STUDIES FOR THE PRODUCTION OF 1231 AT THE CV-28 CYCLOTRON OF IPEN-CNEN/SP

Sonia A. CAMMAROSANO MESTNIK and Jair MENGATTI

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES POSTAL CODE 11049 - Pinheiros 05499 - São Paulo - Brasil

ABSTRACT

The ideal conditions to produce ¹²³I through the ¹²⁴Te (p,2n) ¹²³I reaction at the CV-28 cyclotron of IPEN-CNEN/SP (protons , $E_{max} = 24 \text{MeV}$) were studied in this work. Two target materials were tested: pure TeO₂ and TeO₂ with 2%Al₂O₃. The chemical separation of ¹²³I was carried out by a dry distillation process with a high frequency induction furnace. The results obtained up to now show the best separation yields (80%) in the following conditions: 1) Target: pure TeO₂; 2) Furnace temperature: 760±5°C; 3) Diffusion time: 2min; 4) Oxygen flux rate: 30-40ml/min.

Paper present at "Fourth Workshop on Target Chemistry and Targetry", Villigen, Switzerland, September 9-12, 1991.

ESTUDOS PARA A PRODUÇÃO DE ¹²³I NO CICLOTRON CV-28 DO IPEN-CNEN/SP

Sónia A.CAMMAROSANO MESTNIK e Jair MENGATTI

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES CAIXA POSTAL 11049 - Pinheiros 05499 - São Paulo - BRASIL

RESUMO

No presente trabalho estudaram-se as condições ideais para a produção do ¹²³I a partir da reação ¹²⁴Te(p,2n)¹²³I no ciclotron CV-28 do IPEN-CNEN/SP (protons, E_{max} =24MeV). Testaram-se dois alvos de irradiação: TeO₂puro e TeO₂ com 2X de Al₂O₃. Realizou-se a separação química do ¹²³I pelo processo de destilação por via seca utilizando-se um forno de indução de alta frequência. Os resultados obtidos mostraram os melhores rendimentos de separação nas seguintes condições experimentais: 1) Alvo: TeO₂ puro; 2) Temperatura de destilação: 760±5°C; 3) Tempo de destilação: 2min; 4) Fluxo de oxigênio durante a destilação:30-40mi/min.

Trabalho apresentado no "Fourth Workshop on Target Chemistry and Targetry", Villigen, Suiça, 9-12 de setembro de 1991.

INTRODUCTION

¹²³I is one of the most used radioisotopes in nuclear medicine due to its nuclear properties which are the most suitable among the radioisotopes of iodine for in vivo studies (absence of β particle emission, the short halflife, $t_{1/2}$ =13.3h, and the emission of a γ ray with a suitable energy, E = 159 KeV). It substitutes ¹³¹I in diagnostic procedures with the advantage of reducing the radiation dose given to the patient.

The methods for ^{123}I production involve various nuclear reactions, which can produce ^{123}I with p, d, 3 He or α -beams. These reactions lead to ^{123}I formation directly, or indirectly via the decay of ^{123}Xe .

The characteristics of the CV-28 Cyclotron of IPEN-CNEN/SP (protons, $E_{max} = 24$ MeV) are suitable to produce ¹²³I by the direct method through the reaction ¹²⁴Te (p,2n) ¹²³I and for ¹²³I production with high radionuclidic purity level is necessary to use enriched ¹²⁴Te target.

OBJECTIVE OF THE WORK

To establish the optimal conditions to produce ¹²³I at the CV-28 Cyclotron of IPEN-CNEN/São Paulo by the dry distillation method using an induction furnace.

In these preliminary studies were determined:

(1) The influence of Al_2O_3 (added to the TeO₂ target) in the release of radioiodine during distillation, and

(2) The loss of TeO₂ (gravimetrically) during irradiations at different beam currents (up to 10μ A with a Wobbling system) and different lengths of time (10min - 2h).

