#### UTILIZAÇÃO DO MÉTODO DE RIETVELD NA ANÁLISE QUANTITATIVA DE FASES OBTIDAS NA SÍNTESE DA HÁ COM ADIÇÃO DO Mg<sup>2+</sup>

D.S.Gouveia, A.C.S.Coutinho, L.M.F.Guimarães, A.H.A.Bressiani, J.C.Bressiani Instituto de Pesquisas Energéticas e Nucleares Av. Prof. Lineu Prestes, 2242 – CCTM – 05508-000 - São Paulo-SP, Brasil e-mail: dsgouvei@ipen.br

### RESUMO

A estrutura cristalina da HA permite substituições catiônicas que podem alterar a cristalinidade e o parâmetro de rede do material. O  $Mg^{2+}$  é um dos principais íons utilizados para substituir o íon  $Ca^{2+}$  em apatitas biológicas. O aumento da concentração de  $Mg^{2+}$  na HA favorece a diminuição na cristalinidade, o aumento na incorporação do  $HPO_4^{2-}$  e o aumento no grau de dissolução na estrutura. Neste trabalho, foram sintetizados pós de HA pelo método da neutralização, com velocidade de adição do  $H_3PO_4$  de 8mL/min no  $Ca(OH)_2$ . Diferentes concentrações de Mg (0,0; 0,24; 0,36; 0,41 e 0,49% em massa)foram utilizadas. Os pós calcinados a  $800^{\circ}$ C/3h foram caracterizados por DRX, FTIR, IV, BET, MET. A quantificação das fases, parâmetro de rede e volume da célula unitária foram avaliados pelo método de Rietveld. Para adições acima de 0,36% em massa de  $Mg^2$ , a fase whitlockite é observada.

Palavras-chave: Hidroxiapatita, Mg<sup>2</sup>, Rietveld.

## INTRODUÇÃO

A Hidroxiapatita é um biomaterial com excelente biotatividade e biocompatibilidade com os tecidos ósseos. Sua estrutura permite substituições catiônicas e aniônicas isomorfas com facilidade tendo em vista que o componente majoritário dos tecidos biológicos como dentes, ossos e alguns esqueletos de invertebrados contêm inúmeras substâncias inorgânicas<sup>(1)</sup>: o Ca<sup>2+</sup>, por exemplo, pode ser substituído por Mg<sup>2+</sup>, Pb<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Sr<sup>2+</sup>, Co<sup>2+</sup>, Fe<sup>2+</sup>, etc; os grupos PO<sub>4</sub><sup>3-</sup> por carbonatos e vanadatos e as hidroxilas por carbonatos, flúor e cloro. Estas

# 51º Congresso Brasileiro de Cerâmica 3 a 6 de junho de 2007 - Bahia Othon Palace Hotel - Salvador, BA

substituições podem alterar a cristalinidade, a morfologia, os parâmetros de rede, as dimensões dos cristais, a estabilidade, a bioatividade, biocompatibilidade, solubilidade e propriedades de adsorção da estrutura da hidroxiapatita <sup>(2,3,4)</sup>.

A adição do magnésio na fase apatita é de grande interesse devido a seu significante impacto no processo de mineralização e também sua influência na formação e crescimento de cristais<sup>(5)</sup>. Outro aspecto relevante é que pode-se obter materiais com características específicas mimetizando a apatita biológica, a qual não é estequiométrica e contem imperfeições estruturais e defeitos bem como íons hospedeiros<sup>(4)</sup>. Em tecidos calcificados, a quantidade de Mg<sup>2+</sup> associada à fase apatita é maior no início do processo de remodelação óssea e diminui à medida que a calcificação aumenta<sup>(1,6)</sup>. Além disso, o magnésio inibe a cristalização da apatita em solução, desestabiliza a estrutura da HA e favorece sua conversão térmica dentro do  $\beta$ -TCP<sup>(5,7)</sup>. A quantidade de Mg<sup>2+</sup> pode variar de acordo com a aplicabilidade do material, sendo apenas necessário controlar o nível substitucional entre Ca<sup>2+</sup> e Mq<sup>2+</sup> durante a síntese <sup>(8)</sup>. O aumento da concentração de Mg na HA favorece a diminuição na cristalinidade, o aumento na incorporação do HPO42- e o aumento no grau de dissolução<sup>(2,9)</sup>. Entretanto, a incorporação de Mg<sup>2+</sup> na HA é limitada (máximo de 0,4% em massa de Mg) a não ser que outros íons, como carbonatos ou fluoretos sejam simultaneamente incorporados como par de substituições <sup>(1,9)</sup>. Por outro lado, estudos vêm mostrando que a substituição total do Mg na HA tem efeito tóxico<sup>(8)</sup>.

