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ABSTRACT: In a ductile fracture methodology developed by Landes et al., the result from a 
laboratory test is used to predict the behavior of a strucunal component. Within the framework of 
this methodology, a critical step consists in obtaining the calibration function for the structural 
component. For those cases where the limit load solution for the structural component is known, 
a transformation procedure has been used to get the calibration function for the structure directly 
from that of a fracture toughness specimen. Although the transformation procedure does not 
involve complex calculations, it does require the user to follow several steps where point to 
point computations axe necessary. This makes the whole process laborious and time consuming. 
It will be shown in this paper that, with an additional assumption and without loss of accuracy, 
the transformation procedure can be greatly simplified. In the alternative procedure proposed here, 
the coefficients of the calibration function for the structure are obtained by simply scaling their 
counterparts for the fracture toughness specimen. This is accomplished with the use of two 
factors: a load factor and a deformation factor. Some examples are presented to demonstrate the 
convenience of this new procedure. 

KEY WORDS: ductile fracture, failure assessment, cracked structures, fracture toughness, 
calibration function 

The prediction of the loading behavior during ductile fracture needs a scheme to 
incorporate both the deformation behavior of the structure as well as the fracture or 
cracking behavior; usually the former is more important. The Ductile Fracture Method 
(DFM), based on an idea originally discussed by Ernst and Landes [1,2] and further 
developed by Landes and coworkers [3-5], uses a load separation concept to represent the 
loading of a cracked body by two separate and multiplicative functions. The fLrSt one is a 
geometry function, which describes the effect of crack growth. This function depends only 
on the geometry of the cracked body. The second one is a deformation function, which 
represents the plastic flow character of the material and the specific geometry/loading mode 
of the cracked body. The DFM makes use of these two functions and fracture toughness 
given in terms of a J-R curve to predict the load versus displacement behavior of a 
structural component during the ductile fracture process. 
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The geometry function is known for several geometries or can be obtained in a relatively 
easy way. On the other hand, the determination of the deformation function for the 
structural component represents a critical step in the DFM. Two procedures can be used for 
that. One is a transformation procedure that determines the deformation function for the 
structural component directly from that for a fracture toughness specimen. The other is a 
numerically based one in which the deformation pattern is numerically simulated and the 
load separation method is applied to define the calibration parameters. The former is easier 
to apply for the case in which the limit load solution for the structural component is known. 
The latter is more general and can be used for complex structural components if nonlinear 
finite element analysis can be conducted for the component. 

Since the major concern here is with analytical methods that can be used for quick failure 
assessments of cracked structures, this work concentrates in the transformation procedure. 
As will be seen later, with an additional assumption and without loss of accuracy, the 
tIansformation procedure can be accomplished in a much simpler way and consequently the 
predictions done by the DFM can be completed in a shorter time. In the next section, a 
review of the DFM is presented. Then the original transformation procedure as proposed 
by Landes et al. [3] is described. Following this, an alternative approach is suggested 
which greatly simplifies the transformation process. Some examples are presented in 
which deformation functions obtained with the original transformation procedure are 
confronted with those derived through the simplified approach proposed here. Also, the 
application of the DFM using the simplified transformation is illustrated with the prediction 
of load versus displacement curves. The paper is concluded with a discussion about the 
benefits that the new transformation procedure brings to the DFM as a whole. 

A Review of the Ductile Fracture Method 

The DFM uses a calibration function and fracture toughness, given in terms of a J-R 
curve, as the inputs to predict the load versus displacement behavior of a structural 
component during the fracture process. The general approach for using the DFM is 
illustrated in Fig. 1. The calibration function gives the relationship between load and 
displacement for constant values of crack length. The fracture toughness describes how the 
crack length changes as a function of J. To apply the method to a structure with a given 
crack size, the loading is represented by the load, P, versus displacement, v, for that defect 
size. During the loading process, the value of J is also determined. When J has increased to 
the point where a crack length change is indicated, the P versus v curve is taken a step 
down to the one for that new crack length. The loading proceeds with the calibration 
function giving the relationship between P and v for a given crack length and the J-R curve 
fracture toughness indicating what current value of crack length should be used. When 
small increments in crack length are used, the loading follows a smooth path. 
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FIG. 1--Schematic of the ductile fracture method. 