EXPERIMENTAL

Two target materials were tested : pure TeO₂ and TeO₂+ 2% Al_2O_4 (277mg/cm²).

To prepare the targets, the materials were placed on an 0.78 cm² recess of platinum support and melted above 736°C. The targets were proton - irradiated with beam currents up to $1C\mu A$ (with Wobbling system) during various lengths of time (10min - 2h).

The chemical separation of iodine was carried out by the dry distillation process in an oxygen atmosphere using a high frequency induction furnace < Model "I",8,0 Kw, supplied by POLITRON). The iodine distilled was collected into a 0.01N NaOH solution.

APPARATUS FOR THE RADIOCHEMICAL SEPARATION OF RADIOACTIVE IODINE FROM THE TARGET

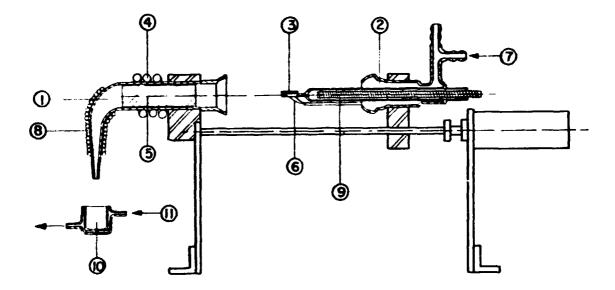


FIG.1 - Schematic diagram of remotely controlled automated apparatus for dry distillation of radioiodine from irradiated TeO₂ target: 1. Outer quartz tube (fixed). 2. Inner quartz tube (movable). 3. Platinum support with TeO₂. 4. Induction coil. 5. Pt tube $\neq = 22$ mm. 6. Thermo couple. 7. O₂flow (30-40ml/min). 8.Heating ribbon. 9. Electrical resistance. 10. NaOH solution. 11. Cooling liquid circulation.

RESULTS AND CONCLUSIONS

TABLE 1. Separation yield of radioiodine from TeO₂ and TeO₂ + $2XAl_2O_3$ targets by the dry distillation method using a induction furnace. Furnace temperature = $760 \pm 5^{\circ}C$. Diffusion time = 2min. Cxygen flow rate = 30-40 mi/min.

	TARGETS			
	Pure	TeO2	TeO 2+ 2%	A1203
	Target 1	Target 2	Target 1	Target 2
Release of radioiodine from the target (%)	92.1±2.9	97.1±2.0	50.7±2.2	47.2±4.4
Radioiodine collected in .01 NaOH solution(%)	73.2±8.2	73.2±8.0	40.1±6.3	38.9±1.9

Number of experiments: 6

When Al_2O_3 was added to the TeO₂ target, about 40% of iodine activity was retained in the target during distillation and when pure TeO₂ target was used, only 5%.

With beam currents up to 10μ A there was practically no mass loss even in long irradiations (2h) what agrees with the results of Michael and collaborators⁽¹⁾. The physical resistance of the melted pure TeO₂ target was satisfactory.

The loss of TeO₂ during distillation was less than 0.5%. This small mass loss confirms the advantage to use an induction heating system instead of conventional heating in agreement with Oberdofer and collaborators⁽²⁾.

The chemical form of the radiolodine collected in 0.01N NaOH solution was 100% lodide.

REFERENCES

(1) Michael, H; Rosezin, H; Apelt, Y: Blessing, G; Knieper, J. and Qaim, S.M. Some technical improvements in the production of 123 I via the 124 Te (p,2p) 123 I reaction: at a compact cyclotron. Int. J. Appl. Rad. Isot., 32:581-7, 1981.

(2) Oberdofer, F; Helus, F; Mayer-Borst, W. Experiences in the routine production of ^{123}I via the ^{124}I (p,2n) ^{123}I reaction with a low energy cyclotron. J. Radioan. Chem. 65(1-2):51-56, 1981.