Tendo em vista a necessidade de se obter pós nanométricos e com características similares ao osso, o objetivo deste trabalho foi sintetizar pós de HA com diferentes concentrações de Mg em massa pelo método de neutralização mantendo a razão molar (Ca + Mg)/P = 1,67.

#### EXPERIMENTAL

A síntese para a obtenção da hidroxiapatita foi realizada pelo método de neutralização utilizando 0,3M  $H_3PO_4$ , 0,5M  $Ca(OH)_2$  e 0,5M  $Mg(OH)_2$  como precursores. As composições químicas foram fixadas  $Ca_{(10-x)}Mg_x(PO_4)_6(OH)_2$  quando x = 0,0, 0,1; 0,15; 0,17 e 0,2 o que corresponde a 0,0; 0,24; 0,36; 0,41 e 0,49% em massa de  $Mg^{2+}$  respectivamente mantendo a relação (Ca+Mg)/P = 1,67 (Tabela I).

| _ |         |      |                                                                                         |  |  |  |
|---|---------|------|-----------------------------------------------------------------------------------------|--|--|--|
| _ | Amostra | %Mg  | Composição Química                                                                      |  |  |  |
| - | HA8     | -    | Ca <sub>10</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub>                      |  |  |  |
|   | Mg0,24  | 0.24 | Ca <sub>9,9</sub> Mg <sub>0,1</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub>   |  |  |  |
|   | Mg0,36  | 0.36 | Ca <sub>9,85</sub> Mg <sub>0,15</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub> |  |  |  |
|   | Mg0,41  | 0.41 | Ca <sub>9,83</sub> Mg <sub>0,17</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub> |  |  |  |
|   | Mg0,49  | 0.49 | Ca <sub>9,9</sub> Mg <sub>0,2</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub>   |  |  |  |
|   |         |      |                                                                                         |  |  |  |

| Tabela I - | Composição | química | utilizada | na síntese | da HA |
|------------|------------|---------|-----------|------------|-------|
| i abola i  | Composição | quinnou | aunzaaa   |            |       |

Para a preparação das suspensões e soluções foi utilizada água destilada previamente fervida. A suspensão de hidróxido de cálcio foi preparada em becker e submetida a agitação constante. A suspensão de  $Mg(OH)_2$  foi adicionada no mesmo becker e após um período de ~10 min iniciou-se a adição de  $H_3PO_4$  a uma velocidade de adição de 8,0 mL/min<sup>(10)</sup>. Durante todo o experimento o pH das suspensões foi monitorado por um pHmetro DM-20 DIGIMED (Figura 1).



Figura 1 - Sistema utilizado durante a síntese da HA

Após a reação, obteve-se um precipitado o qual foi deixado em digestão por 24 horas à temperatura ambiente para que ocorresse o crescimento do cristal. O monitoramento do pH também foi verificado nesta etapa para observar o que ocorre durante o período de crescimento do cristal. Os precipitados foram filtrados em funil de buckner, lavados e secos a 60 °C/24h em estufa.

O material calcinado a 800°C/3h foi caracterizado por DRX (Rigaku, modelo Multiflex, Cuk $\alpha$  ( $\lambda$ =0,1542nm)) e as fases obtidas quantificadas pelo método de Rietveld. A razão (Ca+Mg)/P foi quantificada utilizando um Espectrômetro de Emissão Atômica com fonte de plasma induzido ICP-OES (M120 SPECTRO). Para análise de infravermelho, as amostras foram misturadas em KBr, prensadas na forma de pastilhas e analisadas por meio da técnica de espectroscopia no infravermelho por transformada de Fourier (FTIR) (Thermo Nicolet 670 - FTIR – NEXUS). A área de superfície específica dos pós foi realizada adotando o método de adsorção gasosa (BET – Micrometric modelo ASAP 2000). A morfologia dos pós foi avaliada por microscopia de Transmissão (Philips CM 200).