The DFM is founded on the load separation concept [6,7]. According to this concept, the 
relationship between load, P, crack length, a, and plastic displacement, vp~ for the cracked 
structure can be expressed as a multiplication of two separable functions 

P = G(a / W). H(Vpl/W) 
(1) 

where G(a/W) is a function of geometry only and H(vpdW) is a function of  plastic 
deformation only. W is a length dimension parameter; for lest specimen geometries, W is 
usually the width, but for a structural component, it could be another dimension, such as 
the thickness. When the load P is divided by the G(a/W) function, the result is a normalized 
load 

P 
PN = = I-l (v p~ l W) 

G(a /W) 

(2) 

The information in Eq. 2 is often referred to as the calibration function. It can describe 
the deformation behavior of a structure for a certain value of crack length. It was found that 
the global deformation pattern for many structures and for most materials can be accurately 
fitted by the following functional form 
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PM = H(vp~ /W)= 
( L+MVp~.  . 

(3) 

This functional form came from the work of Orange [8] and is now known as LMN 
function [9]. The normalized load versus plastic displacement behavior as represented by 
this function is such that when the plastic displacement is small, the relationship between 
load and displacement is approximated by a power law, and when it is large, the behavior 
comes near to a straight line representation. 

The G function is known for several geometries or can be obtained in a relatively easy 
way from a series of blunt notched specimens that model the structure [10]. Thus, the 
critical step in the DFM is the determination of the calibration function, H(v,,tlW), for the 
structural component. For those cases in which the limit load solution for ihe structural 
component is known, a transformation procedure can be used to determine the calibration 
function for the structural component directly from that for a fracture toughness specimen. 
This procedure is described in the next section. 

The Original Transformation Procedure 

The transformation procedure was derived from experimental results on an A533B steel 
in which four specimen geometries were tested (CT, DENT, CCT, SENT). It was verified 
that when the normalized loads for these geometries were plotted against the normalized 
displacement, vptlva, all the curves appeared to have the same trend and the differences in 
the nomaalized load between the specimens could be related to the ratios of their limit loads. 
If the CT specimen is taken as a fracture toughness test specimen, and the other geometries 
are considered as structural components, it is then possible to predict the calibration 
functions for the structural components from the test specimen. 

Starting from the calibration function for the test specimen as represented by Eq. 3, the 
same functional form is assumed for the structural component, that is 

_ll+m~-"l(Vp,~ 
P'= h(v,"/w)- In+~_) l'-ff j 

(4) 

Thus, to find the news constants l, m, and n that define the calibration function, h(vpt/W), 
for the component, the transformation procedure follows the steps described below and 
illustrated on Fig. 2: 
(a) First, the load versus displacement record, P-v curve, for a fracture toughness test 

specimen needs to be obtained from an experiment (Fig. 2a); 
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(b) Then this P-v curve is converted into a normalized load, PN, versus normalized 
displacement, vet~W, Fig. 2b, which is the calibration function for the specimen, 
H(vetlW); 

(c) The abscissa, vet/W (Fig. 2b), is divided by v,dW so that it becomes W/va (Fig. 2c); 
(d) Then each point on that curve is multiplied by a factor f, which is defined as 

f = Pu(ao,)lG,(ao, IW, ) 
PL (ao)lG(ao /W) 

(5) 

The result is a curve for the structural component given in terms of its normalized load, 
P,, and the displacement ratio, vet~vet. In the above equation, Pt~(ao~) and G~(ao/W,) are 
the limit load and geometry function for the structure; PL(ao) and G(aolW) are the limit 
load and geometry function for the toughness specimen and ao is the initial crack 
length. 

