# AVALIAÇÃO TEÓRICA PARA A DETERMINAÇÃO DE UM ESPECTRO DE NÊUTRONS CONVENIENTE À TÉCNICA DO BNCT

Margaret de Almeida Damy \*, Miriam Medeiros da Silva \*\* e José Rubens Maiorino \*

• COMISSÃO NACIONAL DE ENERGIA NUCLEAR - SP Instituto de Pesquisas Energéticas e Nucleares Departamento de Tecnología de Reatores Divisão de Física de Reatores

-- COORDENADORIA PARA PROJETOS ESPECIAIS Departamento de Sistemas Nucleares Divisão de Física de Reatores

#### **RESUMO**

Cálculos de transporte utilizando um código unidimensional foram realizados para determinar um espectro neutrônico conveniente à técnica do BNCT (Boron Neutron Capture Therapy). O critério utilizado na determinação deste espectro é denominado Figura de Mérito e foi baseado nas taxas de reação do <sup>10</sup>B no tecido normal e tumoral e na taxa de reação (n,  $\gamma$ ) dos elementos que constituem o tecido. Chegou-se a conclusão de que nêutrons com energias acima de 1 MeV não são convenientes para a técnica e que nêutrons térmicos só são convenientes no tratamento de tumores superficiais.

### ABSTRACT

Transport calculations using a one-dimensional neutral particle transport code have been made to determine a suitable neutron spectrum for Boron Neutron Capture Therapy (BNCT). The criteria used to determine this spectrum was based in the <sup>10</sup>B capture rate by the tumor and by the healthy tissue, and in the  $(n,\gamma)$  reaction rate of the elements that compound the healthy tissue. After evaluating some neutron spectra, we conclude that neutrons above 1 MeV are not suitable for BNCT and thermal neutrons are only convenient for the treatment of superficial tumors.

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP - IPEN

# 1.INTRODUCÃO

O sucesso das terapias convencionais no tratamento de câncer restringe-se a aproximadamente 50% dos casos sob tratamento. Um dos fatores que contribuem para esta baixa percentagem de cura é a não seletividade e o alto poder de espalhamento da radiação gama, que além dos tecidos tumorais atinge também os tecidos normais, danificando-os.

Sendo assim, terapias alternativas que utilizam partículas pesadas (nêutrons, prótons, elétrons, píons e íons pesados: He, C, Ne, e Ar) vêm sendo estudadas, pois estas partículas são pouco espalhadas no tecido de modo a fornecerem um feixe mais colimado do que a radiação gama, causando menor dano à região circunvisinha. Entre estas terapias encontra-se a técnica do BNCT, cujo princípio teórico baseia-se na alta seção de choque de nêutrons térmicos para a reação  $^{10}B(n,\alpha)^{7}Li$ , esquematisada a seguir:

n + <sup>10</sup>B 
$$\begin{cases} {}^{7}\text{Li} + \alpha + 2,79 \text{ MeV} (6,1\%) \\ \\ {}^{7}\text{Li} + \alpha + \gamma + 2,31 \text{ MeV} (93,9\%) \\ \\ {}^{1}\text{Li} + \gamma + 0,48 \text{ MeV} \end{cases}$$

O fragmento de fisaão <sup>7</sup>Li e a partícula o possuem um alcance no tecido de 5  $\mu$ m e 9  $\mu$ m repectivamente [1]. Como uma célula de mamífero tem o diamétro de aproximadamente 10  $\mu$ m, o efeito destrutivo destas partículas fica limitado às visinhanças imediatas do local onde ocorre a reação, de modo que a eficiência da terapia irá depender da concentração de. Boro (<sup>10</sup>B) no tecido a ser irradiado.

A maior permeabilidade entre o vaso sanguíneo, por onde é injetado o composto que contém <sup>10</sup>B, e o tecido tumoral (cerebral) em relação ao tecido normal, é uma característica essecial à técnica do BNCT, pois permite que a maior parte do <sup>10</sup>B concentre-se no tecida danificado.

Outro fator que contribui para o sucesso desta técnica é que os principais elementos que compõem os tecidos possuem baixa seção de choque para a captura de nêutrons térmicos, se comparada à seção de choque do <sup>10</sup>B, a saber: <sup>10</sup>B=3800 b; H = 0,33 b( $\gamma$ ); N = 0,75 b( $\gamma$ ), 1,86 b(p); Cl = 33,0 b; Na = 0,53 b; <sup>12</sup>C = 0,0034 b e <sup>16</sup>O = 0,00027 b. Experimentalmente comprova-se que para uma concentração de 30 µg de <sup>10</sup>B por grama de tecido, pelo menos 75% da dose absorvida é devida às reações de captura do <sup>10</sup>B [2].

