VIII - ENFIR : TE - TH/2

TRANSITÓRIO DE PARADA DE BOMBA

COMISSÃO ORGANIZADORA DO TE - TH/2 Antonio Carlos Barroso Roberto Longo Freitas Valdemir Gutierrez Rodrígues

Propôs-se para o 29 Tema Especial em Termoidráulica para o VIII-ENFIR, um problema de avaliação de um experimento realízado em um circuito termoidráulico de alta pressão e temperatura(CTE-150). O problema consistiu em avaliar um experimento de transitório de parada de bomba para diversas condições de vazão e pressão. Os resultados apresentados pelos participantes mostraram-se satisfatórios, atribuíndo-se as divergencias aos diferentes modelos teóricos adotados nos códigos computacionais.

1. INTRODUÇÃO

A avaliação do comportamento de segurança de rea tores nucleares de potência passa obrigatoriamente pela utilização de sofisticados codigos computacionais. De modo a aumentar o nível de confiança nos resultados dos calculos obtidos pelos codigos, a comunidade científica internacional apoia-se no exercício do problema padrão que e estabelecido através de comparação entre resultados experimentais e teórico. Dentro da ótica de validação de programas computacionais, a Comissão Organizadora do VIII ENFIR estabeleceu para o 29 Tema Especial em Termoidraulica(TE/TH-2) avaliar os resultados experimen tais do Circuito Termico Experimental(CTE-150) desenvol vido no Brasil pela Coordenadoria de Projeto Especiais (COPESP) do Ministerio da Marinha[1]. A experiencia pro posta corresponde a um conjunto de transientes de para da de bomba realizados no CTE - 150, executada especial mente para o TE/TH-2, onde foram efetuadas medidas de vazao massica e diferença de pressão na bomba para dife rentes condições de operação[1].

2.1 ESCOLHA DO TE/TH-2 PARA O VIII-ENFIR

O Tema Especial em Termoidráulica para o VIII -ENFIR, consistiu em um conjunto de transitórios de parada de bomba realizados no Circuito Experimental,CTE -150, da COPESP. Na Figura 2.1 apresenta-se um fluxograma simplificado da configuração do circuito que foi usa do na realização dos experimentos.

Figura 2.1 Fluxograma simplificado do CTE-150

2.2 DESCRIÇÃO DO EXPERIMENTO

Foram realizados experimentos de parada de bomba para 2 patamares de pressão do Pressurizador, nominalmente, 50 e 70 bar. Em cada um deles foi executado a mesma sequência de testes e o mesmo número de repeti-/ ções(cinco). Em todos os casos a potência do aqueedor do pressurizador foi mantido constante, assim como a va zão da água de resfriamento, desta forma as temperatu-/ ras do primário não variaram muito, e sua influência nos transitórios em questão foram irrelevantes, sendo estas grandezas registradas apenas para informação.

2.3 OPERAÇÕES PRELIMINARES

No inicio de cada jornada de operação, após as verificações rotineiras, o CTE-150 é colocado em regime estácionario, com respeito ao balanço térmico, com po tência mantida constante em 500kW. Quando os parâmetros de temperatura(indicação gráfica) indicarem que o regime estacionário foi atingido, verifica-se a distribuição dos valores de temperatura(30 pontos) amostrados dentro de um período de 30 minutos, apresenta um desvio padrão da amostra menor que 2% do valor médio. Quando esta condição for satisfeita os procedimentos de testes são iniciados.

2.4 SEQUÊNCIAS DO EXPERIMENTO

a. Inicialmente o circuito é colocado em regime para as condições estacionárias, determinadas unicamente pela pressão no Pressurizador(p), vazão no primário(w) e po tência no aquecedor A4(P). Verifíca-se pelas curvas de tendência se as condições de regime estacionário foram atingidas, impondo-se um critério quantitativo apenas para os valores de vazão. Impõe-se que uma amostra de pelo menos 30 pontos colhidos ao longo de 10 minutos apresente um desvio padrão inferior a 2% do valor médio. Inicia-se então a coleta de dados do estacionário com frequência de amostragem de 0,1 Hz durante 10 minu tos.

b. A partir do estado estacionário atingido em (a), au menta-se a frequência de amostragem para o máximo disponível (3Hz) e 40 segundos após, desliga-se a bomba.

