"DESENVOLVIMENTO DE CÂMARA DE IONIZAÇÃO PARA MEDIÇÃO DE Potência de reafores nucleares, baseado na medição da atividade do n¹⁶ no circuito primário"

Homero Enrique Bañados Perez, José Mauro Vieira, Artur Rodrígues Vieira e Clayton Forreira de Figueiredo.

Comissão Nacional de Energia Nuclear - SP Instituto de Pesquisas Energéticas r Nucleares Caixa Postal 11049 - CEP 05508 - São Paulo - S.P.

RESUMO

ļ

ļ

No IPEN foi desenvolvido um instrumento para indicar a potência do reator IEA-RI, cujo projeto esta baseado na medição da atividade do nitrogênio-ió na água de refrigeração que provém do núcleo. Este instrumento consiste principalmente de uma câmara de ionização especialmente projetada e construida para medir no circuito primário de refrigeração, a radiação gama de aita energia emitida pelo N-16.

Os primeiros resultados mostram que o instrumento desenvolvido fornece uma indicação de potência com um desvio de t $^{\chi}$ do valor da potência determinada por balanço têrmico, e também é independente da configuração do núcleo e da temperatura da refrigeração primária.

ABSTRACT

At IPEN, a reactor power indicating instrument has been developed for the nuclear reactor IEA-Ri, whose design is based upon the measurement of the nitrogen-16 gamma activity in the light water coolant from the core. This instrument is mainly an ionization chamber specially designed and constructed to measure the high energy gamma radiation from nitrogen-16 in the primary coolant circuit.

The first results with this measuring instrument shows that it gives an indication within $\pm 2\%$ of the power as determined from thermal measurements, and also is independent of core configuration and temperature of primary coolant.

1. INTRODUÇÃO

A monitoração de potência utilizando a medida da atividade do N¹⁶ na água é utilizada com frequência em reatores nucleares de pesquisa e de potência. A principal característica da monitoração de potência global do reator, peia medida da atividade do N¹⁶, é que esta medida não é afetada pelas deformações locais do fluxo de néutrons, provenientes da variação das posições das barras absorvedoras, introdução de dispositivos experimentais de irradiação, queima de combustivel, variações de temperatura, etc.

O N¹⁶ é formado a partir de uma reação (n,p) com o O¹⁰ da água que atravessa o núcleo do reator. O limiar de energia desta reação é excepcionalmente eievado (\cong i1 MeV) o que faz com que a formação do N¹⁶ dependa unicamente do fluxo de néutrons de fissão, e se processa em todo o volume do núcleo, sendo portanto, dependente da potência global.

O N¹⁶ tem meia-vida de 7,13 s, sendo sua desintegração felta através de emissão de particulas β e radiação γ de 6,13 MeV (68%) e 7,12 MeV. Esta energia é consideravelmente mais elevada que a de outros radiolsótopos encontrados na água.

A atividade do N¹⁶ representa 99% da atividade total da água que sai do núcleo, sendo a atividade restante resultante da ativação de impurezas, de produtos de corrosão, produtos de fissão e de reações menos importantes, que dão origem a N¹⁷, O¹⁹, Ar⁴¹, Ms^{27} , Ai²⁸ e Na²⁴.

A meia-vida do N¹⁶ é tão pequena que sua atividade praticamente desaparece quando a água retorna ao núcleo, após a passagem pelo circuito primário.

2. MEDIÇÃO DA ATIVIDADE DO NITROGÊNIO-16

A medição de atividade do N¹⁶ é realizada, medindo a radiação gama emitida pelo N¹⁶ contido água, quando passa pelo local de medição no circulto primário. Esse local deve ser escolhido de maneira que o tempo decorrido entre a saida da água do núcleo e sua passagem pelo local de medição, seja suficientemente curto. A *figura* 1 mostra o esquema geral da instalação.

O sistema de medida é formado pela câmara de ionização gama desenvolvida, um eletrómetro, uma fonte de alta tensão e um registrador.

