferente de zero é provavelmente devido a impurezas no Háfnio metálico.

Figura 1: Espectros de tempo de correlação angular perturbada para o HfO₂ e para o Hf metálico

REFERÊNCIAS

1) E. Gerdau; J. Wolf; H. Winkler; J. Braunsfurth. Quadrupole interaction of ¹⁸¹Ta in Hf compounds. Proc. Roy. Soc. 311A(1969)197.

2) T. Butz; A. Lerf. Phys. Lett. 97A(1983)217

ł

23