CÓDIGO CB3PMF - ANÁLISE TERMO-HIDRÁULICA COM O MÉTODO DE FRONTEIRA LATERAL ABERTA

RONALDO CÉLEM BORGES GILBERTO GOMES DE ANDRADE

Departamento de Tecnologia de Reatores Instituto de Pesquisas Encrgéticas e Nucleares - CNEN/SP

RESUMO

Este artigo apresenta um método de cálculo para a análise ter mo-hidráulica utilizando o conceito de fronteira lateral aberta, desenvolvido para o código COBRA-IIIP. O método é apropriado ao estudo dos parâmetros termo-hidráulicos de reatores que apresentam um grande número de subcanais.

Através deste método a análise termo-hidráulica de uma região com um número elevado de subcanais é decomposta em mais de uma etapa de cálculo, permitindo assim determinar, de forma natural, a região quente do canal ou núcleo estudado.

O cálculo com fronteira lateral aberta mantém, em etapas de cálculo mais detalhadas, a influência das fronteiras externas do canal em estudo e acrescenta à face externa do modelo físico do canal características importantes que os modelos computacionais identificam somente a nível de subcanal, permitindo, assim, conservar as características de mistura que existem entre o canal analisado e seus vizinhos da etapa anterior.

É mostrado que o método de fronteira lateral aberta é válido, confiável e aplicável à análise termo-hidráulica em estado estacioná rio, além de permitir maior flexibilidade na aplicação de coeficientes e correlações utilizadas pelo código. O acréscimo no tempo compu vacional pode ser considerado desprezível face as informações obtidas. A precisão dos resultados é considerada satisfatória, conforme analisado no estudo.

1. INTRODUÇÃO

A análise do comportamento de centrais nucleares é desenvolvida em várias etapas de cálculo. A fim de reter as características dos materiais e evitar danos a equipamentos e pessoal é fato conhecido que as limitações originam-se na termo-hidráulica, cuja análise representa uma das etapas de cálculo.

Os modelos matemáticos adotados na análise termo-hidrául<u>i</u> ca geralmente apoiam-se no cálculo de subcanais resultando numa formulação tridimensional que representa o canal de escoamento em estudo. Assim, é importante diferenciar os conceitos de canal e subcanal.

Neste trabalho, o canal é constituido pelo volume dentro do contorno do modelo, composto por áreas de escoamento e restrições ao fluxo. Subcanal é uma divisão existente dentro do canal, composto pela superposição de volumes de controle onde são calculados os balanços de massa, energia e quantidade de movimento.

O melhor modelo para o cálculo termo-hidráulico de um reator nuclear é o modelo de núcleo inteiro, onde cada subcanal é representado por quatro barras combustíveis, constituindo-se próna pria região de escoamento do fluido, existindo assim, uma analogia perfeita entre o modelo e o núcleo. Entretanto, este modelo do ponto de vista computacional torna-se impraticável face ao elevado número de subcanais e de barras combustíveis. Como o projeto de um núcleo. de reator obedece, geralmente, a uma certa simetria, uma análise mais simples pode ser considerada como representativa de todo o núcleo.

Este trabalho visa apresentar as modificações introduzidas no código COBRA-IIIP[1] permitindo realizar a análise termo-hidráuli ca do canal decompondo-o em etapas sucessivas de cálculo, como mostrado na figura 1. Isto é possível pela inclusão da capacidade de cálculo com fronteira lateral aberta[2] que permite obter, naturalmente, a região quente do canal estudado.

O método de fronteira lateral aberta foi introduzido no c<u>o</u> digo COBRA-IIIP gerando uma nova versão denominada código CB3PMF[2]. As modificações foram incluídas no código COBRA-IIIP porque este

Figura 1: Modelo para cálculo com fronteira lateral aberta.

possui técnicas numéricas eficientes para resolver o conjunto de equações de conservação usadas originalmente no código COBRA-IIIC[3]. Além disso, o código resolve o campo de pressões a partir de estima tivas dos campos de entalpias e vazões e possui capacidade para solucionar problemas maiores e mais complexos.

