INFLUÊNCIA DO TAMANHO DOS CÁTIONS DE TERRAS RARAS NA DENSIFICAÇÃO E MICROESTRUTURA DO NITRETO DE SILÍCIO

Guedes e Silva, C.C.¹, Bressiani, A.H.A.² e Bressiani, J.C.²

4141-4@ctmsp.mar.mil.br

¹Laboratório de Materiais – CTMSP – Estrada Sorocaba-Iperó, Km 12,5 - Iperó - SP
²Instituto de Pesquisas Energéticas e Nucleares – IPEN – Travessa R, 400, Cidade
Universitária - São Paulo - SP

RESUMO

Vários aditivos vêm sendo empregados a fim de se promover a sinterização via fase líquida do nitreto de silício. Dentre eles, os óxidos de terras raras têm sido destacados por possibilitarem a formação de materiais de alta densidade com fases refratárias nos contornos de grão. Este estudo visa determinar a variação da densificação e da microestrutura de amostras de nitreto de silício aditivadas com La₂O₃, concentrado de La₂O₃ e Gd₂O₃, juntamente com Al₂O₃. O comportamento de densificação destes materiais foi estudado por meio de um dilatômetro para alta temperatura, até 1750°C com uma hora de patamar nesta temperatura . As amostras sinterizadas foram caracterizadas quanto ao tamanho e forma dos grãos por microscopia eletrônica de varredura e análise de imagem. Os resultados obtidos mostraram que a presença de cátions de terras raras com raio iônico pequeno produzem materiais com uma microestrutura composta por grãos com maior razão de aspecto, mas conduzem a um menor grau de densificação.

Palavras chave: terras raras, raio iônico, Si₃N₄, microestrutura, densificação

INRODUÇÃO

Por ser uma cerâmica covalente e apresentar alta pressão de vapor a temperaturas elevadas, é muito difícil a densificação do nitreto de silício por mecanismos de difusão em estado sólido, havendo a necessidade de se empregar aditivos que promovem a sinterização via fase líquida. Os aditivos de sinterização reagem com a sílica da superfície do pó de Si₃N₄, formando uma fase líquida, onde ocorre a reação de dissolução do α -Si₃N₄ e a reprecipitação na fase β -Si₃N₄¹.

O tipo e a quantidade de aditivos de sinterização determinam a temperatura na qual a densificação começa e a taxa com que ocorre a sinterização. Além disso, determinam também a morfologia dos grãos de β - Si₃N₄ e as características da fase do contorno de grão, que vão controlar as propriedades do material, principalmente a altas temperaturas.

Os principais aditivos utilizados são MgO, Al₂O₃, SiO₂ e Y₂O₃, sendo a mistura Y₂O₃ + Al₂O₃ a mais empregada². Outros aditivos alternativos estão sendo usados para substituir o Y₂O₃, como por exemplo CeO₂^{3,4}, La₂O₃^{5,6} e Yb₂O₃^{7,8}. Os óxidos de terras raras têm se mostrado muito eficientes como aditivos de sinterização de Si₃N₄ por promoverem a densificação e formarem fases de alta viscosidade nos contornos de grão, além de possibilitarem a formação de fases cristalinas durante o processo de resfriamento ou após tratamentos térmicos específicos, dando origem a materiais com melhor resistência mecânica em temperaturas elevadas^{3,9,10}.

Hirosaki et al.¹¹ concluíram que ao utilizar mais de um óxido de terras raras, o Si₃N₄ densifica a temperaturas mais baixas do que quando se utiliza um único óxido. Tais autores estudaram a densificação de Si₃N₄ com 10% em mol de aditivos constituídos por mais de um óxido do tipo Y₂O₃-TR₂O₃ (TR = Ce, Nd, La e Sm), e descobriram que a mistura de aditivos permite sinterizar Si₃N₄ a temperaturas menores que com a adição exclusiva de Y₂O₃.

Shelby e Kohli¹² realizaram um estudo com vidros aluminossilicatos de terras raras e observaram que algumas propriedades destes vidros, como temperatura de amolecimento, coeficiente de expansão térmica e índice de refratariedade, variam linearmente com o raio dos íons de terras raras. Isto acontece porque a resistência de vidros de sílica é fortemente dependente da ligação entre os cátions e os ânions vizinhos.