(e) The displacement ratio in the abscissa, vpt/vet, is converted back to normalized plastic 
displacement, by multiplying yetlv~t (Fig. 2c) by valW for the structure. The resulting 
Pn versus vptlW curve in Fig. 2d is the representation of the desired calibration curve 
for the structure. 

(f) The l, m, and n constants can be determined by fitting the transformed points. This is 
done by choosing l = f ,L,  this has the effect of raising the entire calibration curve by 
the factor f which is the a key to the original transformation procedure presented in Ref 
3. Then, only m and n need to bc determined from the fitted curve. The best result 
comes from choosing two points, the final one and one at small vet/W and fitting Eq. 4 
to them. 

(a) 

Pr~ 

(b) 

v,/w 

f*e~ 

Cmvein(b) 

(c) 

Pn 

(d) 

v~/v,n vp[W 

FIG. 2---Schematic of the original transformation procedure. 
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During the process of the calibration function transformation, the elastic displacement, 
va, is taken as 

v a = C(a/W).  P = C(a/W).  G(a/W) .  H(vpt / W) 
(6) 

where C(a/W) is the elastic compliance function for the structure. It can be obtained by 
experiment, analytical derivation or linear finite element analysis, vet is calculated at each 
given value ofvt, t/W (where H(vp/W) has a known value), and the product C(a/W)G(a/W) 
is assumed to be a constant. This is not completely true in the actual case. This product is 
dependent upon a/W, but in many cases it is not a strong function of a/W. Therefore, for a 
changing crack length, a constant value, say, the value corresponding to the initial crack 
length, can be used for simplicity. 

The Simplified Transformation Procedure 

Even though it does not involve any complex steps, the original transformation procedure 
is somewhat cumbersome and time consuming, requiring the user to make one ordinate 
conversion (step d, above), two abscissa conversions (steps c and e), and a fitting 
operation to find the constants of the calibration function for the structural component (step 
0. 

Analyzing the philosophy of the original transformation procedure, we see that it 
basically consists in making a normalized load and a normalized displacement adjustment 
on the fracture toughness specimen deformation curve to get the correspondent curve for 
the structural component. The load adjustment is very simple because it is based on a 
constant factor f, Eq. 5. On the other hand, the abscissa adjustment involves point to point 
computations of the elastic displacement using Eq. 6 and assuming that the product 
C(a/W)G(a/W) is constant. 

Applying the procedure to different test geometries, in which the CT specimen was taken 
as the fracture toughness test specimen and the other geometries were considered as 
structural components, it was observed that the ratio between the normalized elastic 
displacement for the fracture toughness specimen, (vet~W), and the normalized elastic 
displacement for the structure, (vdW)s, almost did not change during the transformation 
process. As will be shown in the following, if we assume that this ratio is constant, the 
transformation procedure can be greatly simplified. 

First, define a parameter q to represent the ratio between the normalized elastic 
displacements 

q =  (v,t / w)  
(v,,/w), 

(7) 

From the analysis undertaken, it can be seen that a representative value for q is obtained 
when the normalized elastic displacements for the fracture toughness specimen and the 
structure are calculated with their initial crack lengths and at their limit loads, that is 

(v,,)o =C(ao). e~ (ao) (8) 

(v ,t)o" = C,(ao,). pc,(ao,) (9) 
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The normalized plastic displacement for the fracture toughness specimen, v,v=vetlW, and 
the normalized plastic displacement for the structure, v.=vpdW, can be related by the 
following expression 

P. 

q 

Rewriting Eqs. 3 and 4 in terms of vN and v., we have 

(lO) 

(L + Mv~ ) 
P. =H(v.)= (N +v.) v. 

(11) 

O+mv,) P. =h(v.)=~v.  
(12) 

Multiplying Eq. 11 by the the factor f (F_.q. 5) is equivalent to step (d) of the original 
transformation procedure, which would give an intermediate representation P.  versus v~ 
with the constants r =f.L, m' =f.M and n' =N, that is 

(l" +m'v.) (13) 

P'= (n'+v~) v. 

