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Abstract: This work presents the position control of a rebot
manipulator using a new artificlal neural wetwork. This
neural network is based on a new neuron model with multi-
ple synapses. The synapses’ connective strengths are modi-
fied through a selective and cumulative process that resem-

bles ah unsupervised learning method. These new concepts
applied to the position comntrol of the planar two-link ma-
nipulator show excellent results.

Index terms— Neural network architecture, Control systemns,
Mamipulator position-control

1- INTRODUCTION

The purpose of this paper is to present the results of an
innovation in the field of artificial neural networks that
can be used to control robot arms. The paper consists of
six sections. The first section is this introduction. The
second section describes the new concepts introduced
The third section shows the application of the neural net-
work in the control of the robot arm. The fourth section
presents the resulis and discussions. The fifth section is a
summary of conclusions.

11 - THE NEW CONCEPT

The new concepts used in the planar two-link manipulator
position comtrol presented in this paper were developed as
part of a doctoral thesis condacted between 1994 and
1998, which is described in detail in [1] and [2]. These
new concepts are based on biological neuronal circuits
and functions and are resumed next:

A. Neuronal Signaling

1) The unit transfer function: The unit transfer funchion
used in this approach is a modified hyperbolic tangent:

0="T, (oY s),

where O is the output signal, 7y represents the “size” of
the unit, a is a gain, and T § is the summation of all syn-
aptic input to that unit. The “size” can be set to any con-
venient values, for instance, to improve the linearity in
the range of interest, or to amplify or o reduce the input
to output relation.
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2) Synaptic transmission modeling: The synaptic trans-
mission process is simulated by a set of Gaussian like
funcuonshhelhalonecxemphﬁedmﬁgmelandex-
pressed as:

T

. S— 2
1+a(/ -1,) =

where, T is the “strength” of the synapse, which can be
sct as amy positive valoe (excitatory) or as any negative
value (inhibitory), a is a constant that can be adequately
chosen to produce smooth functions according to the
number of synapses, / is the signal value that pass through
the axon, and, [, is the value of / that maximizes S, the
output value to the target cell which is called here
“threshold”.

Expression (2), that represents a single synaptic terminal,
permits amplification and selective This func-
tion cnhances the whole unit transfer function and is
much simpler than sigmoidal functions in terms of com-
putation time. With convenient strengths and thresholds, a
set of functions like that of equation (2) can produce any
kind of continuous function.
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Figure 1 - Synaptic Transfer Function.
B. Learning and Memory Mechanisms
i
In biological neuronal circuits, a single set of synapses

can participate in different forms of learning: they can be
depressed by habituation or enhanced by sensitization.



More complex forms of leaming are classical condition-
ing and practice. The reflexive memory mechanism proc-
ess sugpests the design of a special circuit to implement
the learning process. This circuit, shown in Figure 2,
scales the error signal via one facilitating inter-umit, that
is connected to the outpat unit synaptic terminals through
axo-axonic connections, where the changes are to be of-
fected The sign of 'the error dependent signal decides if
the process is a presynaptic facilitation or presynaptic
inhibition, which will increase or decrease the synaptic
strength.

Wish Commands
—

Inter-unit
Plastic Synapse

Sms«ﬂ Signals

Figme2-Sym#icmfortheLmningPrm

The change in the synaptic strength due to the leaming
process is outfitted by a plasticity model, based on mem-
ory storage mechanisms. This is done through a cumula-
tive process where the governing term is proportional to
the incoming signal (the training signal 5) and its decay
rate, as follows;

L L
dt

3

where C is the long-term change’s trigger factor, & is the
output signal of the facilitating imter-unit, 2 is a decay
constant, and, 7. is the strength of the facilitating synapse
(that controls the rate of change).

According 1o equation (3) the long-term change’s trigger
factor (C) can grow in a rate proportional to the learning
signal (&) up to an equilibrium value, This makes the
change in the synapses strength faster or slower. If the
incoming learning signal decreases to zero the long-term
change’s trigger factor will also decrease to zero, ac-
cording to the rate established by the decay constant (A).
This means that afler a reasonable period of training,
when there are no crror and no excessive movement,
there will be no need for further changes, thus making the
process inherently stable.

To complete this idea, an artifice is create to make the
changes occurring mainly in the convenient synapses, ie,
in the synapses where the threshold (fp) is closer to the
incoming desired values. This novel characteristic makes
the correct synaplic selection, with the strength rate of
change of the motor unit synapses (parameter 7 in equa-
tion 2) as a function of the long-term change’s trigger
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factor and of the synaptic threshold This is implemented
by the following expression:

dar,
L = & . O]
dt }+a_,ﬂ-l,,_j)’
where 7, is the strength of the j-th synapse of the motor

unit, a, is the constant of the Gaussian like function of the
facilitating synapsc, / is the signal value that comes from
the upper control level (the Wish), and, i/ is the thresh-
old of the synapse.

