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Abstract

Neutron multiple diffraction (n.m.d.) has been recently developed as a method for analysis of crystal and
magnetic structures. To apply the method, a computer program (MULTI) has been written in order to simulate
n.m.d. patterns in cases of high density of simultaneous reflections and high secondary extinction. In a first
application of the method, «- and P-quartz structures of silica (SiO,) have been analysed. w-quartz has a
structure described by either of the two enantiomorphic trigonal space groups P3,21 or P3,21. At ca. 846K, a-
quartz undergoes a reversible transition to B-quartz. B-quartz has a structure with hexagonal symmetry in either
of the two enantiomorphic space groups P6,22 or P6,22. *Umweganregung’ n.m.d. patterns were obtained by
measuring the 001 space-group-forbidden primary reflection, at room temperature for the a phase and ca.
1003K for the B phase. Simulated patterns were calculated for both phases by assuming structures previously
reported in the lterature. Agreement between experimental and simulated panterns was verified by calculating a
reliability factor R, where experimental and calculated integrated intensities of peaks are compared. For a well-
known ordered model of the a-quartz structure, R resulted equal to 0.344. For [B-quartz, an ordered and a
disordered model of structure were both analysed. In the disordered model, oxigen atoms occupy, in a half-
occupation mode, twice the number of special positions they occupy in the ordered model. A better R figure was
found for the disordered model, when compared to that found for the ordered one, namely R= 0.110 and R=
0.143, respectively. No refinement of parameters was attempted in this study. In a second application of the
method, structural parameters for both ferrimagnetic and paramagnetic phases of magnetite have been refined
from n.m d. data. At room temperature, magnetite is an inversed iron spinel with a Néel A-B magnetic structure
in the cubic space group Fm3m. Above ca. 853K, the magnetic order in magnetite vanishes and it becomes a
paramagnet. “Authellung’ n.m.d. patterns were obtained by measuring the 111 primary reflection of magnetite,
at room temperature for the ferrimagnetic phase and ca, 976K for the paramagnetic phase. Agreement was
verified in a point-to-point basis by a profile R factor where observed and calculated intensities, for each
azimuthal position, are compared. Thermal parameters were considered in the refinements in three different
ways: i) an overall isotropic parameter for all ions in the structure; ii) different isotropic parameters, one for each
special position occupied by ions in the structure; iii) anisotropic parameters for all ions in the structure. For
both phases, best results were found in those refinements done according iii) above. In this case, profile R
factors resulted equal to 0.030 and 0.033 for ferrimagnetic and paramagnetic phases, respectively. Refined
parameters tor the ferrimagnetic phase were compared to results of refinements reported in the literature. Such a
comparison showed the consistency of the n.m.d. as a method for structural analysis. No results were found in
the literature tor the paramagnetic phase,

1. Introduction diffraction can be considered as a disturbance,

causing errors in measured intensities or an apparent

Diffraction, as commonly known, is a particular
phenomenon of a more general one: multiple
diffraction. Multiple diffraction occurs when a single
crystal is positioned to diffract a neutron or X-ray
incident beam, by a family of crystallographic planes,
and, simultaneously, other families are also in
position to diffract the same beam (Chang, 1984).
Occurrence of the general phenomenon is by no
means uncommon. It may even be unavoidable, at all.
This is particularly the case when working at short
wavelengths or with crystals of large cell dimensions
(Arndt and Willis, 1966). An extreme situation occurs
when both conditions above coexist. In single-crystal
(singley X-ray and neutron diffractometry, multiple

violation of the systematic extinctions. In the former
case above, it is very difficult to identify the effect
unless the crystal is turned around the scattering
vector of the reflection being measured in order to
look for variations in the intensity of the reflection. In
the latter case, peaks have a different shape than that
of normal peaks, turning them easily recognizable
(Giacovazzo, 1991).