Verifica-se que a intensidade de um feixe de nêutrons térmicos decai pela metade após penetrar cerca de 1,8 cm no tecido [3], o que dificulta a utilização da técnica do BNCT para tumores profundos. Assim, estudos com feixes de nêutrons epitérmicos vêm sendo realizados, tendo sido comprovado sua maior penetrabilidade no tecido [4]. Vários trabalhos [3,5] mostram que nêutrons epitérmicos com energias aproximadamente entre 10 eV e 0,5 keV são mais convenientes à técnica do BNCT.

#### 2 DESENVOLVIMENTO E RESULTADOS

Neste trabalho foram avaliadas as contribuições de 6 grupos de nêutrons monoenergéticos à técnica do BNCT e a partir dos resultados obtidos estimou-se um espectro adequado à técnica. Também foi avaliado o fluxo neutrônico necessário para se obter uma fluência térmica de  $3,2x10^{12}$  n/cm<sup>2</sup> a 2,4 cm da superfície de irradiação, o que condus a um fluxo incidente com penetrabilidade suficiente aos propósitos terapêuticos deste tratamento [4].

O modelo de cabeça utilizado foi do tipo placa com 23 cm de altura, considerando um bucking transversal de 17 cm [5]. Fixou-se o tamanho do tumor em 5 cm e os cálculos foram efetuados para tumores em várias profundidades, pois o espectro otimizado varia com a localização do tumor. A figura 1 apresenta um esquema geométrico do problema, que consists de 3 regiões: região do tecido normal antes de chegar a superfície do tumor (região 1), região do tecido tumoral (região 2) e região do tecido normal após os 5 cm de tumor (região 3). Na região 1, x representa cada uma das profundidades de tumor que foram consideradas.

A composição gara o tecido utilizada (em peso: 74% de oxigênio, 15,4% de carbono, 10,4% de hidrogênio e 0,2% de sódio) foi obtida da referência 3 e considerou-se como na literatura [5,6], a presença de 30  $\mu$ g de <sup>10</sup>B por grama de tecido tumoral e 10  $\mu$ g de <sup>10</sup>B por grama de tecido normal. As seções de choque foram colapsadas na estrutura de grupos de energia da tabela 1 com o código AMPX-II [7], a partir da biblioteca de dados VITAMIN-C.

Primeiraments construíu-se uma fonte de nêutrons unitária, isotrópica e monoenergética para cada um dos 6 grupos de nêutrons, separadamente. Para avaliar a contribuição de cada uma destas 6 fontes à técnica propriamente dita, calculou-se a taxa de produção de partículas a, 7Li e raios y no tecido normal e no tecido tumoral.

Para os cálculos das taxas de reação  $(n, \alpha)$  no <sup>10</sup>B e  $(n, \gamma)$  nos demais elementos que compõem o tecido (em cadas região), utilizou-se o código unidimensional ANISN [8] com aproximações P<sub>5</sub> e S<sub>6</sub> e o problema foi subdividido em 45 intervalos espaciais ("mashs"). Foram simulados tumores de 5 cm localizados à 2,4 ; 3,6 ; 4,8 ; 6,0 e 7,2 cm de profundidade.

Com as taxas de reação calculadas definiu-se um critério de avaliação, denominado Figura de Mérito, para estabelecer um espectro conveniente à técnica do BNCT. Um bom espectro deve fornecer uma taxa de reação  ${}^{10}B(n, \alpha)^{7}Li$  alta na região do tumor e a soma das taxas de reação  ${}^{10}B(n, \alpha)^{7}Li$  e  $(n, \gamma)$  no tecido normal deve ser baixa. Assim, definiu-se a seguinte Figura de Mérito (FM):

$$FM = \frac{TR_2}{TR_1 + TR_2 + TR_3 + TR\gamma},$$
(1)

onde,

de maneira que quanto maior o valor da Figura de Mérito, mais eficas é a técnica do BNCT.

Então, para cada profundidade de tumor e para cada fonte unitária incidente calculou-se o valor da Figura de Mérito. Os resultados encontram-se na Tabela 2.