Um vidro com uma estrutura mais resistente é formado quando os cátions dos aditivos utilizados têm carga elevada e, conseqüentemente, raio pequeno. Portanto, o papel estrutural dos íons nos vidros é determinado pelo seu tamanho, que controla o número de coordenação, e pela carga, que juntamente com o tamanho, controla a resistência das ligações formadas

com os ânions vizinhos. As propriedades do vidro, principalmente a altas temperaturas, é otimizada pela diminuição do raio do cátion do óxido de terras raras utilizado como aditivo¹³.

Com base no exposto, este trabalho tem como objetivo estudar o efeito do tamanho dos cátions de terras raras sobre a densificação e microestrutura do nitreto de silício. Para isso, utilizou-se óxidos de lantânio, concentrado de óxido de lantânio e óxido de gadolínio, juntamente com óxido de alumínio, como aditivos de sinterização do nitreto de silício. A utilização de Al₂O₃ tem se mostrado efetiva para promover sinterabilidade, quando comparada com o uso exclusivo do óxido de terras raras, devido à menor temperatura eutética da mistura, acarretando em um aumento da quantidade de fase líquida formada.

PROCEDIMENTO EXPERIMENTAL

Os materiais de partida utilizados foram Si_3N_4 (M11, Hermann C. Starck) com 92,7% de α -Si_3N_4 e 1,14% em massa de oxigênio, Al₂O₃ (99,9% de pureza, A16 SG da Alcoa), La₂O₃ (99,9% de pureza, Sigma), concentrado de La₂O₃ (75,6% de La, IPEN) e Gd₂O₃ (99,9% de pureza, CDTN).

Para a preparação das composições mostradas na Tabela 1, fez-se a moagem de cada uma delas em moinho de alta energia durante 4 horas a 300 rpm, utilizando-se esferas, vaso e haste de Si_3N_4 e álcool isopropílico como meio líquido. Após moagem, foi realizada a secagem e a desaglomeração dos pós.

Composição	% massa	% massa	% massa	% massa conc.	% massa
	Si_3N_4	Al_2O_3	La ₂ O ₃	de La ₂ O ₃	Gd_2O_3
75A25G	90	7,5	-	-	2,5
50A50G	90	5	-	-	5
25A75G	90	2,5	-	-	7,5
75A25L	90	7,5	2,5	-	-
50A50L	90	5	5	-	-
25A75L	90	2,5	7,5	-	-
50A50LC	90	5	-	5	-
50ALG	90	5	2,5	-	2,5

Tabela 1: Composições estudadas.

Foram compactadas pastilhas por prensagem uniaxial (50MPa) e isostática a frio (200MPa). O estudo dilatométrico foi realizado por meio de um dilatômetro NETZSCH, com taxa de aquecimento e de resfriamento de 20° C/min, fixando-se o patamar na temperatura de 1750°C por 1 hora, em atmosfera de N₂.

A distribuição das fases bem como a forma e a distribuição dos grãos foram observadas por meio dos microscópios eletrônicos de varredura JEOL – JXA- 6400 e PHILIPS XL30. Para a observação da distribuição e forma dos grãos, foi realizado nas amostras polidas, ataque químico com NaOH fundido, a 400°C por, aproximadamente, 2 minutos. A razão de aspecto dos grãos foi determinada por meio de um analisador de imagens (LECO – 2001) acoplado a uma câmera de vídeo.

RESULTADOS E DISCUSSÃO

Dilatometria

As curvas obtidas por dilatometria, apresentadas na Figura 1 mostram o comportamento de cada composição durante o processo de sinterização. A partir delas, é possível verificar a temperatura na qual se inicia a retração, bem como o grau de densificação para as amostras estudadas. O ponto onde começa a retração é a temperatura de formação do líquido (Tabela 2). Quando ele é atingido, a retração se inicia pelo rearranjo das partículas: é o estágio inicial da sinterização via fase líquida.

A Figura 1 e a Tabela 2 revelam que, na maioria das amostras, a retração teve início a temperaturas menores ou iguais a 1200°C, com exceção das amostras 25A75G, cuja retração foi iniciada a aproximadamente 1300 e 1450°C, respectivamente. Verifica-se, ainda, que:

a) as composições contendo La_2O_3 e Al_2O_3 começaram a retrair a temperaturas menores que aquelas contendo Gd_2O_3 e Al_2O_3 ;

b) a amostra 50ALG, com adição de La_2O_3 e Al_2O_3 juntamente com Gd_2O_3 , apresentou temperatura de início da retração menor que a amostra 50A50G, mas maior que 50A50L;

c) a amostra com concentrado de La_2O_3 (50A50LC) começou a retrair a uma temperatura maior que a amostra com La_2O_3 puro (50A50L).