A Figura 2.2 ilustra o período de coleta de dados. Na tabela 2.1 indicamos as variáveis que foram amostradas.

c. Os passos (a) e (b) foram repetidos 4 vezes, obtendo-se 5 conjuntos de dados que correspondem teoricamente as mesmas condições da seqüência ideal estacionáriotransitório. Quando se repetiu o passo (a) comparou-se

Figura 2.2 Períodos de Coleta de Dados

Tabela 2.2 Designações das Operações **--** .

2.

CO do

3.

TE

se

Tabela 2.1 Variáveis Amostradas

			•		******
1		VARTA			TTEN
-					
1 -		*			DA
1		1	1		: :
:5	IMB	DESCRICÃO	: LOCAL DE MEDIÇÃO	TAG	SEQ.
:		1			1 1
1-		***********			+
		Vazão do primário	Descarga da bomba 81	FF 107	a h
		:	i bescarga da bomba br		
	w**	Vazão do primário	Saida do aquecedor		:
:		1	:A4 .	FE 114	la,b
:		tal and a second second			1
:	P	Pressão do siste-	Pressurizador na		1
1		: ma	regiao liguida	FE 158	a,b
		Pressão de succão	Succio da bomba B)	PT 102	ia h
	6	i bosto de poctos	i source of a source of	1	:
:	PA	Pressão de des-	:Descarga da bomba Bl	1	:
1	U.	carga	1	PT 106	:a,b
:		1		:	:
:	Tq	Temp. perns quen-	Saida do aquecedor		1
-		ite	PA	TE 121	: a
:	Τ.	Temp perns fria	Saida do truc calor		
	1 2	itemp: perna tria	T1	TE 101	
1		1	1		1
+	С	:Contator di bomba	1	2	i b
:		1	1	;	1

a media dos valores da vazão com aqueles da vez anterior prosseguindo-se o teste somente se esta diferença fosse menor do que 1% ...

2.5 TABELA DE TESTES

Na Tabela 2.2, foram caracterizadas todas as operações experimentais, que geraram os dados primários. Para fa cilitar a referência a cada uma dessas operações, foi atribuido um código alfa-numérico, seguindo-se a lógica de um produto cartesiano.

2.6 DADOS FORNECIDOS AOS PARTICIPANTES

Os dados primários obtidos na execução das ope rações indicadas na Tabela 2.2 foram reduzidos seguindo se os passos abaixo:

- a. Cada sequência genérica foi reduzida internamente da seguinte forma:
 - . descontou-se dos valores w' e w" seus valores resi duais;
 - . definiu-se w = (w' + w") / 2 :

 - .definiu-se Dp = $p_d p_s$; .descontou-se dos valores de D seu valor residual; .definiu-se $T_m = (T_q + T_f)/2!$

PRESSIO	VAZÃO	SEQUÊNC	IAS
NO PRES-	INICIAL :	!	·
SURIZA-	(tags.	1	
DOR (tag	FE-110 e:		·····;
PT-152)	FE-114)	PASSOS	PASSOG
(bars)	(kg/s) 1	a t b t	a 1 10 1
			···· : :
	WI * 10:PIV	V151a:P1W151b	1P1W1S5a;P1W1S5b
	W2 * 15:P1V	251a:F1W251b:	:P1W255a;P1W255b
0 1 1 50	W3 ≈ 20:P1	W351a:P1W351b:	:
	WA # 25 PI	WASI	P1W255-151W4551
	·		
	, wo ~ 30,11		
	: W1 * 10(P2)	#151a:P2W151b:	(P2W)S5a(P2W1S5b
	W2 * 15:P2	#251a:P2W251h:	1P2W2551P2W2555
p2 v 70	: W3 * 20:82	W351b: P2W351b;	: P2W3S5a : P2W3S5b
	. W4 # 25:F2	W4Sla: P2W4Slb	(P2WIS5a)P2W4S5b
	: ₩5 ≈ 30:P2	W551a:P2W551b:	: P2W555a : P2W5355