Construíu-se dois espectros de fonte baseados na Figura de Mérito, para tumores localizados a 2,4 ; 3,6 e 4,8 cm de profundidade, a fim de comparar-se a eficiência de ambos. O primeiro espectro foi construído normalizando-se os valores de Figura de Mérito obtidos e o outro normalizando-se a Figura de Mérito após excluir-se os grupos de maior e menor energia (grupos 1 e 6). O espectro em 6 grupos de energia é apresentado na tabela 3 e o espectro em 4 grupos de energia na tabela 4. Um bom indicativo de que a exclusão do grupo 6 (térmico) melhoraria a eficiência da técnica é devido ao fato de nêutrons térmicos não conseguirem atingir tumores mais profundos, e nêutrons do grupo 1 (1 à 5 MeV) não screm satisfatoriamente espalhados para os grupos de menor energia.

Para ambos os espectros plotou-se o fluxo de nêutrons por grupo em função do comprimento da cabeça, conforme ilustram respectivamente as figuras 2, 3 e 4. Para cada um dos espectros calculou-se também as taxas de reação  $(n, \alpha)$  no <sup>10</sup>B para o tumor (região 2) e para o tecido normal (regiões 1 e 3), e a taxa total de reação  $(n, \gamma)$  na cabeça. Estes resultados encontram-se nas tabelas 5 e 6.

Avaliou-se também o fluxo incidente necessário para se obter uma fluência térmica de 3,2x10<sup>12</sup> n/cm<sup>2</sup> a 2,4 cm da superfície de irradiação e na superfície do tumor, para os seguintes tempos de irradiação: 2,6 ; 3,0 e 5,0 horas. Utilizou-se nestes cálculos o espectro em 6 grupos de energia.

Primeiramente calculou-se para cada tempo de irradiação o fluxo necessário para fornecer a fluência desejada e normalisou-se para este valor o fluxo obtido s profundidades analisadas. Este mesmo fator de normalisação foi utilizado na determinação do fluxo incidente. Os resultados encontram-se na tabela 7.

# 3.CONCLUSÃO

Analisando o fluxo neutrônico fornecido pelo programa ANISN, por grupo de energia e em cada intervalo espacial ("mesh"), verificou-se que o fluxo de nêutrons térmicos na região do tumor devido a cada uma das fontes avaliadas é superior ao fluxo de nêutrons nos demais grupos. Este fato constitui uma grande vantagem à técncica do BNCT.

Pelo perfil de fluxo, vê-se também que os nêutrons de fonte incidentes nos grupos 2, 3, 4, 5 e 6 são rapidamente atenuados, representando a menor contribuição ao fluxo total de nêutrons no tumor. Porém, em relação à fonte incidente no grupo 1, o fluxo de nêutrons neste grupo permanece alto ao longo do comprimento da cabeça, se comparado ao grupo térmico. Isto prejudica a terapis, pois é de interesse que o número de nêutrons térmicos seja o maior possível na região do tumor. Deste modo é justificável a exclusão de nêutrons com energias superiores a 1 MeV (grupo 1) do espectro de fonte a ser utilizado para a técnica do BNCT. Da Figura de Mérito obtida (tabela 2), verifica-se que para tumores localizados a partir de 6,0 cm de profundidade, a técnica do BNCT é menos efetiva. Nestes casos, a taxa de reação  ${}^{10}B(n,\alpha)^{7}Li$  devido a fontes incidentes nos grupos 4, 5 e 6 é maior no tecido normal (região 1) que no tumor (região 2), o que indica que a dose a ser absorvida no tecido normal, que é proporcional à taxa de reação, é maior do que aquela absorvida pelo tecido tumoral. Também da tabela 2 observa-se que o espectro conveniente para tumores a 6,0 e 7,2 cm de profundidade possui mais nêutrons com energias acima de 1 MeV. Estes fatos comprometem a eficiência da técnica do BNCT.

Das figuras 1, 2 e 3 constata-se que os espectros em 4 grupos de energia, para as profundidades de 2,4; 3,6 e 4,8 cm respectivamente, fornecem um fluxo térmico maior na região do tumor do que os espectros em 6 grupos de energia, sendo portanto mais adequados a esta terapia.

Os espectros estudados em 4 grupos de energia, fornecem em média uma taxa de reação  ${}^{10}B(n, \alpha)$ <sup>7</sup>Li que é 15% maior na região do tumor que as obtidas com os espectros em 6 grupos, conforme mostra a tabela 5. Porém, para algumas profundidades, o espectro em 4 grupos de energia resulta num aumento desta taxa na região do tecido normal, o que não é significativo se comparado ao aumento da taxa de reação  $(n, \alpha)$  no <sup>10</sup>B na região do tumor.

Além disso, verifica-se também que a taxa de reação (n,γ) não aumenta significantemente para o espectro em 4 grupos, em relação ao espectro em 6 grupos.