### **RESULTADOS E DISCUSSÕES**

Análise de DRX para os pós precipitados sintetizados em diferentes composições indicou a presença da fase HA ( $Ca_{10}(PO_4)_6(OH)_2$ ) quando comparada com os dados cristalográficos da ficha JCPDS 9-432 (Figura 2). Observa-se um alargamento dos picos de difração atribuídos à baixa cristalinidade do pó precipitado. Nenhuma modificação estrutural foi observada quando o magnésio foi incorporado ao material. As análise de DRX dos pós precipitados com e sem magnésio podem resultar em padrões de difração análogos ao da HA<sup>(5)</sup>.



Figura 2 - Difração de raios X dos pós precipitados

# 51º Congresso Brasileiro de Cerâmica 3 a 6 de junho de 2007 - Bahia Othon Palace Hotel - Salvador, BA

O tratamento térmico destes precipitados a 800°C durante 3 horas levou ao aumento da cristalinidade da fase HA para as amostras em estudo. Uma segunda fase Whitlockite (JCPDS 9-169) foi observada quando 0,41% de Mg em massa foi adicionado à estrutura, ou seja, quando o limite de substituição do Mg<sup>2+</sup> foi ultrapassado (Figura 3). Resultados similares foram obtidos por Bertoni et al (1998), Kim et al (2003) e Suchaneck et al (2004) que sintetizaram pós de HA variando a quantidade de Mg<sup>2+</sup> em 0,5 a 1,0% em massa, por diferentes rotas, e observaram a formação das fases HA e Whitlockite em todas as composições<sup>(1,7,8)</sup>.



Figura 3 - Difração de raios X para os pós calcinados a 800°C/3h. (\*) HA, (•) fase whitilockite

Para quantificar as fases presentes nas diferentes composições, utilizou-se o refinamento pelo método de Rietveld (Tabela II). Os valores obtidos estão de acordo com os padrões de DRX. HA8 apresentou 100% da fase apatita hexagonal. A completa substituição do Mg<sup>2+</sup> pelo Ca<sup>2+</sup> foi observada nas composições Mg0,24 e Mg0,36 favorecendo a formação de 100% da fase HA. Os resultados obtidos indicam que houve a formação de uma solução sólida<sup>(11)</sup>. Um aumento na concentração de Mg<sup>2+</sup> (≥0,41% em massa) favoreceu a formação da fase whitlockite. À medida que a quantidade de magnésio foi adicionada na estrutura, a porcentagem da fase whitlockite aumentou. Este aumento pode estar relacionado ao limite máximo de substituição do Mg<sup>2+</sup> dentro da rede da HA. Em todas as composições não se observou variações no parâmetro de rede e no volume da célula unitária.

Tabela II - Porcentagem de fase formada, parâmetro de rede e volume da célula para as diferentes composições calcinadas a 800°C/3h

| Amostras | Fase | % de fase<br>formada | Parâmetros     | Vol. da célula<br>unitária (ų) |            |
|----------|------|----------------------|----------------|--------------------------------|------------|
|          |      |                      | a = b          | C                              |            |
| HA8      | HA   | 100,0                | 9,4184±0,0004  | 6,8872±0,0003                  | 529,1±0,1  |
| Mg0,24   | HA   | 100,0                | 9,4282±0,0002  | 6,8876±0,0001                  | 530,2±0,1  |
| Mg0,36   | HA   | 100,0                | 9,4216±0,0003  | 6,8816±0,0002                  | 529,9±0,1  |
| Ma0 41   | HA   | 86,0±0,5             | 9,4269±0,0004  | 6,8857±0,0002                  | 529,9±0,1  |
| Nigo,+1  | W    | 14,0±0,5             | 10,3497±0,0003 | 37,1259±0,0001                 | 3444,0±0,1 |
| Ma0 49   | HA   | 82,7±0,4             | 9,4220±0,0002  | 6,8817±0,0001                  | 529,1±0,1  |
| 10190,49 | W    | 17,3±0,3             | 10,3554±0,0001 | 37,1486±0,0001                 | 3449,9±0,1 |

A identificação das bandas correspondentes aos grupos funcionais foi avaliada por meio da técnica de espectroscopia no infravermelho por transformada de Fourier (FTIR). Os resultados de IV para os pós calcinados a 800°C/3h apresentaram bandas características correspondentes aos fosfatos de cálcio (Figura 4)<sup>(10,12)</sup>.