The occurrence of simullaneous retlections, in the
manner described above, is totally casual. It was
Renninger (1937), in a study of the X-ray multiple
diffraction phenomenon in diamond and rock salt,
who found the way to produce the systematic
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appearance of multiple diffraction peaks. He found
that, turning the crystal around the scattering vector of
a reflection a variation in the intensity is observed.
Renninger  obtained  both  ‘Umweganregung’
(*Umweg') and ‘Aufhellung’ patterns in his study.
This procedure became known as Renninger scan or
¢-scan. It has been used (since then) by several
authors to obtain multiple diffraction patterns (of X-
rays or neutrons) for different studies. For many
years, works dealing with the modification of shape
and intensity of a peak, obtained in a (single) neutron
diffraction measurement, by effect of multiple
diffraction (Borgonovi and Cagliotti, 1962), indexing
of multiple diffraction patterns (Cole, Chambers and
Dunn, 1962), calculation of intensities in neutron
multiple diffraction (Moon and Shull, 1964) and
application of X-ray multiple diffraction to determine
the mosaic spread of a crystal (Caticha-Ellis, 1969)
and to solve the phase problem in crystal structure
determination (Post, 1977 and 1979; Chang, 1981 and
1982) have been published sporadically in the
literature. Although still scarce, publication of works
about multiple diffraction became more frequent in
recent years.

In 1984, Mazzocehi studied the o« and B phases of
quartz by using neutron multiple diffraction (n.m.d.)
as a method for structural analysis. As far as we
know, this was the first time the general phenomenon
of diffraction was used in structural analysis. The
aewlvses of both phases of quartz were performed by
using a computer program, MULTI, written to
simulate n.m.d. patterns (Mazzocchi and Parente,
1994). MULTI uses approximate intensity solutions
derived for a many-beam case. These solutions are
based in the iterative method (Parente and Caticha-
Ellis.1973a: Chang, 1984) for the calculation of
intensities. This method is an extension to high
absorption and high secondary extinction cases of the
theory developed by Moon and Shull (1964) for the
multiple diffraction of neutrons in a mosaic crystal.
Moon and Shull calculated the intensity of a particular
beam by summing the terms of a Taylor series
expansion of the powers of the different beams
participating in the phenomenon. They presented
analytical formulas retaining terms up to the third
order. A low order limitates the calculation of
intensities to cases of low absorption and low
secondary extinction, These cases are. in general,
feasible if thin crystals are used. Thin crystals plus
neutron diffraction, on the other hand, is not a good
combination since diffracted intensities become very
weak owing to a small diffracting volume. To cope
with this problem, Parente and Caticha-Ellis (1974a)
derived the general term for the Taylor series
expansion. With the general term and a computer, il
hecame possible to calculate intensities in an iterative
wev il any desired order.

In of the
theory and computer

what  follows, a
experimental

brief description
arrangement.

program MULTI. used in the analyses by the n.m.d.
method, are presented. Results obtained by applying
the n.m.d. method in the above mentioned study of o-
and P-quartz (Mazzocchi, 1984; Mazzocchi and
Parente, 1994, for B-quartz alone). as well as recent
results for the refinement of structural parameters of
the ferrimagnetic and paramagnetic phases of
magnetite are also presented.

2. Experimental Arrangement

To obtain n.m.d. patterns, an experimental
arrangement is assembled in the IPEN neutron
diffractometer installed at the IEA-R1 2 MW research
reactor. This arrangement includes, besides the
normal parts of a neutron diffractometer, a special
collimator for n.m.d, experiments and a five-circle
goniometer. Optionally., an extra detector may be
installed aligned with the incident beam. This detector
allows for the measurement of transmitted beam
n.m.d. patterns.

Figure | is a scheme of the arrangement showing the
special m.d. collimator, the extra detector and the
detector (BF,) normally used in the neutron
diffractometer. Figure 1 also gives an idea of the
geometry of the experiment. The four kinds of pattern
that can be observed in a m.d. experiment (Mazzocchi
and Parente, 1994) are shown in the Figure.
Depending on the intensity of the primary reflection,
null, weak or strong. patterns can be type ‘Umweg’.
mixed “Aufhellung/Umweg" or  "Authellung’,
respectively. The transmitted beam pattern is always
‘Authellung’ type.