C. Architectural Design of the Motor Control Unit

The network’s main structure concept is represented in
Figure 3. It defines a “motor control unit,” which summa-
rizes the new concepts applied to control purposes.

In Figure 3 the input pathway from the upper level system
(“The Wish” - /) and that from the sensory system (“The
Actual Condition” - J,) converge to the unil responsible
for sensing the actual error (). These signals are linked to
the error sense unit with rigid connections that will not
change with training. These conmections are modeled to
make the error unit 1o sense the actual condition from the
scnsory system with the opposite sign of the wish signal,
ie,s8=1.-1, ﬁlsxslmplmmdbyeqmumsmmd
(G)bellow

where N is the number of redundancies: The schema of
multiple branches of synaptic terminals improves the reli-
ability as long as it allows the increase in the oumber of
terminals, what can make a more fail-proof system.
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To avoid feeding the network with the rate of change of
the sensory signals, an artifice is used to sense these rates
within the network. Sensing differences between signals
ﬁumnnnsmd:ﬁ‘mhymmplcmuutmsmm
inter-units responsible for this function are coupled with
rigid connections. The output signals of these units in the
scveral levels represent the rates of change of seasory
signals. These signals are combined with the error signal
in one intermediate unit that makes the connections with
the output unit. This signal combination represents the
system dynamics as an analogy to the summation of ass +
ayds/dt + axd’s/dt’ + ... The coefficient a, of the error is
implemented by the following synaptic functions that
result in a linear transfer function,

s Hi[___z._____.
* N\1+025(7 -2y ) ™

1 ~T, .
5w E(m) ®

where T, is the strength of the error synapse.
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Figure 3 - Motor Control Unit Concept.

The synaptic transfer functions for the connections of the
rate of change of the sensory signals with the inter-unit
are modeled with damping characteristics of the type of
x[x|. This is necessary to attenuate oscillations and to
make the process stable even in the presence of high rates
of change. Equatians (9) and (10) implement the coeffi-
cients a; according to that characteristic. This damping is
biologically plausible because we have neurons and mus-

cle cells with damping characteristics.

N {1+ ~))
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where T, is the strength of the rate of change synapses.
The sensory and upper level signals are transmitted
through two symmetrical (in terms of threshold and
strength) sets of synapses, which are the synapses with
plasticity that will be adjusted by learning. The plastic
synapses behavior is represented by:

T

—_ J .
T N+a(l 1,0

(b

T,

*Tlvad, -1,

(12)

where T}, is the strength of the /-th or of the k-th synapse.

Before any training these plastic synapses bave no
strength, i.e., ;2 = 0. The existence of an error signat &
yields a & signal different from zero that acts to increase
or to decrease the long-term trigger factor C given by
equation (3). The plastic changes, responsible for the
learning process, take place in the motor unit synapses.
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The wish signal is used to adjust all the plastic synapses
even the ones in the actual condition pathway. Detailed
description of this motor control unit can be found in ref-
erences [1] and [2].

11 - THE PROBLEM MODELING

The new Motor Control Unit is applied to the position
control of a planar two-link manipulator. Simulations of
this controller were undertaken to check its performance
in terms of control and dexterity learning to reach desired
targets.

A. Dynamic Process Modeling

The planar two-link manipulator is 2 nonlinear, two-
degree-of-freedom problem. The variables considered in
the manipulator model are shown in Figure 4. The dy-
namics of this 2-D system is represented by:

T =H® +H,8, + b9 "'hmélez +Gy; (13)
1, = H,0, + H,0, + h, 0 +G,; (14)
where § is the angle between the first segment and the x-
axis, & is the angle between the second and first seg-

ments, 7; and 7; are the joint torques 1 and 2 respectively,
and the other terms are defines as follows.

Hy =mll + 1, +[m (0} +15 + 2/, c058,)+1,];
Hy, =myhil,; c088, +m,l;, +1,];

Hy =m1!:z +1;

by = ~ml\l,sind, ;

hyy ==2m,1 1 ;5in0,;

by =mylid ,sin®, ,

G, = m,gi, cos8, +m,g(l, cosO, +1_, cos®, +6,));
G, =m,gl,, cos(0,+9,).