2. MODELO ANALÍTICO DO CÓDIGO CB3PMF

O modelo analítico apresentado neste trabalho apoia-se no modelo do código COBRA-IIIP[1] incluindo em suas equações de conser vação as parcelas relativas ao cálculo com fronteira lateral aberta [2]. Assim, usando-se a metodologia COBRA, o volume de controle con siste em um segmento de subcanal (i) conectado a um ou mais subcacais (j), todos pertencentes ao mesmo canal de escoamento. Este canal por sua vez, quando a opção de cálculo com fronteira lateral aberta é considerada, representa o subcanal (I) da etapa de cálculo anterior que também conectava-se a subcanais (J).

2.1 - Equação de conservação de massa

Aplicando o princípio de conservação de massa ao volume de controle da figura 2 com as parcelas relativas ao escoamento transverso e ao cálculo com fronteira lateral aberta conforme descrito na referência[2],

† parcela referente ao cálculo com fronteira lateral aberta.

Figura 2 : Volume de controle para a equação de consorvação de massa.

obtém-se o seguinte balanço de massa:

$$A_{i} \frac{\partial \rho_{i}}{\partial t} + \frac{\partial m_{i}}{\partial x} = -\sum_{j=1}^{N} w_{ij} + m_{i}^{\prime}$$
(1)

onde t é o tempo, x é o comprimento axial, A é a área de escoamen to, ρ é a massa volumétrica, m é a vazão mássica na direção axial, w é o escoamento transverso de dispersão por unidade de comprimento, m' é a vazão mássica por unidade de comprimento na fronteira lateral aborta, N é o número de subcanais (j) adjacentes ao subcanal (i) em estudo e w' é o escoamento transverso turbulento por unidade de comprimento.

O lado esquerdo da equação (1) representa respectivamente, a taxa de variação da massa volumétrica do fluido no subcanal (i) por unidade de comprimento causada pela exparsão ou contração do fluido, e a taxa de variação da vazão mássica do subcanal (i) por <u>u</u> nidade de comprimento na direção axial. O lado direito desta equação representa respectivamente, a taxa efetiva de variação de vazão do subcanal (i) em termos do escoamento transverso de dispersão entrando ou saindo no subcanal (i), e a fração de massa recebida ou cedida pelo subcanal (i) que está na fronteira entre os subcanais (I) e (J) da etapa de cálculo anterior.

2.2 - Equação de conservação de energia

m_i

mi

Considerando o princípio de conservação de energia ao volu me de controle da figura 3, com as parcelas relativas ao escoamento transverso e ao cálculo com fronteira lateral aberta como apresenta do na referência[2], obtém-se o seguinte balanço de energia:

$$\frac{1}{u_{i}^{"}} \frac{\partial h_{i}}{\partial t} + \frac{\partial h_{i}}{\partial x} = \frac{q_{i}^{'}}{m_{i}} - \sum_{j=1}^{N} (T_{i} - T_{j}) \frac{C'}{m_{i}} + \sum_{j=1}^{N} (h_{j} - h_{i}) \frac{w_{ij}^{'}}{m_{i}} + \sum_{j=1}^{N} (h_{j} - h_{j}) \frac{w_{ij}^{'}$$

469

(2)

onde u" é a velocidade efetiva para transporte de entalpia, h é a entalpia do fluido, q' é a taxa linear de transferência de calor na superfície do combustível, T é a temperatura do fluido, C' é o coeficiente de condução térmica, h* é a entalpia do escoamento transverso de dispersão, Q' é o fluxo de calor linear na fronteira lateral e \overline{q} é a densidade linear média de potência adicionada ao subc<u>a</u> nal.

† parcela referente ao cálculo com fronteira lateral aberta.

Figura 3 : Volume de controle para a equação de conservação de energia.