- b. Reduziu-se as 5 sequências a uma única seguência mé dia para cada caso, utilizando-se o procedimento de: crito em 4.1 .
- c. Neste ponto, tem-se em mão 10 conjuntos de dados reduzidos, cada um deles caracterizado por seu código piWj, onde i=1,2 e j=1,...,5. Destes 10 conjuntos 2 deles denominados casos base, foram fornecidos aos participantes para permitir um ajuste do modelo. Dos outros casos, foram escolhidos 2,que se constituirar no problema padrão do TE/TH-2.

2.7 RESULTADOS SOLICITADOS DOS PARTICIPANTES

Apenas para os casos teste, foi solicitado de cada participante os seguintes dados:

- . código do teste;
- . tempo de "coast down" a 10% da vazão, definido como tempo decorrido desde o desligamento da bomba até que a vazão caia a 10% do seu valor inicial;
- . idem para o "coast down" a 1% da diferença de pressão (Dp);
- . histórico temporal da vazão a intervalos de 0,2s, p ra os 20s seguintes ao desligamento:

- . idem para a diferença de pressão (Dp) na bomba;
- . O tempo de processamento consumido na simulação de cada transitório (os 20s) e o tempo médio gasto por intervalo de integração. Indicar a configuração do sistema computacional usado no processamento.

2.8 RESULTADOS DISPONÍVEIS APÓS O EVENTO

Aos participantes interessados, poderemos fornecer com o mesmo detalhamento dos casos-bases, os dados dos casos-tesce.

3.0 SUMÁRIO DOS CÓDIGOS

Três instituições de pesquisas participaram do TE/TH-2 cujos programas de cálculos utilizados são os seguintes:

Instituição	Programa de	calculo
IPEN/RT/SP	RELAP4/MOD5	[2]
CNEN/DR/RJ	TRAC/PF1	[3]
CDTN/DRT/MG	FLOC	[4]

Detalhes específicos sobre o modelo e o código usados na simulação podem ser encontrados nos relatórios individuais listados nas referências bibliográficas.

É importante ressaltar que os códigos empregados na simulação do CTE-150, são intrinsecamente diferentes entre si, visto que o código RELAP4/MOD5 usa a noção de volumes de controle, o código TRAC/PF1 a de componentes enquanto que o código FLOC foi desenvolvido especificamente para avaliar o CTE-150.

4.0 COMPARAÇÃO DOS RESULTADOS

4.1 TRATAMENTO DOS DADOS EXPERIMENTAIS

O sistema de aquisição de dados disponível não permitia a gravação contínua dos sinais, nem o uso de um sinal externo para disparar as amostragens. Desta forma a determinação do instante do desligamento, que deve ser usado como origem, tornou-se problemática. Para se contornar esta difículdade, usou-se o procedimento que é descrito a seguir, usando-se como exemplo as curvas de vazão:

- a. Para cada sequência toma-se o trecho do transitório e observa-se o primeiro ponto onde a vazão caiu sen sivelmente em relação ao valor estacionário.Provisô riamente, toma-se como origem o instante correspondente a abcissa do primeiro ponto considerado e a partir daí translada-se as abcissas dos pontos considerados para esta nova origem. Incluem apenas os pontos com vazão > 87 w (valor estacionário). Note-se que origem arbitrária pode estar afastada do instante real de desligamento em até 0,34s, já que a taxa de amostragem é de 3Hz.
- b. Feita a operação acima, btem-se 5 conjuntos de pares ordenados, considerados como observações experimentais de 5 curvas y = f, (t), i = 1,...,5, suposta mente distintas. Caŝo estas curvas estivessem sin cronizadas, ou seja com as abcissas zeradas no ins tante do desligamento, elas deveriam coincidir, a menos das incertezas experimentais. Isto porque elas representam repetições controladas de um mesmo experimento. A sincronização destas curvas entre si é feita com base num principio variacional, que exprime matematicamente as afirmações acima. Este funcional é construido da seguinte forma:
 - . Das 5 curvas escolhe-se uma, por ex., aquela cujos dados estão melhores correlacionados, que é defini da como referência ou curva base e denotada por $y_1 = f_1$ (t).
 - .Propõe-se uma mudança na variável independente do tipo defasagem, t = t' - ≪, , específica para cada curva. Obtem-se, desta forma as curvas transforma-

das
$$y_{i}^{*} = f(t' - d_{i}); i = 2, ..., 5$$
.

. Define-se então o funcional,

$$G(\alpha_2, \alpha_3, \alpha_4, \alpha_5) = \sum_{j=2}^{5} \int_{\xi_1}^{\xi_2} [f_j(t-\alpha_j) - f_1(t)]^2 dt^i$$
, (1)

que computa o somatório das áreas contidas sob as cur curvas que representam o quadrado das distâncias pontuais de cada curva transformada (y^{*}₇) em relação a ba se (y₁). A minimização deste funcional fornecerá as defaságens que melhor sincronizam cada curva com a curva base e consequentemente entre si.

. A determinação dos ∞¹/₂'s minimizante é feita através da solução do conjunto de equações :

$$\int_{t_{4}}^{t_{N}} \left\{ \left[f_{j} \left(t' - s_{j}^{*} \right) - f \left(t' \right) \right] f_{j}^{*} \left(t' \right) \right\} dt' = 0 \qquad (2)$$

j = 2,....,5

- c.Após efetuar-se as transformações de defasagem, os 5 conjuntos de dados são reunidos num só, que é rearrumado em ordem crescente de abciasa. A este conjunto resultante é ajustada uma nova curva (polinômio de terceiro grau). O instante do desligamento, correspon dente a este conjunto de dados sincronizados, é deter minado pela interseção da curva ajustada com o valor da variável no regime estacionário (wo correspondente).
- d.Finalmente o conjunto de dados é novamente defasado de forma a zerar a abcissa do ponto de desligamento e a este conjunto final é ajustada a curva que represen tará o valor experimental. Na Figura 4.1 mostra-se o resultado deste procedimento para a vazão no caso P1W5.

4.2 DEFINIÇÃO DOS INDICADORES DE DESEMPENHO

4.2.1 INDICADORES DE PRECISÃO

No que tange às estimativas dos maiores erros de cada simulação, serão usadas as quantidades definidas abaixo:

. Máximo desvio absoluto (M.D.A. ou E)

$$\mathbf{E}_{\mathbf{x}\mathbf{i}} = \max \left[\mathbf{f}_{\mathbf{x}\mathbf{i}} - \mathbf{f}_{\mathbf{x}\mathbf{e}} \right] \quad 0 \leq t \leq t_0$$

onde: x = w,p refere-se respectivamente à vazão ou à diferença de pressão na bomba.

- f = curva calculada pelo i-ésimo participante
- f = curva experimental
 - t₀ = abcissa do último ponto considerado na curva experimental após o desligamento.