Com base nestas observações, fica relativamente claro que a temperatura de formação do líquido varia levemente com o tipo de óxido de terras raras adicionado, sendo que cátions de terras raras de maior raio, como é o caso do La³⁺, diminui a temperatura eutética da mistura. Murakami et al.¹⁴ explicaram este fenômeno, supondo que há uma dependência entre

a energia de formação (Δ H) das fases sólidas coexistentes no líquido com o raio iônico do elemento de terras raras.

Figura 1: Curvas de densificação das amostras com adições de (a) Al₂O₃ e Gd₂O₃, (b) Al₂O₃ e La₂O₃.(c) La₂O₃ e Gd₂O₃ (e Al₂O₃ para 50LAG e 50A50LC).

Tabela 2: Temperatura (T) de formação do líquido para as diversas composições.

Amostra	T (°C)			
Amostras contendo $Gd_2O_3 + Al_2O_3$				
75A25G	1200			
50A50G	1200			
25A75G	1300			
Amostras contendo $La_2O_3 + Al_2O_3$				
75A25L	1100			
50A50L	1100			
25A75L	1080			
Amostras contendo misturas de óxidos de				
terras raras				
50A50LC	1150			
50ALG	1180			

Comparando-se as curvas de densificação das amostras que contêm Gd_2O_3 e Al_2O_3 em sua composição (Figura 1), pode-se observar que a amostra 50A50G retraiu cerca de 2% a mais que a amostra 75A25G e cerca de 3% a mais que 25A75G. Um comportamento diferente foi observado para as amostras contendo La_2O_3 e Al_2O_3 (Figura 1b), tendo em vista que a amostra 25A75L atingiu maior retração linear que a amostra 50A50L, que por sua vez, retraiu mais que a 75A25L.

Microestrutura

A forma e distribuição dos grãos de β -Si₃N₄ diferiram ligeiramente para cada composição estudada, mostrando ser dependentes da razão TR₂O₃:Al₂O₃ empregada e do óxido ou mistura de óxidos de terras raras adicionados.

A partir das Figuras 2 e 3, pode-se notar que a distribuição do tamanho dos grãos apresentou uma leve variação, em função da razão TR₂O₃:Al₂O₃, ainda que não tenha sido observada diferença significativa na razão de aspecto média dos grãos, com exceção da

amostra 50A50G (Figura 2b). Amostras com maiores frações em massa de alumina (75A25G e 75A25L), desenvolveram uma microestrutura constituída por grãos grandes e pequenos (Figura 2a e 2d). Iguais frações em massa de Al_2O_3 e La_2O_3 ou Gd_2O_3 (Figura 2b e 2e) resultaram na formação de uma microestutura mais homogênea quanto ao tamanho dos grãos, enquanto que, com a redução do teor de Al_2O_3 (Figura 2c e 2f), grãos maiores e homogêneos foram desenvolvidos.

Para amostras com frações em peso iguais de Al_2O_3 (como por exemplo, 50A50G, 50A50L, 50A50LC e 50ALG; 25A75G e 25A75L; 75A25G e 75A25L), a distribuição de tamanho de grão parece não ter sofrido alteração, independentemente do tipo e da mistura de óxidos de terras raras adicionados (Figura 4). Em contrapartida, a razão de aspecto média dos grãos foi modificada quando se utilizou misturas de óxidos de terras raras (Figura 5) e Gd₂O₃, no caso da amostra 50A50G (Figura 3a).

Os principais fatores que influenciam a razão de aspecto dos grãos são as propriedades do pó inicial de Si_3N_4 , o volume e a viscosidade da fase líquida e os parâmetros de processamento (como por exemplo, tempo e temperatura de sinterização). Como o pó de partida e os parâmetros de processamento foram os mesmos para todas as amostras, pode-se afirmar que a variação da razão de aspecto está associada à fase líquida formada.