The subscripts 1 and 2 refer to the i-th manipulator seg-
' 'ment with mass m,, total length /, distance from the link
* to the mass center /,; and moment of inertia /;, and g is the
gravitational acceleration.

. The dynamics of each electric motor coupled with the
manipulator is governed by:

CJy— =Ty T Thy . 15)
H‘ﬂ M PM (

' where Jy, is the polar moment of inertia of the rotor, n is
the rotor speed, 7, is the motor torque, 7y is the torque
of losses, and 7 is the load torque which is given cither by
. equation (13) or (14).

(x,,y,)

Figure 4 - Two-link Manipulator Model.
The motor torque is expressed as:

1, =K;0, (16)
- where Ky is the motor/drive torque gain, and O is the out-
put of the attached neural controller.

- The torque of losses, Ty, is composed of two parts: the
bearing (75) and the motor losses (1,). To describe the
bearing losscs, static and viscous friction are considered
as follows:

715 = Kiaht an
where X5 is a constant, proportional to the contact pres-
sure, and J is the friction factor. This torque can be cor-
related from data presented in reference [3].

It is assumed that the motor torque of loss is proportional
to the square of the motor speed as expressed by:

T = Ko, (18)

where K, is a constant function of the motor type.
B. Position Control with the New Neural Network

Since in the manipulator process there are two actuators
(the two electric motors) at least two motor control units
are neoessary. To the purpose of demonstration, the input
signals 10 these control units were restricted to the desired
and actual joint angles § and &. Observe that the joint
angnlar speeds are not necessary because the inter-units
sense the rate of change of the joint angles. Also note that
in this demonstration the end effector position is treated
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as a result and not as an objective. This is made to avoid
the need of other layers to convert the target end effector
position 10 the desired joint angles.

It is important to say that another system could have been
designed, in which each electric motor is controlled by an
independent network with all possible combinations of
inputs (e.g., €, &2, and &, + @ ). In this case the two
networks should leam which of these inputs are impor-
tant. But as long as it was decided 1o design task-specific
networks and one can take the profit of its knowledge
about the process and how biological systems can deal
with it, some simplifications that can improve computer
usage are implemented. Considering that the second seg-
ment position affects the load on the first segment, the
driver of the first motor should be fed with the sum of the
outputs of the two controllers. Taking into account that
the angle &, is relative to the first segment direction, 8
and &, are summed to fed the second controller.

Figure 5 shows the network that represents the two con-
trol units coupled with the process. In this figure, sensory
pathways are represented by dotted lines, while solid lines
represent both upper level signals and intermediste path-
ways. It can be seen that input inter-units (IN') are added
to perform the operation of input summations.

Note that in this implementation, the plastic synapses
learn only the gravitational torque. Other implementations
are possible in such a way that the network learns also the
torques generated by the Coriollis and centrifugal forces.

In Figure 5, 8y and &p represent the wish commands
(the desired angies), O, and O, are the output signals
from the motor-units that feed the two motor drives, D,
and Iy, IN® are the inter-units responsible for sensing the
error, N are the inter-units responsible for sensing the
first-order rate of change (in this example higher order
terms are not needed), are the learning facilitating
inter-units, and /N are inter-units used to generate de-
layedngmls,neededtoevaluatcthemeofchmwwﬂhe
signals.

ance evaluation of this approach are pmemedanddls-
cussed in the next section.

IV - RESULTS AND DISCUSSION |

Table 1 presents the numeric parameters used to simmlate
the two-link planar manipulator of Figure 5. The main
parameters of the neural network components are given in
Table 2. The training is performed on-line, i.e., during the
performance of some commands of the wish. Changing
the wish command according to the numbering sequence
of positions presented in Figure 6, performs the unsuper-
vised learning process. A set of 28 target positions is used
for training. The manipulator starts from the resting posi-
tion (-90°), in the stretched configuration, goes clockwise
to the -185° position, returns to the resting position, and
goes counterclockwise to the +185° position and returns



Figure 5 - Simplified outline of the network for the manipulator's control.

“training-phase” last 1960 seconds of simmulated time
(with only 85 seconds of CPU time in a 166 MHz
Pentium Microcomputer). This is much faster than human
capabilities and may indicate that the leaming process is
computationally efficient.

agzin to the resting position. This set of target positions is
repeated six times (six frials). The targets pursue dura-
tion, 1, in each trial are as follows: first and second trials,
t = 5 sec.; third and fourth, t = 10 sec.; and, fifth and
sixth, 1 = 20 sec.

Table | - Parameters for the two-link Manipulator.