The special collimator limits the angular divergence
of the monochromatic beam in both vertical and
horizontal directions to a few minutes of arc
{Mazzocchi, 1984). [t is, actwually. an evelution of the
collimator conceived by Parente and Caticha-Ellis
(1974b) to be used in n.m.d. experiments in order to
obtain patterns with good resolution.

The IPEN neutron diffractometer is normally
cquipped with a five-circle goniometer. This
goniometer has, in addition to the axes 8, w. ¢, and ¥
of a four-circle goniometer, an extra Z-axis which can
be set along the scattering vector of a primary
reflection (Parente and Caticha-Ellis, 1974b).

For high temperature measurements, an electrical
furnace was designed and constructed (Mazzocchi,
1984: Mazzocchi and Parente, 1994). A <implified
drawing of this furnace is shown in Figure 2.

3. Theory Used in the Intensity Calculations

In 1964, Moon and Shull presented a theory for the
multiple diffraction of neutrons in a mosaic crystal
having the shape of a flat plate large compared with
the incident beam cross section.



M. 0. collimator

incident beam
{monochromatic)

secondary " ¥ .

beam singie crystal
scattering vector of b
primary reflection R
primary transmitted
beam incident beam
Int. primary reflection: It
strong  weak null k, \)
W P‘)k detector detector W
Y ![ AAM {optional)
’
‘uteliung’ “Auf Umw." Umweg' transmitied
patterns beam patlam
Fig.1 Experimental arrangement used in nmud.

experiments.

This theory is an extension of the kinematical
treatment of the secondary extinction developed for
the (single) neutron diffraction in mosaic crystals
(see, for example. Bacon and Lowde, 1948). Primary
extinction is assumed to be negligible.

Fig. 2 Schematic view of the turnace employed in
high temperature measurements. Numbers indicate:
. sustaining powder; 2. sample; 3. thermocouple
(for temperature control); 4. heat shield; 5. stainless
steel capsule; 6. thermocouple (1o indicate sample
lemperature); 7. heating resistance; 8. thermal
insulator

Moon and Shull's differential equations, describing
the vhange in power in the several beams traversing a
layer of thickness dx at depth x below the surface of a
crystal plate, can be written in the following concise
form (Parente and Caucha-Ellis, 1974 ay:

Pl =5 X [Pj{'x)ij] jS
i

~ 5 Pi(OA T Y)

where  P{(x) = dp;(x) 7 dx
and s; =+, if beam i is transmitted, or g;=~1.1if
reflected.

Coefficients A; are given by
Ai=n+XQ,.
jei

Symbols P;, Pj.,s; ,p.Ql-J- and 7y, are, respect-ively,

the power in beam i, the power in a beam j # i, the
sign of beam i characterizing i1s type {as above), the
lincar absorption coefficient, the linear reflecuon
coefficient (or simply reflectivity) for the exchange of
power from beam i to beam j and the magnitude of the
direction cosine of the beam i relative to the normal to
the crystal surface. Subscripts i and | refer 1o all
beams involved in the phenomenon including incident
and primary beams.

According to Moon and Shull (1964) the reflectivity
for an interaction i — j is given by

rj=Q,W(a0,).

where Qij is the ntegrated retlecuvity per unnt
volume of a small crystallite and WiAB;) 1s the
ABj1s  the

deviation in the Bragg angle 6, from the mean of the

mosaic  distribution  function where

distribution.