Figura 4 - Espectro de infravermelho das amostras calcinadas a 800°C/3h

As bandas em 474, 571, 602, 962, 1043 e 1092 cm<sup>-1</sup> foram atribuídas ao grupo  $PO_4^{3-}$ . A 633 e 3572 cm<sup>-1</sup> correspondem ao estiramento do grupo OH<sup>-</sup> e em 3572 e 1635 cm<sup>-1</sup> à água adsorvida ou estrutural. Observa-se ainda bandas em 873, 1384 e 1457 cm<sup>-1</sup> atribuídas ao íon carbonato (CO<sub>3</sub><sup>2-</sup>). Alguns autores atribuem a banda em

873 cm<sup>-1</sup> ao íon hidrogenofosfato e não ao íon carbonato. Contudo, como foi observado na literatura, o aparecimento de bandas nas regiões de 1384 e 1457 cm<sup>-1</sup> confirma que a banda em 873 cm<sup>-1</sup> é característica do grupo  $CO_3^{2-(8,12)}$ .

Análise química dos pós calcinados a 800°C/3h apresentou razão (Ca+Mg)/P superior a 1,67 referente a HA teórica para a amostra HA8 e, valores inferiores para as composições com Mg<sup>2+</sup>. É importante ressaltar que o hidróxido de cálcio utilizado durante a síntese, contem uma pequena fração de Mg(OH)<sub>2</sub>. De acordo com os resultados da Tabela III, a amostra HÁ8 contém uma pequena fração de Mg<sup>2+</sup> em mols. Um aumento no número de mols de Mg é observado quando a quantidade de Mg<sup>2+</sup> é adicionada na estrutura A razão (Ca+Mg)/P para as amostras variou de 1,78 a 1,58. Observa-se uma redução na razão (Ca+Mg)/P à medida que a concentração de Mg<sup>2+</sup> aumenta favorecendo a formação de uma HA deficiente em cálcio<sup>(5)</sup>. Esta redução pode estar relacionada à formação da fase whitilockite (Tabela III).

| Tabela   |      | Razão   | molar   | (Ca+Mg)/P    | е  | área               | de | superfície | especificas | para | as |
|----------|------|---------|---------|--------------|----|--------------------|----|------------|-------------|------|----|
| diferent | es d | composi | ções ca | lcinadas a 8 | 00 | <sup>o</sup> C/3h. |    |            |             |      |    |

| Amostras | Nº mols<br>calculado |   |      | N <sup>o</sup><br>calcina | ² mols ap<br>ação (80 | oós<br>0⁰C/3h) | (Ca+Mg)/P | BET (m <sup>2</sup> /g) |  |
|----------|----------------------|---|------|---------------------------|-----------------------|----------------|-----------|-------------------------|--|
|          | Са                   | Ρ | Mg   | Са                        | Р                     | Mg             | 800°C/30  | 000°C/311               |  |
| HA8      | 10                   | 6 | 0    | 9,86                      | 5,57                  | 0,05           | 1,77±0,03 | 31,64±0,14              |  |
| HAMg0,24 | 9,9                  | 6 | 0,1  | 9,78                      | 6,12                  | 0,16           | 1,62±0,04 | 20,57±0,11              |  |
| HAMg0,36 | 9,85                 | 6 | 0,15 | 9,89                      | 6,23                  | 0,20           | 1,62±0,07 | 22,46±0,14              |  |
| HAMg0,41 | 9,83                 | 6 | 0,17 | 9,82                      | 6,23                  | 0,23           | 1,61±0,08 | 18,71±0,13              |  |
| HAMg0,49 | 9,8                  | 6 | 0,2  | 10,03                     | 6,50                  | 0,26           | 1,58±0,05 | 19,25±0,07              |  |

A morfologia dos pós calcinados a 800°C durante 3 horas foi avaliada por microscopia eletrônica de transmissão (MET). Pós nanométricos são observados em todas as micrografias. Observa-se que as partículas encontram-se aglomeradas. A adição do Mg<sup>2+</sup> na estrutura aumentou o estado de aglomeração dos pós. Estes resultados estão coerentes com os resultados de BET onde foi observada uma redução na área de superfície especifica com a adição do Mg quando comparado com HA8 (Tabela III). Pela microscopia eletrônica de transmissão não foi possível identificar a fase whitilockite.