A adição de Gd_2O_3 , nas amostras 50A50G e 50ALG, e de outros óxidos de terras raras, na amostra 50A50LC, pode ter promovido aumento da viscosidade da fase líquida, em comparação com a adição de La_2O_3 puro (50A50L). Este aumento da viscosidade, que é conseqüência provável do menor raio dos outros cátions de terras raras, em relação ao La^{3+} , pode ter influenciado a nucleação e o crescimento dos cristais, modificando sua razão de aspecto.

Sabe-se que tanto a velocidade de nucleação como a velocidade de crescimento dos cristais estão associadas à difusão dos átomos por meio do líquido. De acordo com a relação de Stokes-Einstein, o coeficiente de difusão (D_1) no líquido é dependente da viscosidade desse líquido (Equação 1)^{15,16}.

$$D_l = \frac{KT}{3\pi\lambda\eta} \tag{1}$$

onde:

K = constante dos gases;

T = temperatura;

 λ = distância alcançada pelo crescimento da interface e

 η = viscosidade do líquido.

Desta forma, líquidos de baixa viscosidade aumentam a mobilidade atômica e, conseqüentemente, a velocidade de nucleação e de crescimento. Como um grande número de núcleos são formados na presença de líquidos de baixa viscosidade, grãos de β -Si₃N₄ com menor razão de aspecto são desenvolvidos, devido ao rápido bloqueamento do crescimento dos cristais prismáticos³.

Adicionalmente, as diferenças de ligação e de densidade atômica geram variações nas energias de superfície nas diversas faces cristalográficas dos cristais¹ de β -Si₃N₄, resultando em velocidades de crescimento anisotrópicas, preferencialmente na direção do eixo *c*. Apesar dos átomos apresentarem uma tendência a migrarem para estes locais de menor energia, a presença de líquidos de baixa viscosidade acaba permitindo crescimento isotrópico, por ocasionar maior coeficiente de difusão, dando origem a grãos de pequena razão de aspecto. Na presença de líquidos de viscosidade elevada, a redução no coeficiente de difusão induz crescimento quase que exclusivamente nos sítios energeticamente mais favoráveis, ou seja, no plano basal. A transferência de material para estes locais, resulta numa distribuição heterogênea do líquido, com conseqüente incremento do gradiente de concentração, resultando em grãos com alta razão de aspecto¹⁷.

(b)

(c)

(f)

Figura 2: Micrografias eletrônicas de varredura por elétrons secundários da superfície polida e atacada quimicamente das amostras (a) 75A25G, (b) 50A50G, (c) 25A75G, (d) 75A25L, (e) 50A50L e (f) 25A75L

Figura 3: Distribuição da razão de aspecto dos grãos (a) para as amostras contendo Gd₂O e Al₂O₃ e (b) para as amostras contendo La₂O₃ e Al₂O₃, onde ra_m é a razão de aspecto média das diferentes amostras

Figura 4: Micrografias eletrônicas de varredura por elétrons secundários da superfície polida e atacada quimicamente das amostras (a) 50A50LC e, (b) 50ALG

Figura 5: Distribuição da razão de aspecto dos grãos para as amostras contendo misturas de óxidos de terras raras, onde ra_m é a razão de aspecto média das diferentes amostras

O emprego de cátions de terras raras com raio pequeno na sinterização do nitreto de silício tende a elevar a temperatura de formação do líquido, o que dificulta o a densificação do material.

Por outro lado, a elevada viscosidade da fase líquida formada devido à presença de tais cátions, conduz à formação de grãos de β -Si₃N₄ alongados. Uma vez que cátions menores levam à produção de vidros mais densamente empacotados, a fase vítrea presente neste caso tende a apresentar maior resistência mecânica.

AGRADECIMENTOS

Ao CNPq, FAPESP e PRONIX-FINEP, pelo apoio financeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

- ZIEGLER, G.; HEINRICH, J.; WÖTTING, G. Review-Relationships Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride. J. Mater. Sci., v. 22, p. 3041-3085, 1987.
- 2 DUAILIBI FILHO, J. Efeito da Adição do Ferro e do Silício na Densificação,
 Microestrutura e Propriedades Mecânicas do Nitreto de Silício. São Paulo: 1994.
 Tese (Doutoramento) Instituto de Pesquisas Energéticas e Nucleares USP.
- 3 SILVA, R.R. F. Cinética de Sinterização e Desgaste de Pastilhas de Corte do Sistema Si₃N₄-CeO₂-AlN. Portugal: 1994. Tese (Doutoramento) - Universidade de Aveiro.
- 4 SIGULINSKI, F.; BOSKOVIC, S. Phase Composition and Fracture Toughness of Si₃N₄-ZrO₂ with CeO₂ Additions. **Ceram. Int.**, v. 25, p. 41-47, 1999.
- 5 MITOMO, M.; IZUMI, F.; HORIUCHI, S.; MATSUI, Y. Phase Relationships in the System Si₃N₄-SiO₂-La₂O₃. J. Mater. Sci., v. 17, p. 2359-2364, 1982.

