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ABSTRACT The location where the nozzle inside radius
blends with the inside surface of the vessel is both a high-
stress location and a location of complex bivariate stress
distribution. Cracks that are located in this region and that are
oriented with the hoop stress normal to it are often called
nozzle corner cracks.

There are pressure vessel formulations to calculate stress
intensity factors for nozzle corner cracks that are adequate for
some geometric relations and loads (e. g., for relatively large
cracks under internal pressure). Many times, general stress
intensity factor solutions are not currently available. This
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paper examines and suggests ways in which stress intensity
factors for such nozzle corner cracks could be estimated using
different approaches considering various geometric and
loading situations.

1. INTRODUCTION

The location where the nozzle inside radius blends with the
inside surface of the vessel is both a high-stress location and a
location of complex bivariate stress distribution. Cracks that

are located in this region and that are oriented with the hoop

stress normal to it are often called nozzle corner cracks. (see
Figure 1).
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Figure 1: Nozzle Corner Crack
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In pressure vessels integrity evaluations, particular attention is
given to the possibility of fracture at this point. If the crack is
present, a failure assessment requires the knowledge of the
stress intensity factor at the crack tip, K. The stress intensity
factor is dependent on the stress distribution in the region of
the crack, the geometry of the crack and the stiffness of the
structure. For simple geometries and loading systems,
solutions are available in standard texts (Sih, 1973, Rooke and
Cartwright, 1975), but they are not necessarily applicable to
the geometry and constraints of a nozzle corner.

There are pressure vessel formulations to calculate stress
intensity factors for nozzle corner cracks that are adequate for
some geometric relations and loads (e. g., for relatively large
cracks under internal pressure, Welding Research Council,
1972). Many times, general stress intensity factor solutions for
such nozzle corner cracks could be estimated using relatively
simple techniques. Also, alternative more expensive methods
such as the finite element method are briefly indicated for
complex geometric and loading situations,

2. EVALUATION OF THE STRESS INTENSITY
FACTORS FOR NOZZLE CORNER CRACKS

Several approaches have been applied to the problem of the
evaluation of stress intensity factors for nozzle corner cracks.
They can be separated as experimental techniques, numerical
methods such as the finite element method, and simple
methods. Simple methods may be defined as “engineering
approaches” where the solutions are obtained with some
assumptions to reduce and to simplify the general problem.

Several methods are described as follows, in a sequence of
increasing complexity to develop and to use them.

Method of the Welding Research Council Bulletin # 175,
In this reference, a simple method to calculate the stress
intensity factor for a nozzle corner crack subjected to a
pressure load is presented. The nozzle in a pressure vessel is
considered as a hole in the shell. by further assuming a large
shell radius, it can be considered as a hole in a flat plate and ,
according to Paris and Sih, 1965, this results in:

Ky

= F(a/r) (1)

ona

where o is the applied stress, a is the crack depth, and r is hole
radius. Values of F(a/r) are given for one crack and for two
diametrically opposite cracks under uniaxial tension and equal
biaxial tension. It is assumed that the cracks extends
completely through the plate thickness.

Equation (1) can be adapted to the pressure vessel case where
a 2:1 stress biaxility exists by assuming that the values of
F(a/r) are halfway between the uniaxial and the equibiaxial
values. The shell hoop stress is used as the value of stress in
the equation (1). The applicable curve F(ar) versus a/r is
shown in Figure 2 (from Welding Research Council, 1972),

This method is used in both Appendices G of the ASME
Boiler and Pressure Vessel Code, Sections III (ASME, 1995a)
and Section XI (ASME, 1995b).

Approximated Methods Based on Weight Functions. The
weight function method (Akhurst and Chell, 1983, Labbens
and Pellissier-Tanon, 1973) enables the stress intensity factor
for a crack be determined from the stress distribution present
in the uncracked body. If the weight function , W(aXx), is
known for a crack length a and a region characterized by the
coordinate x, then, for extended defects the stress intensity
factor K is

a
K = W(ax) o(x) dx (2)
0

where a(x) is the uncracked body stress. By expressing o(x)
as a polynomial in x, using the principle of linear
superposition K can be written as:
K=ILA K,
n=0

3)

where

o(x)=Z Ay X"
n=0

(4)

and
a
K, =/ W(ax) x" dx
0

(5)
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Figure 2: Estimates of stress intensity factors for nozzle corner cracks (from Welding Research Council, 1972)
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These techniques can be used to derive simple expressions for
stress intensity factors, provided that the stress distribution is
one dimensional or radially symmetric. Introducing the so-
called averaged weight functions it is possible to reduce the
two dimensional problem on the crack 1o a one dimensional
problem (Labbens and Pellissier-Tanon, 1973). The
application of this approach to nozzle comer cracks problems
is shown in the references Akhurst and Chell, 1983, and
Labbens and Pellissier-Tanon, 1973.

The BIE/IF Method. Elasticity problems can be
solved by a Boundary Integral Equation (BIE) method (Cruse,
1972). In this method, the elasticity equations are solved by
the determination of two kernel tensors on the boundary,
depending only on the geometry. These kernels allow the
calculation of the displacements and stresses on the boundary
by an integral equation. The displacements and stresses can
then be calculated at any point in the body as functions of the
kernels and the tractions and displacements on the boundary.

A three-dimensional problem is therefore reduced to a two
dimensional problem on the boundary. Thus, problems on any
crack can be treated this way and applications to nozzle corner
cracks in the form of influence functions related to polynomial
applied stresses (equivalent to weight functions for
mathematical considerations).

The approach where the influence functions are developed by
BIE method is called BIE/IF method (Besuner et al., 1980,
Heliot, Labbens, Robisson, 1981). The basic idea of BIE/IF is
that K is calculated based on a unit load at a single point
location. The total K is obtained by interating K from multiple
locations. It is specially powerful when used for bivariate
stress distributions that act over the crack, but that are
determined (e. g.. by the Finite Element Method, FEM) in the
absence of a crack.

An application of this approach is shown in the BIGIF
program (Besuner at al., 1980). The formulation approximates
a semielliptical crack and maps the stress distribution to
account for the difference between the modeled crack and the
actual crack.

FEM.  The application of the FEM to the nozzle corner
crack problems is shown in several references such as
Hechmer and Bloom, 1977 and Brocks. Noack, Veith, 1982.

FEM can give accurate results for any complex geometry and
stress distribution. Despite of the resulting accuracy, the use
of FEM is, in general, considerably more expensive than
many other methods.

There are a number of techniques for translating FEM results
in K values. The more common techniques are the stress,
energy. and displacement methods. In the most of FEM
commercial programs there are features to model cracked
geometries and to compute the K values.

3. CONCLUSIONS

Depending on the problem complexity, the required accuracy
of the solution, and the purpose of the integrity evaluation,
one of the above described methods gives the best relation
between the quality of the results and the costs to obtain them.

[n the design application, where the presence of cracks is
assumed. the use of simple methods seems more adequate.

For evaluations during operation, where the cracks have been
detected by inspection, more refined methods may be used to
crack growth analysis or to demonstrate that no brittle failure
will occur,

More complex techniques may be used when more realistic
evaluations are required. This is the case of life prevision of
components or the case of failure assessments.

It is important to notice that FEM has been used more than the
other approaches such as the weight functions method or the
BIE/IF methods. The reasons for this are: FEM commercial
programs are more common than Fracture Mechanics
programs and the use of FEM has become more and more
inexpensive with the hardware and software evolution.
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