(a)

(b)





Figura 5 Micrografia das amostras calcinadas a 800°C/3h. Sendo (a) HA8, (b) Mg0,24, (c) Mg0,36, (d) Mg0,41 e (e) Mg0,49

#### CONCLUSÕES

Pós nanométricos de HA foram obtidos pelo método de neutralização. A adição do Mg<sup>2+</sup> refletiu na quantidade de fases obtidas. O método de Rietveld foi efetivo para comprovar o limite de incorporação do magnésio na estrutura da HA. É possível incorporar 0,36% em massa de Mg<sup>2+</sup> HA sem que haja formação de outras fases. Há uma diminuição na área de superfície e da razão (Ca+Mg)/P dos pós, em comparação a HA8, quando o magnésio é adicionado. Com adição de 0,41% em massa de Mg<sup>2+</sup> a fase whitlockite foi observada. Este resultado comprova o limite de incorporação de até 0,4 % em massa de Mg<sup>2+</sup>, como observado na literatura.



### AGRADECIMENTOS

CNPq, FAPESP, Laboratório de Microscopia do IFUS, em especial à Simone, Centro de química e Meio Ambiente - CQMA

### REFERENCIA

- 1. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C. Chung, Y.H. Kim, Biomaterials 24 (2003) 1389–1398.
- L.L. Hench, J. Wilson, Introduction to Bioceramics. World Scientific Publishing Co., 1ed, 1993.
- E. Mavropoulos, A Hidroxiapatita como Absorvedor de Metais. Dissertação de Mestrado, Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública; 1999. 105 p.
- 4. L. Bertinetti, A. Tampieri, E. Landi, G. Martra, S. Coluccia, Journal of European Ceramic Society 26 (2006) 987-991.
- 5. S. Kannan , I.A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, Journal of Solid State Chemistry 178 (2005) 3190-3196
- A. Bandyopadhayay, S. Bernard, W. Xue, S. Bose, J. Amer. Ceram. Society 89, (9) (2006) 2675-2688.
- E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, N. Roveri, Journal of Inorganic Biochemistry 72 (1998) 29-35.
- 8. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, K.S. Ten-Huisen, Biomaterials 25 (2004) 4647–4657.
- 9. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, K.S. Ten-Huisen, Journal of Solid State Chemistry 177 (2004) 793-799.
- 10. D.S. Gouveia, A.H.A. Bressiani, J.C. Bressiani, Materials Science Forum, 530-531 (2006) 593-598.
- W. D. Callister, Ciência e Engenharia de Materiais: Uma Introdução 5º edição, Edit. LTC. Rio de Janeiro 2000.
- A. Slosarczyk, C. Paluszkiewicz, M. Gawlicki, Z. Paszkiewicz, Ceramics International 23 (1997) 297-304.



## PHASE CHARACTERIZATION USING THE RIETVELD METHOD IN HA AND Mg<sup>2+</sup>-HA CERAMICS PRODUCED BY NEUTRALIZATION SYNTHESIS

## ABSTRACT

Hydroxyapatite is the structural model for the inorganic bone tissue and its lattice can accommodate cationic substituents inducing modifications of the crystallinity and lattice parameters. Among substituting cations,  $Mg^{2+}$  is widely used as substitute of  $Ca^{2+}$  on biological apatite. Incorporation of  $Mg^{2+}$  into hydroxyapatite structure inhibits apatite crystallization in solution and destabilizes the structure of hydroxyapatite. In this work, hydroxyapatite powders were synthesis by neutralization method. The addition rate of  $H_3PO_4$  into  $Ca(OH)_2$  was 8mL/min. During synthesis, different amounts of Mg (0,0; 0,24; 0,36; 0,41 and 0,49 wt %) was added. Calcined powders at  $800^{\circ}C/3h$  were characterized by XRD, FTIR, IR, BET and TEM. Quantitative analyses were performed using Rietveld method. For additions higher than 0,36wt% of  $Mg^{2+}$ , the whitlockite phase was observed.

Key-words: Hydroxyapatite, Mg<sup>2</sup>, Rietveld