Then, substituting Eq. 10 in Eq. 13, that corresponds to steps (c) and (e) of the original 
transformation procedure, leads to 

fL + fqMv,, (14) l" +m'(qv") (qv,,)= v,, 
P"= n'+(qv.) (N/q)+v,, 

Now, comparing the above expression with Eq. 4, we arrive at the following 
expressions for the the l, m, and n constants of the structure calibration function 

l=f.L; m=f.q.M; n=N/q (15) 

Therefore, the coefficients of the calibration function for the structural component can be 
directly obtained from their fracture toughness specimen counterparts. It would suffice to 
compute the factorsf and q (Eqs. 5 and 7) and use the above expressions. This represents a 
significant simplification in the transformation procedure, eliminating the coordinates 
conversions and the fitting operation to get the l, m, and n constants. 

It is worth noting that the assumption that the ratio represented by Eq. 7 is constant could 
be inferred by the assumption that the product C(aIW)G(aIW) is constant for both the 
fracture toughness specimen and the structure, that is 
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(v,t/W) CGP# /W CGP# /W CG W, 1 
q= (v,~ ]W), = C,G,P,/W, = C ,G , ( fPs ) /W ,  = C,G, W f 

(16) 

Thus, if CG is constant, not only q is constant, but also there exist a relationship between 
the factors q andf  given by above equation. 

Examples 

To compare the calibration curves obtained with the original and the simplified 
procedures, three different A533B steel specimen geometries were selected: CCT, SENT 
and DENT. For each type of geometry, two data sets were used to consider different a/W 
ratios. The calibration functions for these geometries were then predicted from the 
calibration function for a CT fracture toughness specimen of the same material. The 
characteristics of the CT specimen as well as of the other specimens that played the role of 
structural components are listed on Table 1. 

TABLE 1---A533B steel specimens (E,#= 206850 MPa; cry = 468.86 MPa; crm = 620.55 
MPa). 

SAMPLE TYPE W (mm) B (mm) ao (ram) af (ram) adW 
(or 2adW) 

A533-1 CT 203.2 2.54 101.85 130.02 0.50 
A533CCT1 c c r  406.4 2.54 101.60 115.82 0.50 
A533CCT6 CCT 203.2 2.54 60.71 71.63 0.60 
A533SEN2 SENT 508.0 2.54 355.60 379.48 0.70 
A533SEN6 SENT 508.0 2.54 152.40 195.88 0.30 
A533DEN3 DENT 203.2 2.54 49.40 62.23 0.49 
A533DEN4 DENT 203.2 2.54 35.43 47.63 0.35 

Figure 3 shows the results obtained for the CCT specimens, where experimental P, 
versus v, curves are compared with those obtained using the original transformation 
procedure and the simplified transformation approach introduced here. The same 
information is presented in Figures 4 and 5 for the SENT and DENT specimens, 
respectively. The points represented by crosses are those obtained with the original 
transformation procedure and should still be fitted in order to get the coefficients of the 
calibration function. The solid line is the curve described by the coefficients obtained 
directly by Eqs. 15 of the simplified transformation approach. It can be observed that the 
results obtained with both procedures arc practically the same. 
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FIG. 3---Calibration curves for the CCT specimens. 

 

Copyright by ASTM Int'l (all rights reserved); Tue Oct 25 12:56:25 EDT 2016
Downloaded/printed by
(USP) Universidade de Sao Paulo ((USP) Universidade de Sao Paulo) pursuant to License Agreement. No further reproductions authorized.



CRUZ AND LANDES ON STRUCTURAL CALIBRATION FUNCTIONS 257 

800 

700 

Pn 600 

50q 

:OoO ~ 

200] 

100 

0 

700 

600 

Pn 500 

401 

300 

20O 

100, 

0 0 0 0 0 

o Test Data 

+ Original Transformation Procedure 

__ Simplified Transformation Procedure 

I I I 

0.005 0.01 0.015 
Vn 

(a) 

0 

31 
O Test Data 

+ Original Transformation Procedure 

_ Simplified Transformation Procedure 

3 {  i i i 

0 0.002 0.004 0.006 

(b) 
| 

0.008 
V n 

FIG. 4----Calibration curves for the SENT specimens. 