A intensidade da radiação gama proveniente do N¹⁶ em um certo volume de água é dependente dos seguintes fatores:

 a) - O nivel de ativação que este volume de água sofreu ao ser submetido ao fluxo de néutrons do núcleo.

b) - O decaimento durante a irradiação.

c) - O decaimento após a saída do núcleo até o detector.

d) - A constante de desintegração do N¹⁰.

e) - A forma e o volume do segmento de água medido.

O fator mencionado em a) é diretamente proporcional à potência; nos itens b) e c) os fatores estão relacionados com a vazão do circuito primário de refrigeração; e nos itens d) e e) os fatores são constantes.

Sendo o detector uma câmara de ionização, a leitura no eletrômetro é expressa por:

$$I = KP \left(i - e^{-\lambda t} \right) e^{-\lambda t} B$$
 (i)

onde:

I = corrente da câmara de ionização.

K = constante de proporcionalidade, que combina a secção de choque de ativação com a sensibilidade e geometria do detector.

P = potência do reator (MW).

 λ = constante de desintegração do N¹⁶ (s⁻¹).

 t_{λ} = tempo para um segmento de água atravessar o núcleo (s)

 $t_B = tempo para um segmento de água deslocar-se do núcleo ao detector (s).$

329

Os últimos fatores da equação $\begin{pmatrix} 1 & -\lambda t \\ -\lambda t \\$

- a) Os niveis de potência diferenciais através do núcleo foram integrados e incluidos na indicação do N¹⁶.
- b) O detector está localizado numa área livre de fluxo de néutrons.
- c) A leitura do N^{16} indica um nivel de poténcia que ocorreu alguns segundos antes, quando o segmento de água medido se achava no núcleo.

É importante estudar o efeito das variações da vazão sobre I, porque, mesmo que o reator opere com a vazão nominal constante, as flutuações nesse valor podem alterar a medida.

$$t_A = \frac{v_A}{Q}$$
 e $t_B = \frac{v_B}{Q}$ (2)

onde:

V, = volume de ativação do núcieo.

V_B = volume da tubulação compreendido entre a saida do núcleo e o detector.

Q = vazão de água no circuito primário de refrigeração. Então:

$$I = KP \left[i - e^{-\lambda V} A^{\prime Q} \right] e^{-\lambda V} B^{\prime Q}$$
(3)

Assim o detector deve ser colocado e um dos segmentos do circuito, de modo a operar em um patamar, para evitar que variações na vazão alterem a medida. Como o reator IEA-Ri opera com uma ; vazão de i_{x,t} x 10⁴ cm³/s, o ponto escolhido foi numa posição onde $t_{\rm p} = 14.0$ s.

Outros fatores podem influir na monitoração da potência pela atividade do N^{16} . Os mais importantes são as atividades do Ai^{28} , Mg^{27} , Na^{24} , e Ar^{41} .

Todos estes isótopos tém meia-vida grande em relação a do N^{16} e podem ser acumulados em diversos ciclos de operação. Por exemplo, o equilíbrio do Na 24 é atingido depois de 60 horas de operação em potência constante.

Uma variação na densidade do refrigerante pode também afetar a monitoração. A atividade instantânea é também alterada pela turbulência, que provoca variações no volume real do refrigerante. Essa influência é desprezivel porque as variações em média se anúlam.

A rigor a resposta da câmara de ionização seria dada pela expressão:

$$I = I(N^{16}) + I(0^{19}) + I(AI^{28}) + I(Mg^{27}) + I(Na^{24}) + ...$$
(4)

Para que a medida não represente a atividade de outros nuclideos, que não o N¹⁶, a câmara de ionização foi otimizada p<u>ara</u> a energia da radiação gama emitida pelo N¹⁶.