O lado esquerdo da equação (2) descreve a contribuição tran siente para a taxa de variação da entalpia no subcanal (i) isto é,a taxa de acumulação de energia cinética, e a taxa de acumulação de energia interna. O primeiro termo do lado direito representa a taxa de variação de entalpia se não existe mistura térmica; o segundo termo, é a taxa de calor retirado por condução térmica na mistura; o terceiro e quarto termos representam, respectivamente, as taxas de entalpia transportada pela mistura turbulenta e pelo escoamento transverso de dispersão. Os dois termos finais nesta equação mostram as parcelas referentes ao cálculo com fronteira lateral aberta indicando, respectivamente, a fração de energia e a fração do trans porte de entalpia, cedida ou recebida pelo subcanal (i) que está na fronteira entre os subcanais (I) e (J) da ctapa de cálculo anterior.

Aplicando o conceito da conservação da quantidade de movimento ao volume de controle da figura 4, com as varcelas referentes ao escoamento transverso e ao cálculo com fronteira lateral aberta como desenvolvido na referência[2],

+ parcela referente ao cálculo com fronteira lateral aberta.

Figura 4 : Volume de controle para a equação de conservação da quantidade de movimento.

obtém-se o seguinte balanço de quantidade de movimento:

$$\frac{1}{A_{i}} \frac{\partial m_{i}}{\partial t} - 2u_{i} \frac{\partial \rho_{i}}{\partial t} + \frac{\partial p_{i}}{\partial x} = -\left(\frac{m_{i}}{A_{i}}\right)^{2} \left[a_{i}' + A_{i}\frac{\partial}{\partial x}\left(v_{i}'/A_{i}\right)\right] - \frac{g}{A_{i}} \left[a_{i}' + A_{i}\frac{\partial}{\partial x}\left(v_{i}$$

onde u é a velocidade efetiva para a quantidade de movimento, p é a pressão do fluido, a' é o coeficiente de perda de pressão por fricção

e forma, v'é o volume mássico efetivo para a quantidade de movimento, g é a aceleração da gravidade, θ' é o ângulo de orientação do c<u>a</u> nal de escoamento em relação à vertical, f_T é o fator da quantidade de movimento turbulento, u* é a velocidade do escoamento transverso de dispersão, F' é a força por unidade de comprimento na fronteira lateral aberta e F é a força por unidade de comprimento devida ao atrito do fluido com as paredes e grades espaçadoras.

Os dois primeiros termos do lado esquerdo da equação (3)representam a componente transiente do gradiente de pressão axial no subcanal (i), e o terceiro termo é o gradiente axial no subcanal (i). Os três primeiros termos do lado dircito da equação (3) descrevem · respectivamente, a perda de pressão por atrito e forma, o gradiente de pressão devido a aceleração do fluido e o gradiente de pressão gravitacional no subcanal (i). O quarto termo indica o transporte da quantidade de movimento turbulento devido à mistura encre os subcanais (i) e (j); o quinto termo é o transporte da quantidade de movimento devido ao escoamento transverso de dispersão entre os 'subcanais (i) e (j). Os dois últimos termos do lado direito representam respectivamente, a fração da quantidade de movimento e o transporte da quantidade de movimento devido a fração de massa, cedida ou recebida pelo subcanal (i) que está na fronteira entre os subcanais (I) e (J) da etapa de calculo anterior.

2.4 - Equação de conservação da quantidade de movimento transversa

Esta equação manteve-se inalterada em relação a versão or<u>i</u> ginal do código[1-3].

3. <u>DETERMINAÇÃO DOS TERMOS PARA O CÁLCULO COM FRONTEIRA LATE-</u> RAL ABERTA

A avaliação dos termos para cálculo com fronteira lateral aberta[2] é possível somente a partir da segunda etapa de cálculo que visa o detalhamento dos resultados obtidos na etapa precedente. Assim, desejando-se analisar uma região específica de um canal, considera-se esta região, agora, como um canal, trazendo os resultados das fronteiras conforme obtidos na etapa anterior do estudo. É impor tante considerar que ao transformar o subcanal da etapa anterior em canal da nova etapa, deve-se considerar uma distribuição adequada dos valores de massa, energia e quantidade de movimento da fronte<u>i</u> ra para todos os subcanais da nova fronteira.