- 6 OLSSON, O.; EKSTRÖM, T. HIP-Sintered β- and Mixed α-β Sialons Densified with Y_2O_3 and La_2O_3 Additions. **J. Mater. Sci.**, v. 25, p. 1824-1832, 1990.
- 7 PARK, H.; KIM, H.; NIIHARA, K. Microstructure Evolution Mechanical Properties of Si₃N₄ with Yb₂O₃ as a Sintering Additive. J. Am. Ceram. Soc., v. 80, n. 3, p. 750-756, 1997.
- 8 LEE, M.; LEE, W.; KOH, Y.; CHOI, J.; KIM, H. Microstructural Evolution and Mechanical Properties of Gas-Pressure-Sintered Si₃N₄ with Yb₂O₃ as a Sintering Aid.
 J. Mater. Res., v. 14, n. 5, p. 1904-1909, 1999.
- 9 SANDERS, W.A.; MIESKOWSKI, D.M. Strengh and Microstructure of Sintered Si₃N₄
 with Rare-Earth Oxide Additions. Am. Ceram. Soc. Bull., v. 64, p. 304-309, 1985.
- 10 GOTO, Y.; THOMAS, G. Microstructure of Silicon Nitride Ceramics Sintered with Rare-Earth Oxides. Acta. Metall. Mater. v. 43, n. 3, p. 923-930, 1995.
- 11– HIROSAKI, N.; OKADA, A; MATOBA, K. Sintering of Si₃N₄ with the Addition of Rare-Earth Oxides. J. Am. Ceram. Soc., v. 71, n.3, C-144-C-147, 1988.
- 12 SHELBY, J.E.; KOHLI, J.T. Rare-Earth Aluminossilicate Glasses. J. Am. Ceram. Soc.,
 v. 73, n.1, p. 39-42, 1990.
- 13 CHOI, H., LIM, Y.; LEE, J. High Temperature Strengh and Oxidation Behaviour of Er₂Si₂O₇-Si₃N₄ Ceramics. J. Mater. Sci. Lett., v. 15, p. 282-284, 1996.
- 14 MURAKAMI, Y.; YAMAMOTO, H. Phase Equilibria and Properties of Glasses in the Al₂O₃-Yb₂O₃-SiO₂ System. J. Ceram. Soc. Jpn., v. 101, n. 1, p. 1101-1106, 1993.
- 15– CHIANG, Y.M.; BIRNIE III, D.; KINGERY, W.D. *Physical Ceramics*. New York, N.Y.: John Wiley, 1997.
- 16 BARSOUM, M. Fundamentals of Ceramics. New York: McGraw-Hill, 1997.

17 – HUANG, J.L.; DIN, L.M.; LU, H.H.; CHAN, W,H. Effects of Two-Step Sintering on the Microstructure of Si₃N₄. Ceram. Int., v. 22, p. 131-136, 1996.

EFFECT OF RARE-EARTH ION SIZE ON DENSIFICATION AND MICROSTRUCTURE OF SILICON NITRIDE

ABSTRACT

Various aids have been used for liquid-phase sintering of silicon nitride. Rare-earth oxides are the most important among these aids because their use yields highly dense materials with refractory grain boundary phases. In the present paper, densification and microstructure formation of silicon nitride samples with additions of La₂O₃, La₂O₃-based concentrate, Gd₂O₃, and Al₂O₃ were studied. Densification behavior of these materials was studied by means of high-temperature dilatometry in the temperature range RT – 1750°C with 1 hour isothermic dwell at the maximal temperature. Grain size and grain morphology were evaluated by scanning electron microscopy and image analysis. The results show that the addition of rare-earth with small ionic radiis yields microstructure with β -Si₃N₄ grains with high aspect ratios, however leads lower densification.

Key-words: rare-earths, ionic radius, Si₃N₄, microstructure, densification