Moon and Shull (1964) proposed a Taylor series
expansion of Pj(x) about the point x=0, as a useful

approximate solution for the intensity of the primary
beam. They denved an analytical formula for the
expansion retaining lerms up to the second order. As
pointed out in the work, the formula is valid only in
the fimits of fow secondary extinction and low
absorption. Caticha-Ellis (1969) derived the exact
solution for the double- and triple-beam cases. He
also derived a second-order approximation for the
many-beam case and a third-order approximation for
the triple-beam case. However, even with a third-
order approximation intensity calculations were
limited to low secondary extinction and low
absorption. Obviously, the exact solution can be
applied in any situati.n of extinction and absorption.
However, its limitation to a triple-beam case 1s a
shortcoming. On the other hand. derivation of an
exact solution for the many-beam case seems to be a
formidable task owing «to the mulutude of cases
concerning number and types of beams. The same can
be said for the derivation of analytical formulas for
higher-order approximations. In order to apply the



more convenient Moon and Shull's approximate
solutions, Parente and Caticha-Ellis (1974a) derived a
recurrence formula for the summation of the Taylor
series expansion up to any desired order m. In the
formulation presented by the authors the expansion,
generalized for any beam i, can be written,

P, = Pi0) + PP (0)x + P{(0) X2/ 2!

o+ PLM0) ™/ m! (N

where the general term is given by:

(/mD ™ pI™0) = (1/ mHT P (O Y™ (2)
k

In the general term P,™(0) is the mth derivative of the
power P,(x) calculated at x=0, i.e.,

PI™(0)=d™Pi(x)/dx™| _ o

Py (0} is the power of a beam k at the point x=0 and

the coefficient Y‘k'-l‘” is calculated from the
coefficient of order (m-1) by
}y;;,-:z XUY':-“ ) (3)

where

ijzg](_)kleyk fork #
and

ij:—s_iijij fork =j
The ratio x/y, =1; corresponds to the effective path

length of a beam i traversing a crystal layer of
thickness x in an infinite crystal plate of thickness T.
In general, the total power in beam i is required. In
such a case, x is made equal to the plate thickness T.

Lquation {3) is a recurrence formula that allows the
calculation of the sucessive terms of the Taylor series
expansion in an iterative way, i.e., the mth-order term
15 calculated as soon as the (m-1)th term is obtained.
As implicit in the above formulation, the diffracted
beams invalved in the phenomenon can be of any type
in any number. The coefficients for the first-order
term (m=1) are calculated from the coefficients of the
zero-order term defined by

M Jo k=i

Y;, _{I fork=1 * (4)

The summation of the sucessive terms in (1), obtained
by calculating iteratively the general term (2) to any

desired order, gives the approximate intensity solution
Pi(x) for beam i. Provided a computer is used,

approximations with hundreds of terms can be
calculated using the recurrence formula. It should be
mentioned at this point that, even for a case involving
high secondary extinction and/or high absorption, a
good approximation can be attained. in general. with

a few tens of terms. An example 1s found in the work
by Parente and Caticha-Ellis (1974b). where the 111
primary intensity of aluminum was measured with a
single crystal in the shape of a square plate
3inx3inx|in oriented with the (111) planes parallel 1o
the 3x3 face. Using the recurrence formula, the
authors calculated intensities in four different
interaction cases and compared them  with
experimental results. In spite of the quite high
secondary extinction present in the measured
intensities, a maximum of 14 terms revealed to be
more than enough to obtain a good approximation in
the four cases considered in the work.

Based on the theory outlined above. Parente,
Mazzocchi and Pimentel (1994) derived intensity
solutions appropriate for a many-beam case. Due to
the employment of the recurrence formula in the
derivation, the solutions are also appropriate to be
used in cases involving high secondary extinction
and/or high absorption. The approximate intensity
solutions were derived by using the general term of
the Taylor series expansion in the case of n beams
diffracted in a crystal plate of thickness T.