3.1 - <u>Vazão mássica por unidade de comprimento na fronteira lateral</u> (m')

O valor deste termo é obtido atribuindo-se ao subcanal (i) uma fração do escoamento transverso de dispersão existente entre os subcanais (I) e (J) da etapa de cálculo precedente; assim:

$$m_{i}' = -w_{IJ} \cdot \frac{s_{i}}{s_{IJ}}$$
(4)

onde s_i é o espaçamento do subcanal de fronteira (i) pertencente ao subcanal (I) da etapa de cálculo anterior; e s_{IJ} é o espaçamento existente entre os subcanais (I) e (J) na etapa de cálculo anterior.

3.2 - Fluxo de calor linear na fronteira lateral (Q')

Este termo é obtido pela fração da energia transferida pelos escoamentos transversos de dispersão e turbulento e por condução térmica, existentes entre os subcanais (I) e (J) da etapa de cálculo precedente, ou seja:

$$Q'_{i} = - [h^{*}_{I} w_{IJ} + (h_{I} - h_{J}) w'_{IJ} + (T_{I} - T_{J})C'_{IJ}] \frac{s_{i}}{s_{IJ}}$$
(5)

5.3 - Força por unidade de comprimento na fronteira lateral (F')

A avaliação deste termo é dada pela fração da quantidade de movimento transferida pelos escoamentos transversos de dispersão e turbulento, existentes entre os subcanais (I) e (J) da etapa de cálculo anterior, assim:

$$F'_{i} = - [u_{I}^{*} w_{IJ} + f_{T} (u_{I} - u_{J}) w'_{IJ}] \frac{s_{i}}{s_{IJ}}$$
(6)

4. <u>VERIFICAÇÃO DA VALIDADE DO METODO DE FRONTEIRA LATERAL A-</u> BERTA

A fim de avaliar a validade do método utilizando fronteira

lateral aberta para análise termo-hidráulica de núcleos de reatores à água leve pressurizada, utilizou-se dados do reator Angra I[4].

O modelo computacional aqui adotado, denominado modelo de três etapas, é o mesmo apresentado na figura 1. Assim, o canal da primeira etapa representa 1/4 do núcleo do reator Angra I e seus subcanais indicam os elementos combustíveis. O subcanal quente desta primeira etapa é o canal da segunda etapa que tem seus subcanais representados conforme indicado também na figura 1. Raciocínio análogo é feito ao passar da segunda para a terceira etapa.

A validade do método de fronteira lateral aberta pode ser visualizada pura e simplesmente pelos resultados obtidos em cada uma das etapas. Assim, os resultados obtidos para o subcanal estudado em uma das três etapas têm que ser idênticos aos resultados médios do canal da etapa seguinte, se um estudo detalhado for feito para o citado subcanal.

Os resultados obtidos nesta análise, pelo código CB3PMF, para as três etapas de cálculo podem ser vistos nas tabelas 1 à 4.

Como exemplo, as informações obtidas (tabela 1) para o sub canal quente, nº 17, da primeira etapa de cálculo têm que ser iguais aos resultados médios do canal (tabela 2) da segunda etapa de cálcu lo, que é um estudo detalhado do subcanal nº17 da primeira etapa, como mostrado na figura 1.

Pode-se verificar desses resultados que o erro máximo encontrado, entre as etapas de cálculo, para as diferenças entre os valeres de saída e de entrada do canal e subcanal é da ordem de <u>+</u> 0,50%. Verifica-se portanto, que o método de fronteira lateral abe<u>r</u> ta é válido como uma ferramenta de cálculo na análise termo-hidráulica de núcleos de reatores tipo água pressurizada.