0.02 

0.01 

 

Copyright by ASTM Int'l (all rights reserved); Tue Oct 25 12:56:25 EDT 2016
Downloaded/printed by
(USP) Universidade de Sao Paulo ((USP) Universidade de Sao Paulo) pursuant to License Agreement. No further reproductions authorized.



258 FATIGUE AND FRACTURE MECHANICS: 29TH VOLUME 

Pn 

Pn 

700 

600 

500 

400 

300 

200 

100 = 

0 

o Test Data 

+ Original Transformation Procedure 

_ _  Simplified Transformation Procedure 

I I I 

0.005 0.01 0.015 
Vn 

(a) 

700 . . . . . .  

0 

600 

500 

4001 

300 

200 

0 

o Test Data 

+ Original Transformation Procedure 

__ Simplified Transformation Procedure 

I I I 
0.005 0.01 0.015 

Vn 

(b) 

FIG. 5--Calibration curves for the DENT specimens. 

0.02 

0.02 

 

Copyright by ASTM Int'l (all rights reserved); Tue Oct 25 12:56:25 EDT 2016
Downloaded/printed by
(USP) Universidade de Sao Paulo ((USP) Universidade de Sao Paulo) pursuant to License Agreement. No further reproductions authorized.



CRUZ AND LANDES ON STRUCTURAL CALIBRATION FUNCTIONS 259 

To illustrate the application of the DFM using the simplified transformation procedure, 
the steps necessary to predict the load versus displacement curve for the specimen identified 
in Table 1 as A533CCT1 are presented below (the basic input data come from the load 
versus displacement record for the CT specimen in Table 1; the G functions for CT and 
CCT geometries are known and the respective rlet values are 2.15 and 1.0 [10]): 
(a) First, the method of  normalization [9] is used to obtain the coefficients L, M, and N 

of  the deformation function, H, and the J-R curve for the CT specimen: 
L = 28.42; M = 58.71; N = 6.17x10 4 
J = 10.33(da) ~176 

(b) The limit load and compliance for both the CT and CCT specimens, for the 
respective initial crack lengths, are (these values were obtained using the limit load and 
compliance solutions tabulated in Ref. [12]): 

PL = 24.33 kN; C = 0.0702 mm/kN 
Pt~ = 281.11 kN; C~ = 0.00154 rnrn/kN 

(c) Eqs. 8 and 9 are then applied to obtain (Va)o for the CT and CCT specimens: 
(v,t)o = 0.0702x24.33 = 1.708 rnm 
(v,t)o~ = 0.00154x281.11 = 0.4329 mm 

(d) The next step is the computation of  the factorsfand q (Eqs. 5 and 7, respectively): 
f = (281.11/0.8) / (24.33/0.1793) = 2.6 
q = (1.708/203.2) / (0.4329/406.4) = 7.9 

(e) We are now ready to calculate the coefficients l, m, n of the calibration function for 
the CCT specimen using Eqs. 15: 

l = 2.6x28.42 = 73.9 
m = 2.6x7.9x58.71 = 1205.9 
n = 6.17x10"4/7.9 = 7.81x10 "5 

(f) The complete load versus displacement curve for the structure (in this case a CCT 
specimen) is then determined through a step by step procedure briefly described in the 
beginning of this work and depicted in Fig. 1. An independent variable is chosen to 
increment. The basic approach is to choose v~ as the independent variable. Starting 
with a=ao and with a small value for v~ =vt, t/W, P (Eq. 1) and Jaet, are calculated. 
Follows an iterative process, where the crack length is adjusted untilJape matches J,,~ 
from the J-R curve equation. For each converged iteration, the pair of  values P, v are 
obtained and v~ is again incremented. The process continues until the complete load 
versus displacement curve is achieved. The value of  J~,p is determined as a sum of an 
elastic and a plastic component 