Two solutions were derived. according to whether the
beam i is reflected or transmitted.

n-l|

Ri=-| X R;Cji| /Cii (5)
i=0
R
for a reflected beam, and
n-|
Ri= Z RiCji .- (6)
=0
i
for a transmitted beam, where
R: = Pi(T)/Po(0)
Ri = P;(0)/Py(0)
ZY‘JJ“’J’m!:C!-,- forj#i.
m
and
I+Xy{™/m'=C; forj=i.
m

In the above expressions, coefficients Y(J:"’ and

Ygi'“’ are calculated by (3), in an iterative way, and

Py(0) is the power of the incident beam which is. of
course, different from zero and. in general, not
precisely known. Power ratios Rjcorresponding to
transmitted beams are null. Nevertheless, they
contribute to the power of beam i through the
coefficients Cji . Ci; included. It should be noted that,
although the incident beam (j=0) is always a
transmitted beam, R; = 1. Because of this. the
restriction j # i disappears if (6} is used to calculale



the intensity of the incident (transmitted) beam.
Power ratios R; corresponding to reflected beams

can be determined from solution (5). A set of linear
equations. with a2 maximum of n-2 equations, is then
obrained. The system of equations can be represented
in a matrix form by (7)

Cii C. C.. R. C.
Cu C C---..' R; C‘-U
C... C.. Cun R..|==|Cu-n
Cuiwi Cia o Co R Ca v
Co. Coto o Caian R.. Con s

The system (7) can easily be solved if the number of
equations is small. For a large number, one of several
suitable subroutines available in computer libraries
can be used. The approximate solution sought is
obtained by subsututing the R's found by solving (7)
in the appropriate equation, ($) or (6).

4. MULTI - A Program for the Simulation of
N.M.D. Patterns

[n order to perform the structural analyses a computer
program, MULTI, has been prepared aiming to
calculate theoretical m.d. patterns (Mazzocchi, 1984,
Parente, Mazzocchi and Pimentel, 1994). MULTI
simulates point 1o point m.d. patterns for primary
beams of any type and transmitted incident beams
using the intensity solutions (5) or (6). A brief
description of the main features of MULTI is given
below:

I. For a predetermined primary reflection, it
determines all possible secondary reflections
occurring in a given interval of the azimuthal
angle ¢. Primary reflection, angular interval of ¢
and step Ad must be specified by the user.

2. It determines the characteristics of the beams, e.g.
their signs 5, and their mean path lengths |; .

3. For each ¢-position, it calculates the reflectivities
tor all intcractions occurring in that position. A
matrix ol n{n-1} reflecuvities 1s then obtained, n
being the number of interacting beams.

4. As mentioned above, MULTI calculates the power
of the beam, primary or incident, by using (3) or
{6). When necessary, the system (7) formed to
find the values of R#0 is solved by a subroutine
adjoined to MULTI. The maximum order for the
expansion is specified by the user.

5. Structural Analysis of a- and B-Quartz

a-quartz, one of the polimorphs of silica (SiO;) which
is stable at room temperalure, has a structure
described by either of the two enantiomorphic
trigonal space groups P3,21 or P3,21 (Wyckoff,
1965). At approximately 846K, a-quartz undergoes a
reversible transition to B-quartz with minor changes
in the silicon and oxigen positions. B-quartz has a
structure with hexagonal symmetry in either of the
two enantiomorphic space groups P6,22 or P6,22
(Wyckoff. 1965). Both « - and B-quartz have three
molecules in hexagonal unit cells with almost the
same dimensior- «- and PB-quartz structures as
described above correspond to well-known ordered
models studied by several authors (see Wickoff, 1965,
for references). In a study dealing with the mechanism
of the a-p phase transition in quartz, Young (1962)
employing X-ray diffraction analysed the structures of
both phases at high temperatures. The ordered model
of structure suggested by Young for B-quartz is the
same proposed by former authors where the silicon
and oxigen atoms occupy, respectively, the special
positions 3(c) and 6(j) in either of the above
mentioned enantiomorphic hexagonal space groups
(see Wyckoff, 1965). Wright and Lehmann (1981),
employing high-resolution neutron diffraction data
studied the a- and PB-quartz structures. These authors
verified that for B-quartz the best agreement between
the experimental intensity data and theoretical
calculations is accomplished when a disordered
structure is considered. In the structure of Wright and
Lehmann, oxigen atoms occupy, in a half occupation
mode, twice the number of special positions they
occupy in the ordered model. Disordered positions
are simmetrically placed around the 6(j) special
positions in the ideal B-quartz structure,