5. CONCLUSÕES

O cálculo com fronteira lateral aberta permite manter em etapas de cálculo mais detalhadas, a influência das regiões externas do canal em estudo através das frações de massa, energia e quan tidade de movimento que são trocadas lateralmente entre o canal

· 474

ç

Distância (m)	Perda de pressão (bar)	Encalpia (KJ/Kg)	Temperatura (°C)	Massa volumétrica (Kg/m³)	Vazão mássica (Kg/s)	Fluxo māssico (Kg/sm²)
0,00	1,60	1,276,51	287,50	736,21	68,50	3.303,64
0,39	1,45	1.284,10	288,92	733,65	70,95	3,421,77
0,77	1,27	1.303,85	292,56	726,44	72,13	3.559,02
1,16	1,19	1.333,66	297,97	715,70	72,72	3,588,17
1.54	1,01	1.370,14	304,45	702,25	72,79	3.591,43
1,93	0,82	1.409,63	311,26	657,19	72,62	3.583,02
2,31	0,64	1.448,20	317,68	671,97	72,41	3.572,85
2,69	0,55	1.481,88	323,10	658,20	72,17	3.561,19
3,08	0,36	1.506,93	327,01	647,47	71,96	3,550,47
3,46	0,17	1.520,51	329,08	641,54	71,60	3.545,59
3,85	0,00	1.522,63	329,40	640,74	71,35	3,545,05
]					

. .

.

Tabela 1 - Resultados para o subcanal quente, nº 17, da primeira etapa de cálculo.

. •	Distância (=)	ferda de pressão (bar)	Entalpia (KJ/Kg)	Temperatura ([°] C)	Massa volumétrica (Kg/m³)	Vazão mássica (Kg/s)	Fluxo mássico (Kg/s)
	0,00	· 1,60	1.276,51	287,50	736,21	68,50	3,303,64
	0,39	1,45	1.284,10	288,92	733,65	70,95	3,421,77
	0,77	• 1,27	1.303,82	292,56	726,44	72,13	3,559,15
	1,16	1,19	1.333,64	297,97	715,70	72,72	3.588,31
	1,54	1,01	1.370,09	304,44	702,25	72,79	3,591,70
	1,95	0,82	1.409,56	311,24	687,19	72,62	3,583,16
	2,31	0,64	1.448,15	317,67	671,97	72,41	3,572,98
	2,69	0,55	1.481,79	323,08	658,20	72,18	3.561,32
	3,08	0,36	1.506,84	326,99	. 647,47	71,96	3,550,61
	3,46	0,17	1.520,42	329,06	641,70	71,86	3,545,59
	3,85	0,00	1.522,56	329,38	640,74	71,85	3.545,18
	1	1					l

Tabela 2 - Resultados médios para o canal da segunda etapa de Cálculo.

.

.

. 475

Distância (m)	Perda de pressão (bar)	Entalpia (KJ/Kg)	Temperatura ([°] C)	Massa volumétrica (Kg/m³)	Vazão mássica (Kg/s)	Fluxo măssico (Kg/sm²)
0,00	1,60	1.276,51	287,50	736 .21	5,24	3.303,64
0,39	1,45	1.284,66	289,02	733,32	5,36	3.380,26
0,77	1,27	1.305,68	292,89	725,80	5,45	3.527,28
1,16	1,19	1.337,25	298,61	714,26	5,48	3.543,69
1,54	1,01	1.375,51	305,38	700,17	5,49	. 3.554,54
1,93	0,82	1.416,68	312,44	684,47	5,49 .	3.551,83
2,31	0,64	1.456,69	319,07	668,61	5,48	3.546,13
2,69	0,55	1.491,16	324,56	654,35	5,44	3.519,96
3,08	0,36	1.516,28	328,43	643,46	5,43	3.514,94
3,46	0,17	1.529,07	330,37	637,85	5,44	3.517,65
3,85	0,00	1.529,75	330,47	637,53	5,44	3.518,06
	l					

Tabela 3 - Resultados para o subcanal quente, nº 11, da segunda etapa de calculo.