K 2 Opt f'~ 
] = + J , ,  e d v ,  = 

= + G ( b / W )  /W)d(v~, , /W) 
E' 

(17) 

where K is the linear elastic stress-intensity factor, E '  is the effective modulus of  

elasticity, r/pt is the plastic T/-factor, B is the structural thickness, and b is an uncracked 
ligament length. The total displacement, v, is a sum of  an elastic and a plastic 
component 
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(]8) 
v= v,; +v~t 

and the relationship between Va and P is given in terms of the compliance, C, that is 

v a = C(a I W) .  P 
(19) 

The load versus displacement curve obtained for the CCT specimen (A533CCT1 in 
Tablel) is shown in Fig. 6, where it is compared with the experimental data. Actually, two 
predicted curves are presented in Fig. 6, one obtained with the J-R curve from the CT 
specimen and the other based on the J-R curve from the CCT specimen itself, which in this 
case was available. Analogous results are also presented in Figures 7 and 8 for the 
specimens A533SEN2 and A533DEN3, respectively. 
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FIG. 6---Load versus displacement curve f o r  A533CCT1. 
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Discussion and Conclusions 

The principle of load separation, on which the DFM is founded, states that the load in 
cracked bodies of the same material, geometry and thickness constraint can be represented 
as a multiplication of two separable functions: a geometry function and a material 
deformation function (Eq. 1). The geometry function, G, depends on the cracked geometry 
only. The deformation function, H, represents the plastic flow character of the material and 
the specific geometry/loading mode of the cracked body. 

When dealing with a fracture toughness specimen and a structural component with the 
same thickness constraint*, it seems possible to transfer the deformation function from the 
specimen to the structure by considering two factors: a load factor, given by the ratio 
between their normalized limit loads, and a deformation factor given by the ratio between 
their normalized elastic displacements. Both factors had already been used in the original 
transformation procedure proposed by Landes et al. [3]. In the present paper, it was shown 
that likewise the use of a constant load factorf (Eq. 5), it is possible to define a constant 
deformation factor q (Eq. 7), where the normalized elastic displacements for both the 
specimen and the structure are calculated with their initial crack lengths and at their limit 
loads (Eqs. 8 and 9). With these two factors, f and q, it was demonstrated that the 
transformation process can be completed in a very quick and easy way. 

For the cases where the thickness constraint levels of the specimen and the structure are 
different, an additional adjustment must be done. Donoso and Landes [11] studied the 
influence of the thickness constraint on the prediction of the behavior of structural 
components from a laboratory test specimen. They derived a constraint factor which can be 
used to evaluate the relative constraint in the deformation function. 

Therefore, for those general cases in which both the thickness constraint and loading 
mode are different for the test specimen and the structural component, the approach 
presented here should be examined in conjunction with that from Ref. [11] to see the best 
and simplest way to get the correct calibration function for the structural component. 

As mentioned earlier, the framework of the DFM can be used to predict the behavior of 
complex geometries where the calibration functions have to be determined by finite element 
analysis. But, the main concern of this paper was with those cases where the calibration 
function for the structure can be obtained direcdy from a fracture test specimen. In such 
situations, it is important to make the application of the DFM as simple as possible, so that 
quick failure assessments can be conducted. Considering that the determination of the 
calibration function for the structure is a critical step in the methodology, the transformation 
approach proposed here represents an important simplification for the DFM as a whole. 

The subject of applying this technique to more complicated geometries like part through 
surface flaws is an important consideration and is the subject of continuing work. This 
requires some numerical analysis since it cannot be done in a completely analytical manner 
like the simple geometries considered in this paper. 

* Here the term thickness constraint is used so that it is not confused with in-plane 
constraint which is a different constraint from thickness constraint. Thickness constraint is 
a function of specimen or structural thickness. 
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