The experimental measurements in quartz  were
carried out with a natural crystal shaped into an
orthocylinder dimensioned Scm@xScm with the [001]
crystallographic direction approximately parallel (o
the cylinder axis. Experimental primary and
transmitted beams n.m.d. patterns. for both phases.
were obtained with the crystal placed inside the
furnace depicted in Figure 2. Well compacted
vitreous silica powder maintained the crystal firmly in
position inside the furnace. Measurements were done
at room temperature, for a-phase. and 1003 K. for the
B-phase.

Analyses were done by calculating the integrated
intensities of a few peaks, experimental and
simulated, and comparing them by means of a R-
factor given by

lek(obs)—c.[k(calc)l
_k

R = (8)

Z 1y (obs)
k



where I {obs) and Iy(calc) are, respectively, observed
and calculated integrated intensities of a peak k: c is a
scale factor which is varied in order to minimize R.

Table I shows the results found for a-quartz and
Table I for P-quartz. Values of R found in the
analyses are indicated in the captions of the Tables.

6. Refinement of the Ferri- and Paramagnetic
Phases of Magnetite

According to Verwey and co-workers (Verwey and
de Boer. 1936; Verwey and Haayman, 1941; Verwey
and Heilmann, 1947; Verwey. Haayman and Romeijn,
1947), above ca. 119 K, magnetite (Feq0y4) is an
inversed Fe spinel Fe3*(Fe2*Fe3*)04%". The
inversed spinel structure of magnetite has a large unit
cell containing 8 Fe3* ions in tetrahedral A sites and
8 Fel+ plus remaining 8 Fe3* ions in octahedral B

Table I - Results found for a-quartz according the
maodel proposed by Young (1962). R=0.344

Azimuthal position of Integrated intensities
peaks

B {obs) P (cale) Ixiobs) Ig(calc)

{deg.} {deg.)
61.29 61.23 2270.0 1623.4
61.90 6198 1883.3 1004.8
2.69 62.69 2667.8 1237.2
63.76 63.80 251.5 263.8
6475 64,82 1618.5 1777.2
69,44 69.05 5940.3 3890.5
71.22 71.27 5176.7 2047.3
TIEG | —meeeeee 287.1 4
7262 72.50 3666.2 7797.8
7367 73.54 2704.6 4857.6
74,89 7487 11399 1274.8
75.95 76.20 42074 4160.5
79.18 79.20 2413.8 2329.9
80.25 80.24 522.3 2486.9
8230 82.20 10587.8 2876.2
83.70 83.76 1744.36 1375.3
£4.32 24,36 1516.0 1139.8

sites. lons in magnetite are distributed in the

following positions of space group Fd3m: O in
32(e), Fe™* and Fe' in equal numbers and random
distribution in 16(d) and Fe'* in 8(a).

The magnetic structure of magnetite, at
temperature, is type Néel A-B. Négel (1948)
acwounting for the observed magnitude of  the
saturation magnetic moment, which could only result
from the ferrous ions alone, postulated that the ions
on the A sites in magnetite were coupled
antiferromagnetically to those on the B sites. In such a
coupling, in fact, the contribution of the ferric ions is
null since they are distributed in equal numbers on
both A and B sites. On the other hand, the
contribution of the ferrous ions is maximum, since all

room

Table II - Results found in the analyses of -quartz
for the ordered (Young, 1962) and disordered model
(Wright and Lehmann, 1981). R=0.143 and R=0.110,
respectively.