Perda de pressão Encalpia Temperatura Massa volumétrica Vazão mássica Fluxo mássico Distância (KJ/Kg) (°c) (Kg/m³) (Kg/s) (Kg/sm²) (m) (bar) 3.303,64 736,21 0,00 1,59 1.276,51 287,50 5,24 1.284,66 289,02 733,32 5,36 3.380,26 0,39 1,44 3.527,14 1.305,73 292,90 725,80 5,45 0,77 1,27 1.337,34 714,26 5,48 3.543,55 1,16 . 1,19 298,63 3.554,54 -1.375,72 700,17 1,54 305,42 5,49 1,00 1,93 684,31 3.551,69 0,82 1.417,03 312,51 5,49 1.457,18 3,546,00 668,45 5,48 2,31 0,63 319,15 1.491,86 324,67 654,03 5,44 3.519,82 2,69 0,55 3.514,94 3,08 0,36 1.517,16 328,57 643,14 5,43 1.530,14 3.517,51 3,46 0,17 330,53 637,37 5,44 1.530,91 637,05 5,44 2.518,05 3,85 0,00 330,64

.

;

; 5

ł

Tabela 4 - Resultados médios para o canal da terceira etapa de cálculo.

analizado e seus vizinhos da etapa anterior.

A condição de fronteira lateral aberta acrescenta à face externa do modelo físico do canal analisado características importantes que os modelos computacionais identificam somente a nível de subcanais, tais como gradientes radiais de pressão, turbulência do fluxo e dispersão do fluido devida às grades espaçadoras, permitindo, assim, reter as características de mistura que existiam entre o canal analisado e seus vizinhos da etapa anterior. Estas características existem sempre a nível de subcanais de uma mesma etapa.

O método de fionteira lateral aberta permite maior flexibilidade no emprego de coeficientes e correlações utilizadas pelo código face a maior semelhança geométrica entre subcanais de uma mesma etapa de cálculo. Conforme discutido na referência[2], a execução do modelo de três etapas necessitou 71,69 s de CPU, ao passo que este mesmo modelo executado sem a opção de fronteira lateral aberta. e assim, perdendo todas as informações externas ao canal, gastou 54,80 s de CPU. A análise em uma única fase, constituida pela superposição das três etapas apresentadas na figura 1, requereu 78.45 s de CPU. Verifica-se então, que o acréscimo no tempo computacional pode ser considerado desprezivel face às informações obtidas e ao baixo tempo de CPU necessário para execução do código. A precisão dos resultados é bastante satisfatória, como visto no item anterior.

Conclui-se que o método de fronteira lateral aberta é válido, bastante confiável e bem aplicável à análise termo-hidráulica em estado estacionário. Este método pode ser considerado de grande valia na fase de projeto de núcleo, pois utilizando-se do processo de detalhar as regiões quentes e de interesse em várias etapas de cálculo, pode-se obter, naturalmente, o subcanal quente representado por quatro barras combustíveis.

O método de fronteira lateral aberta foi adicionado, opcionalmente, no código COBRA-IIIP[1] gerando a nova versão denominada código CB3PMF[2].

BIBLIOGRAFIA

- [1] MASTERSON, R. E., "Improved Multidimensional Numerical Methods for the Steady State and Transient Thermal-Hydraulic Analysis of Fuel Pin Bundles and Nuclear Reactor Cores" D.Sc. Thesis, Massachusetts Institute of Technology, 1977.
- [2] BORGES, R. C., "Análise Termo-Hidráulica de Reatores Tipo PWR Utilizando o Método de Fronteira Lateral Aberta", Tese de Mestrado, Instituto Militar de Engenharia, Rio de Janeiro, 1980.
- [3] ROWE, D. S., "COBRA-IIIC : A Digital Computer Program for Steady State and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements", BNWL - 1695,1973.
- [4] "Final Safety Analysis Report Angra I", Furnas Centrais Elétri cas S.A., Rio de Janeiro, 1976.