

Desenvolvimento de Novos Eletrocatalisadores para Células a Combustível a Membrana Polimérica Trocadora de Prótons.

• Colaboração IPEN e Universidade Técnica de Darmstadt

"Nosso compromisso e com a melhoria da qualidade de vida da população brasileira."

Prof. Dr. Hartmut Fuess Dipl. Ing. Nathalie Martz

Objetivo

• Sintetizar e caracterizar eletrocatalisadores para células a combustível tipo PEMFC

• Células a combustível de membrana trocadora de próton.

 $H_{2}O^{+}$

Método de Bönnemann

H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joußen, B. Korall, Angew. Chem. Int. Ed. Eng. 30 (1991), p. 1312.

Tratamento Térmico

• Identificação de partículas adsorvidas através da técnica de espectroscopia no infravermelho.

Voltametria cíclica

- Voltamograma de platina policristalina:
 - Realizado em H_2SO_4 0,5 mol 1⁻¹
 - Velocidade de varredura 10 mV s⁻¹ - +
 - Eletrodo de referência: prata/cloreto de prata.

• Voltamogramas dos diversos sistemas catalíticos em $H_2SO_4 0,5 \text{ mol } L^{-1}$ e velocidade de varredura 10 mV s⁻¹.

Eletrooxidação do metanol

- Voltamogramas dos diversos sistemas catalíticos em H₂SO₄ 0,5 mol L⁻¹ em presença de 1 mol L⁻¹ de metanol e velocidade de varredura 10 mV s⁻¹.
- Somente a varredura anódica.

Eletrooxidação do etanol

- Voltamogramas dos diversos sistemas catalíticos em H_2SO_4 0,5 mol L⁻¹ em presença de 1 mol L⁻¹ de etanol e velocidade de varredura 10 mV s⁻¹.
- Somente a varredura anódica.

• Catalisadores binários:

• Catalisadores ternários:

• Catalisadores quaternários:

Tamanho médio de cristalito

- Determinação do tamanho médio de cristalito:
 - Reflexão Pt (220)
 - Largura da meia altura da reflexão e fórmula de Scherer.

Cuka				β2θ		
Sistema	20 max. (°)	cos20 max.	Graus	Radianos	1 d (A)	d (nm)
PtRu (1)	67,51	0,382522	1,68	0,029322	123,6	12,4
PtRu (2)	67,72 3	0,379133	1,08	0,01885	194,0	19,4
PtRuMo (5)	Não identificado					
PtRuMo (1)	67,63	0,380586	3,84	0,067021	54,4	5,4
PtRuNi (5)	Não identificado					
PtRuNi (1)	Não identificado					
PtRuDy (1)	67,57	0,381554	2,94	0,051313	70,8	7,1
PtRuMoDy	67,66	0,380102	0,84	0,014661	248,8	24,9
PtRuMoNi	67,72	0,379133	0,75	0,01309	279,4	27,9
PtRuNiDy	67,6	0,38107	0,72	0,012566	289,5	29,0
PtDy	67,45	0,383489	3,6	0,062832	57,5	5,8
PtSm	67,6	0,38107	0,93	0,016232	224,2	22,4
PtTb	67,54	0,382038	1,64	0,028623	126,8	12,7

ipen Espectroscopia Foto-eletrônica de raios-X (XPS)

• Platina:

• Rutênio:

Ruthenium				
B.E. peak	State			
463,1	RuO ₂			
465,6	RuO ₂ .xH ₂ O			

ipen Espectroscopia Foto-eletrônica de raios-X (XPS)

Molibdênio:

Microscopia Eletrônica de Transmissão (MET)

 Micrografia do catalisador PtRu tratado em atmosfera oxidante.

H30

Microscopia Eletrônica de Transmissão (MET)

• Micrografia do catalisador ternário de PtRuMo (1:1:0,5).

E130

F130

Microscopia Eletrônica de Transmissão (MET)

 $H_{3}0$

Nanocristalito de Pt da ordem de 13,8 nm do sistema PtRuMoNi.

50 nm

Microscopia Eletrônica de Varredura (MEV)

• Amostra de catalisador PtRuMo (1:1:0,5).

Microscopia Eletrônica de Varredura (MEV)

MEA cortado apresentando a estrutura do eletrodo de difusão gasosa.
HO+

• MEA's PtTb e PtSm com H₂ e Pt Tb com a mistura H₂/CO. + H_2O^+

• MEA's Pt ETEK, Pt Degussa, PtRuMo (1:1:0,5) em H₂.

• MEA's Pt ETEK, Pt Degussa, PtRuMo (1:1:0,5) com a mistura H₂/CO 150 ppm de CO.

• MEA's Pt ETEK, PtRuMo (1:1:0,5) em metanol 1,0 mol L-1. H_{20}^+

Conclusões Preliminares

- O método de Bönnemann mostrou-se efetivo para a preparação de catalisadores binários e ternários a base de platina e rutênio, utilizando-se como cocatalisadores molibdênio, níquel, disprósio, samário e térbio.
- As análises das voltametrias cíclicas indicam que o sistema ternário PtRuMo deve ser investigado com mais profundidade por apresentar a maior atividade eletrocatalíca.
- O sistema binário a base de disprósio pode apresentar um papel relevante em potenciais de oxidação superiores a 0,75 V.
- As análises dos difratogramas indicam que a formação de platina com estrutura CFC é predominante nos catalisadores desenvolvidos pelo método do colóide.
- A análise do tamanho médio de cristalito indica que o mesmo aumenta com a adição de cocatalisadores e para as amostras quaternárias este aumento torna-se relevante.

Conclusões Preliminares

- A análise de espectroscopia fotoeletrônica de raios-X não pode detectar níquel na superfície do catalisador, mas os demais elementos foram encontrados na forma metálica, oxidada e oxidada e hidratada.
- O resultado obtido com a análise das curvas de polarização vem corroborar as indicações iniciais das análises de voltametria cíclica que indicavam o sistema PtRuMo como o mais promissor para oxidação direta do metanol.