Observed Calculated for the | Calculated for the
ordered model disordered model
¢ (obs) | Ikiobs) | @ (cale) | Ikicale) | @ (cale) | Ix{calc)
(deg.) ideg.) ideg.)
50.34 957.4 50.63 825.1 50.36 871.15
59.04 912.3 5912 1136.2 59.13 962,91
6090 1166.0 60.87 1103 .8 6 87 943 50
69.57 8093 69.65 164 2 69 .64 83250
84 68 1468 84.77 416.9 84 77 27473
8R.59 405 8 88 62 B48.9 88.63 41903
9129 1440 91.37 4320 91.17 45213
95.22 256.5 95.23 181.4 95.23 32190
103.42 439.3 103,40 3780 103 4] 505.08
104.51 585.8 104.58 794.9 104,59 74093
110.30 1013.0 110,15 794.9 110,36 860.25
119.02 1069.1 118.85 1131.8 118,90 957 18
120.83 1006.7 120.87 1164.2 120 87 993 45
129.61 826.6 | 12965 8035 | 12965 | 82695

of them are on the B sites. This configurates a
ferrimagnetic structure. Above the Curie temperature.
ca. 853 K, magnetite is magnetically disordered, i.e. it
is a paramagnet.

The experimental measurements were carried out with
a natural magnetite single crystal. The crystal was
placed f{irmly inside the furnace depicted in Figure 2.
For this work, both resistance and sustaining powder
were  substituted by more appropriate  materials
{Mazzocchi and Parente, 1997). The crystal was fixed
in the center of the furnace with the previously
oriented <111> direction nearly parallel to the ¢-axis.
Multiple diffraction data were tlaken at room
temperature and 976 K. We assumed that. at this
temperature, the crystal was wholly in the
paramagnetic phase.

The ¢-scans were carried out in steps of 0.12 .5 min
of counting time each step, over an azimuthal angular

interval extending from 0 to 83.5° for both patterns.

Complete 60° patterns were obtained in this interval,
which is in accordance with the existence of 3-fold
symmetry axes along the [111] directions in the cubic

system (Chang, 1984). Since half of a 60° pattern 1s a
mirrored image of the other half (Mazzocchi and
Parente, 1994), the halves were summed to form a

300 pattern with double intensity.

A process based on the parameter-shift method
(Buhiya and Stanley, 1963) was employed in the
refinements of the structural parameters (Mazzocchi
and Parente, 1997).

The R factor used 1s similar to the profile R factor of
Rietveld (1969), used by him to evaluate the
agreement between profiles. It is given by the same
formula (8) used for the study of - and B-quartz.



However, now I(obs) and Iy(calc) are, respectively,
observed and calculated intensities in a k2 azimuthal
position; ¢ 1s a scale factor which is varied in order to
minimize R, during a cycle of refinement, for each
value assumed for a certain parameter in its inlerval
of variation. The refinements were done in a point-to-
point basis, i.e. for each Iy(obs) a corresponding
[g(cale) was calculated by MULTI using a given set
of structural parameters (Mazzocchi and Parente,
1997,

In a first refinement (1), an overall isotropic thermal
parameter B was assumed for all ions in the structure.
In a seccond refinement (1), different isotropic
parameters were assumed for the special positions in
the space group. They are tdentified by B,, By and
16(d} and 32(e),
respectively. Finally, anisotropic thermal parameters
were  assumed in a  third refinement (I In
refinements [ and 11, the standard deviation of the
gaussian distribution (1), assumed in the simulations
by MULTI, were maintained constant. In refinements
II, 1 was relined together with the structural
parameters.

Be for the positions 8(a),

Refinements L. Il and III, for the ferrimagnetic phase,
were done in accordance with the process outlined
above. Results of such refinements are histed in Table
1L In Figure 3. the experimental n.m.d. pattern of the
ferrimagnetic phase is compared to simulated patterns
calculated by MULTTI with the final sets of parameters
found in the refinements I, 11 and I1I. Figure 3 also

Table IIT - Lauice, positional and thermal parameters
tound in the refinements of the ferrimagnetic phase of
magnelite.