Parameter _Segment
i 2

[ Length -  (mm) 707 707
Mass - m (kg) 30 2.0
Moment of Inertia - / (kg m’) 0041 | 0.027
Motor Torque Gain - Ky (N M) 60 30
Rotor moment of incrtia- Jy (kg m?) | _0.0013__| 0.0013
Bearing 106 canstant - K5 1.0 10
Motor loss constant - Ky 25.1 25.1

Table 2 - Parameters for the New Approach Network.

Parameter Value
Unit’s size - Ty(Eq 1) 2.1
Units gain constant - a(Eq. 1) 0.5
Plastic synapse’s constant - a (Eq. 5, 6) 28.8

Number of plastic Synapses: sensory to output unit 15

Number of plastic synapses: “wish” to output unit 15

Consccutive thresholds interval (1, —1, ,,,) | 0-1667
Strength of error symapses — T, (Egs. 7, 8) 2.5
Strength of rates synapses - T, (Egs. 9, 10) 0.09
Strength of facilitating synapses ~ I'c (Eq. 3) 0.1
Synaptic strength decay constant - A (Eq. 3) 10.0
Plastic synapse’s plastic constant - a,(Eq. 4) 144.0

After repeating that set of commands six times the system
is able to reach all the target positions with reasonable
precision and the strengths of the two sets of motor unit
synapses, injtially zero, grew to that of Figure 7. This
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With those synaptic strengths, the next step is to check
the response of the network to any kind of input. Thus the
plasticity model was blocked (setting 7. = 0 in equation
3) to avoid any new strength update in order to observe
the generalization capability of the network., Tests are
performed over the complete domain of 6, and 6y, with
excellent results. Tests are also performed without
blocking the plasticity model, allowing the observation of
its stable performance.

Figure 8 exhibits the results of onc of these tests, showing
the manipulator end effector trajectory to five targets,
each one defined by a different wish, which is kept con-
stant during a period of 6 seconds. In this example two
positions were also presented in the training set (points 2
and 4) and three positions were not present in the training
set (points 3, 5 and 6). The last target is placed in a great
distance from the anterior position to observe the network
stability with large exrors and rates of change. The evolu-
tion of the end effector distance from the desired position
is presented in Figure 9, which shows the five spikes that
represent the transition of the wish commands, which is
done in steps. Observe that, even for targets distant more
than 2000mm from the current position, the desired posi-
tion is almost unwavering reached in less than five sec-
onds. In this example the motor units have only 15 syn-
apses per side, with a total of 60 plastic contacts in the
two control units. With only 28 “training points” and 70
seconds of training time at each point, the maxinum dis-
tance error reached during the performance tests is
smaller than Smm.



V - SUMMARY OF CONCLUSIONS

The performance of the novel ANN proposed for the po-
sition control of the planar two-link manipulator shows
that the option of task-specific networks seems to be a
resourcefully way to solve some problems of control.

The use of multiple contacts in each axon terminal in-
creases the integration capability of each umii. Higher
classes of connection’s transfer functions improve the
input-to-output relation, allowing a reduction in the total
number of units with expensive sigmoidal functions (syn-
aptic functions are less expensive).

The training task can be performed on-line during the
execution of desired commands, according fo an unsu-
pervised learning approach. The limited training time
and the few targets needed to leamn, associated with the
good results obtained in the task of positioning over an
extended domain, show a remarkable ability of this novel
ANN for geperalization and for controlling the planar
two-link manipulator. This new approach implements
artificial mechanism resembling habituation or sensitiza-
tion, provided by facilitating units. The nse of a single
plasticity model in the synapses enables real time learning
while functioning without any physically unexplained
maihcmahcalalgomlun

The new ANN is more complex than conventional multi-
layered back-propagation networks in terms of synaptic
arrays and transfer functions but it has the advantage of
reducing the total number of units. As the transfer func-
tion of the necuron units is more complex than that of the
synapses there is a net gain in terms of performance as
demonstrated in Section IV, The performance of leaming
and acting showed in the examples demonstrates that this
is certainly a promising concept.

More details, including comparisons with a foed-forward
neural network, and the application of this new conoept in
other applications are presented in references [1] and [2].

< 15l Pl ™ o
'
7 =28 ﬂlﬂ\.
4 ne1 l' }
Ta3 %U-l’ y 'l °
*n '1'
i /
\ = /"'
/
et / 1wals
~ rd

L -
Initind Position

Figure 6 - Training positions set.

662

-1

Synaptic Threshold
Figure 7 - Synaptic strengths after training.

I""T T g potet

b1

!‘.,d

! 1

~- \
.

Theee 43
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