Com relação ao fluxo de néutrons necessário à técnica do BNCT, os valores calculados são da ordem de 10<sup>8</sup> (tabela 7) e portanto plenamente viáveis para um reator de pesquisas.

#### 4. Referencias Bibliográficas

- [1] Mill, A. "Tumours in the neutron trap" New Scientist, pg.56, nov. 1989.
- [2] Hatanaka, H. "Neutron-Capture Therapy" Physics in Medicine & Biology Encyclopedia, McAinsh Pergamon, pg.514.
- [3] Fairchild, R.G. "Development and Dosimetry of an 'Epithermal' Neutron Beam for Possible use in Neutron Capture Therapy" Phys. Med. Biol., 10 nº4, 491 (1965).

- [4] An, S. et al. "Development Studies Regarding the Construction of Epithermal-Enriched Neutron Field for Medical Purposes at the University of Tokyo YAYOI Fast Reactor" Nucl. Technol., <u>48</u>, 204 (1980).
- [5] Oka, Y. et al. "A Design Study of the Neutron Irradiation Facility for Boron Neutron Capture Therapy" Nucl. Technol., <u>55</u>, 642 (1981).
- [6] Oka, Y. and An, S. "Conceptual Design of a Nuclear Reactor Facility for Boron Neutron Capture Therapy".

[7] Greene, N.M. et al. "AMPX-II Modular Code System for Generation Coupled Multigroup Neutron Gamma-Ray Cross-Section Libraries from a ENDF Format, PS-73" Tennesse (1976).

[8] ANISN "Multigroup One-Dimensional Discrete Ordinates Transport Code System with Anisotropic Scattering" ORNL-CCC 254, jun. 1973.

÷

|                       | Grupo                         | Energia Inferior<br>[MeV]                              | Energia Superior<br>[MeV]                    |
|-----------------------|-------------------------------|--------------------------------------------------------|----------------------------------------------|
| NAD HRONS             | 1<br>2<br>3<br>4<br>5<br>6    | 1,0<br>0,5<br>0,1<br>0,01<br>0,5x10 <sup>-€</sup><br>0 | 5,0<br>1,0<br>0,5<br>0,1<br>0,01<br>0,5x10-⁵ |
| G<br>A<br>M<br>A<br>S | 7<br>8<br>9<br>10<br>11<br>12 | 10,0<br>5,0<br>2,0<br>1,0<br>0,5<br>0,01               | 14,0<br>10,0<br>5,0<br>2,0<br>1,0<br>0,5     |

Tabela 1 – Estrutura de Grupos de Energia Utilizada

Tabela 2 - Figura de Mérito em Função da Profundidade do Tumor

| Grupo que Contém<br>a Fonte | Figura de Mérito em Função da<br>Profundidade do Tumor |        |         |        |        |
|-----------------------------|--------------------------------------------------------|--------|---------|--------|--------|
| (Limites de Energia)        | 2,4 cm                                                 | 3,6 cm | ,4,8 cm | 6,0 cm | 7,2 cm |
| 1<br>(1,0 à 5,0 MeV)        | 0,117                                                  | 0,114  | 0,105   | 0,093  | 0,080  |
| 2<br>(500 kev à 1 MeV)      | 0,141                                                  | 0,127  | 0,024   | 0,085  | 0,065  |
| 3<br>(100 à 500 keV)        | 0,148                                                  | 0,123  | 0,096   | 0,071  | 0,051  |
| 4<br>(10 à 100 keV)         | 0,146                                                  | 0,113  | 0,082   | 0,057  | 0,038  |
| 5<br>(0,5 ev à 10 keV)      | 0,136                                                  | 0,099  | 0,068   | 0,046  | 0,030  |
| 6<br>(0 à 0,5 eV)           | 0,088                                                  | 0,053  | 0,032   | 0,019  | 0,012  |

| Grupo                      | Espectro Normalizado<br>para cada Profundidade de Tumor |                                              |                                              |  |
|----------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| Energia                    | 2,4cm                                                   | 3,6cm                                        | 4,8cm                                        |  |
| 1<br>2<br>3<br>4<br>5<br>6 | 0,15<br>0,18<br>0,19<br>0,19<br>0,18<br>0,11            | 0,18<br>0,20<br>0,20<br>0,18<br>0,16<br>0,08 | 0,26<br>0,06<br>0,24<br>0,20<br>0,16<br>0,08 |  |