POSI- PARAM- REFIM. REFINM. REFIN.
TIONS ETERS i 1] i
A (A) ] BA0L(0) | 8.402(0) | B.399(k)
B (A 1.15(0) - -
Hia) B, Ay 090009
By, (A 2, 0.28(0)
16id) B, (A 2} - 113
B), (A 0645
B> (A 2. 02785
e} % 03705 | 03700y | 037K
B, (A 2, - 1.3 -
(2 007(7)
By ta=
B)» (A 2, 0.00(8)
N irad) 0.0062(6
1]
c xiod) 1620 1.630 2285
R (%) 199 1.96 300

shows the corresponding difference patterns obtained
by calculaung  w, ([{obs) - c.dycale)], where the
weighting fuctor 18 given by wy = Liobs)'? A

Table IV - Laice, positional and thermal
parameters found in the refinements of the
paramagnetic phase of magnetite,
POSI- PARAM- REFIN. REFIN. REFIN.
TIONS ETERS 1 I ul
a (A} | B486(0) | 8.490(5) | E491N)
B (A} 1.42(5) .
8ia) B, A - 1 8(5)
By (A2 0.26(0)
16td) By (A2 - 1 145)
By, (A 04110y
By (A2) - DY)
32e) X 0381(5) | 0I8US) | 03U
B, A% - 1.8(0)
By, (A 0183
N (rad 0.0051¢2)
c 0% 2040 1.995 2 380
R (%) 3.56 146 332

qualitative evaluation of the comparisons shows that
refinement 11T clearly exhibits the best agreement
whereas the differences between refinements I and Il
are almost negligible. Values of R in Table 1]
confirm above assertions.

Figure 4 is the equivalent of Figure 3 for the
paramagnetic phase. Differently from Figure 3, a
comparison between refinements I 1l and [II shows
no remarkable differences. In fact, the values of R
listed in Table IV are very little different although
diminishing from refinement I thru I1L

7. Commentaries

Observing the results of the applications of n.m.d. as a
method for structural analysis, reported in this work.
one can say, at least, they are ‘normal’ results when
compared to those obtained in a standard method.

This is particularly true for the refinement done in the
nm.d. data obtained for the magnetic phases of
magnetite. As a matter of fact, simulated and
experimental patterns, in this case, agreed within a
few percent as commonly occurs when applying a
standard method. On the other hand, the results for
quartz are not good. It is important to note. however,
in the gquartz analysis no refinement of structural
parameters has been tried. Of course. many questions
can be posed concerning many aspects of the n.m.d.
method. But, it must be said this is a quite new
method demanding further investigalions.
Nevertheless, a few observations about 1t are done
below, taking into account the ‘state-of-the-art” of
multiple diffraction and its applications.



e It is a single-crystal method and, as such,
intensities are affected by extinction. In n.m.d,,
secondary extinction is particularly important.
However, theory used intrinsically corrects for this
effect.

s Muluple diffraction is a disturbing phenomenon in
standard single-crystal diffractometry. In n.m.d.,
on the other hand. clearly multiple diffraction
causes no disturbing effects since it is the essence
of the method, at all.

e Data acquisition in single-crystal diffractometry
demands a rather complicated procedure involving
spalial orientation of crystal and positioning (26)
of detector, for each observed reflection. In
n.m.d.. except for the ¢-scan, experiment is
performed in a ‘steady state’, i.e. crystal and
detector are positioned once.

e In single crystal diffractometry intensities are, in
general. univocally correlated to the square of the
structure factors of reflections. In n.m.d., in the
simplest case (three-beam diffraction) there are six
correlations to be considered. In a general case,
nin-1) correlations must be considered.

Except for the last commentary above, all others are,
no doubt, ‘pros’ rather than ‘cons’. Certainly many
‘cons” will be find with further investigations about
nmd. (and x.md., X-ray multiple diffraction, as
well). Perhaps, in the future, one could say ‘In this
single crystal too much extinction and multiple
diffraction occur, Why not try the n.m.d. method?".
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