3. DESENVOLVIMENTO DO DETECTOR.

O detector foi projetado levando-se em consideração os seguintes requisitos: alta sensibilidade à radiação gama emitida pelo N^{16} , linearidade de resposta em toda a faixa de medição de potência e estabilidade de calibração por longo periodo de uso sob condições normais de operação. Teve-se também a preocupação em se obter um modelo compacto e com tensão de operação baixa. A figura e mostra um desenho esquemático da câmara de ionização desenvolvida.

As dimensões da câmara, os materiais utilizados, a natureza e pressão do gás de enchimento são as seguintes:

Dimensional:			
Diâmetro Externo:	70 mm		
Comprimento Total:	360 mm		
Comprimento Sensivel:	235 mm		
Volume Sensivel:.	730 ml		
Materiais:			
Corpo Externo:	Aço Inox AISI 304		
Eletrodo de Sinal:	Aluminio 1050		
Eletrodo de Alta Tensão:	Aluminio 1050		
Isoladores:	Aiumina (99.7% em Al $_20_3$)		
Conectores Internos:	Alumina/Kovar		
Conectores Externos:	Sinal , UHF		
	Tensão, MHV		

Gás de Enchimento:

Natureza:	Xe	+	Ar
Pressão:	30	bə	r

Durante a construção teve-se o cuidado especial com a limpeza, portanto cada peça foi cuidadosamente submetida a um desengraxamento por ultra-som. A montagem foi executada em ambiente com contaminação atmosférica controlada (sala limpa classe 100) sendo em seguida acoplada a um sistema conjugado de vácuo-pressão para desgaseificação, a uma temperatura de 120 graus Célsius , vácuo de 10⁻⁵mbar por 4 dias, e posterior enchimento com a mistura gasosa.

4. TESTES EXPERIMENTALS.

As características elétricas e físicas foram determinadas utilizando o laboratório de caracterização funcional do IPEN/TE e o ponto de medição escolhido no circuito primário do reator IEA-R1.

A curva de saturação da câmara foi determinada no local de medição do circuito primário, com o reator a uma potência de 2 MW.

. .

332

A figuro 3 [2] mostra a curva de saturação obtida.

Finalmente a *figuro* 4 [3] mostra a correlação entre a potência do reator e a corrente fornecida pela câmara de ionização testada.

5. CONCLUSÕES.

Da análise dos testes realizados, conclue-se que o projeto do detector e sua localização no circuito primário, possibilita a monitoração da potência térmica do reator na faixa de 10 kW até 2 MW, com um desvio máximo de \pm 2% em toda a faixa de medição. Deve ser notado, por último, que em virtude do detector estar medindo uma atividade no local da medição proporcional a atividade de N¹⁶ que foi gerada no núcleo aproximadamente 15 s antes, não é possivel utilizar este detector no canal de segurança e/ou contrôle do reator, entretanto por causa de ser uma medição de potência integral é de grande utilidade para análise operacional do reator.

REFERÊNCIAS

- [1] Knoll, G. F. <u>Radiation Detection and Measurements</u>, <u>New York</u>, <u>Wliev</u>, 1979. C. 14.
- [2] Bañados Pérez, H. E.; Vieira, J. M.; Vieira, A. R.; Figueiredo, G. F.; <u>Testes com Câmara de Ionização</u> para <u>Radiação *Qama* de Aita Energia N-16(I). <u>Relatório</u> <u>IPEN-TED. São Paulo</u>. Fev. 1990.</u>
- [3] Figueiredo, C. F.; Vieira, J. M.; <u>Testes com Câmara de</u> <u>Ionização para Radiação Gama de Alta Energia N-16 (II).</u> <u>Relatório IPEN-TED.</u> São Paulo. Maio 1990.

COMISSÃO NACION/I DE ENERGIA NUCLEAR/SP - IPEN

Figura 2. Desenho Esquemático Câmara de Ionização para Fótons de Alta Energia (N¹⁶)

Figura 3. Curva de Saturação da Câmara de Ionização para Gama de Alta Energia, N¹⁶

POTÊNCIA (W)

Figura 4. Correlação entre Potência do Reator e a Corrente fornecida pela Câmara de Ionização N¹⁶