Tabela 3 - Espectro de Fonte em 6 Grupos de Energia

Tabela 4 - Espectro de Fonte em 4 Grupos de Energia

| Grupo<br>de<br>Energia | Espectro Normalizado<br>para cada Profundidade de Tumor |                              |                              |
|------------------------|---------------------------------------------------------|------------------------------|------------------------------|
|                        | 2,4cm                                                   | 3,6cm                        | 4,8cm                        |
| 2<br>3<br>4<br>5       | 0,25<br>0,26<br>0,25<br>0,24                            | 0,28<br>0,27<br>0,24<br>0,21 | 0,09<br>0,36<br>0,30<br>0,25 |

Tabela 5 – Taxa de Reação  $(n, \alpha)$  no <sup>10</sup>B por Região

| Profundidade |        | Taxa de Reação        | Diferença             |           |
|--------------|--------|-----------------------|-----------------------|-----------|
| Tumor        | Região | Espectro em           | Espectro em           | os 2      |
| [cm]         |        | 6 Grupos              | 4 Grupos              | Espectros |
| 2,4          | 1      | 3,48x10 <sup>-8</sup> | 3,15x10 <sup>-3</sup> | 11%       |
|              | 2      | 1,57x10 <sup>-2</sup> | 1,77x10 <sup>-2</sup> | 13%       |
|              | 3      | 1,92x10 <sup>-8</sup> | 2,04x10 <sup>-3</sup> | 6%        |
| 3,6          | 1      | 4,84x10 <sup>-8</sup> | 4,96x10 <sup>-8</sup> | 3%        |
|              | 2      | 1,22x10 <sup>-2</sup> | 1,40x10 <sup>-2</sup> | 15%       |
|              | 3      | 1,41x10 <sup>-8</sup> | 1,41x10 <sup>-3</sup> | 0%        |
| 4,8          | 1      | 6,23x10 <sup>-8</sup> | 7,16x10 <sup>-3</sup> | 15%       |
|              | 2      | 8,90x10 <sup>-8</sup> | 1,05x10 <sup>-2</sup> | 18%       |
|              | 3      | 9,52x10 <sup>-4</sup> | 8,21x10 <sup>-4</sup> | 16%       |

| Profundidade | Taxa Total de Reações $(n, \gamma)$ |                       |  |
|--------------|-------------------------------------|-----------------------|--|
| Tumor        | Espectro em                         | Espectro em           |  |
| [cm]         | 6 Grupos                            | 4 Grupos              |  |
| 2,4          | 9,69x10 <sup>-2</sup>               | 1,01x10 <sup>-1</sup> |  |
| 3,6          | 9,41x10 <sup>-2</sup>               | 1,01x10 <sup>-1</sup> |  |
| 4,8          | 1,71x10 <sup>-1</sup>               | 1,05x10 <sup>-1</sup> |  |

Tabela 6 – Taxa Total de Reação  $(n, \gamma)$  na Cabeça

Tabela 7 - Fluxo Incidente Necessário à Técnica do BNCT

| Localisação<br>do<br>Tumor | Profundidade<br>de<br>Normalisação | ¢térmico<br>não<br>Normalisado                 | Fluxo Incidente<br>em Função do tempo de<br>Irradiação<br>[nêutrons/cm.seg] |                                            |                                            |
|----------------------------|------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| [cm]                       |                                    | 2,6 Hs                                         | 3,0 Hs                                                                      | 5,0 Hs                                     |                                            |
| 2,4                        | 2,4                                | 7,89x10 <sup>-1</sup>                          | 4,1x10 <sup>8</sup>                                                         | 3,6x10 <sup>8</sup>                        | 2,2x10 <sup>8</sup>                        |
| 3,6                        | 2,4<br>3,6                         | 7,59x10 <sup>-1</sup><br>6,63x10 <sup>-1</sup> | 4,2x10 <sup>8</sup><br>4,8x10 <sup>8</sup>                                  | 3,7x10 <sup>8</sup><br>4,2x10 <sup>8</sup> | 2,2x10 <sup>8</sup><br>2,6x10 <sup>8</sup> |
| 4,8                        | 2, <u>4</u><br>4,8                 | 7,55x10 <sup>-1</sup><br>5,23x10 <sup>-1</sup> | 4,2x10 <sup>8</sup><br>6,1x10 <sup>8</sup>                                  | 3,7x10 <sup>8</sup><br>5,4x10 <sup>8</sup> | 2,3x10 <sup>8</sup><br>3,3x10 <sup>8</sup> |



Figura 1. Esquema geométrico do problema



Fig.2 Perfil de Fluxo (tumor a 2,4cm) obtido com a Fonte em 4 e em 6 Grupos

115 COMISSÃO NÁCIONAL DE ENERGIA NUCLEAR/SP - IPEN