- 1

. Maximo desvio relativo

$$e_{xi} - max \left[\left(f_{xi} - f_{xe} \right) / f_{xe} \right] \quad 0 \leq t \leq t_0$$

Uma avaliação mais global, de como uma dada curva simu lada aproxima a curva experimental, será feita com auxílio dos indicadores abaixo:

Desvio relativo médio (D.R.M. ou
$$\vec{e}$$
)
 $\vec{e}_{xi} = -\frac{1}{t_0} \int_{0}^{t_0} e_{xi} dt$

. Desvio relativo quadratico médio (D.R.Q.M. ou <e>)

$$\langle e_{xi} \rangle = \begin{bmatrix} t_0 \\ t_0 \end{bmatrix} e_{xi}^2 dt$$

Este último indicador é o que melhor mede o afastamento relativo entre a curva simulada e a curva experi mental, contudo não dá nenhuma informação quanto a posição relativa das curvas. O D.R.M. além de medir o afastamento, traz alguma informação quanto ao posicionamento entre elas, contudo o seu valor pode ser afeta do pelo cancelamento de desvios.

Os indices DRM e DRQM devem ser usados em conjunto, observando-se que quanto mais próximos os dois estiverem em magnitude, mais confiável será a informação con tida no DRM.

4.2.2 INDICADORES DE DESEMPENHO COMPUTACIONAL

Tendo em vista a diversidade dos códigos, modelos e ambientes de processamento utilizados, não serão defi nidos indicadores quantitativos para esta avaliação. Ainda assim, alguns comentários sobre o assunto serão feitos na seção 4.5.

4.3 CURVAS TÍPICAS

Nesta seção serão apresentados alguns gráficos, que servirão de auxílio para se comparar o comportamen to das simulações dos participantes em relação às cur vas experimentais.

Apenas três grupos, representado IPEN, CNEN-RJ e CDTN entregaram seus resultados. Isto permitiu que, para cada grandeza e cada caso teste, se pudesse reunir nu ma mesma figura a curva experimental e as curvas dos três participantes, sem se sobrecarregar o gráfíco. Os resultados do caso teste P1W4, para vazão, diferença de pressão e seus respectivos desvios relativos em relação aos valores experimentais são mostrados nas figu ras 4.2 a 4.5. Curvas análogas, relativas ao caso tes te P1W5 são reunidas nas figuras 4.6 a 4.9.

Por absoluta falta de tempo, deixou-se de incluir os resultados do teste P2W2, além de se julgar que estes não trariam nenhuma novidade para as análises subsequentes.

A partir das curvas experimentais calculou-se os tempos de "coast down" a 10% para a vazão e a 1% para a diferença de pressão. Os resultados encontrados são mostrados a seguir:

	P1W4	P1W5
Vazão 10% (s)	5,0335	5,0876
Dp 1%(s)	4,9387	5,0383

Figura 4.2 : P1W4 Vazão (kg/s)

Figura 4.3 : P1W4 DP na Bomba (bar)

Figura 4.4 : P1W4 Desv. Rel. na Vazão (pu)

Figura 4.7 : P1W5 DP na Bomba (bar)

Figura 4.5 : P1W4 Desv. Rel. na DP (pu)

Figura 4.6 : P1W5 Vazão (kg/s)

Figura 4,8 : P1W5 Desv. Rel. na Vazão (pu)

Figura 4.9 : P1W5 Desv. Rel. na DP (pu)

4.4 TABELAS DE DESEMPENHO

Lançando mão dos indicadores definidos em 4.2,po de-se formar a seguinte tabela:

TESTE	VARIÁVEL	PARTICI- PANTE	MDA kg/s/bar	M.D.R. %	D.R.M. Z	D.R.Q.M Z
		IPEN	- 8,73	76,23	63,92	66,04
P	w	CNEN	- 2,20	16,32	12,51	13,11
t W		CDTN	0,60	13,61	3,84	5,45
4		IPEN	-10,00	-93,29	-66,65	72,38
	Δp	CNEN	5,36	109,89	-18,48	42,60
		CDTN	- 3,09	-60,45	-17,18	34 ,62
P		IPEN	-14,11	-83,26	-74,58	75,75
1	w	CNEN	- 2,25	-14,31	-10,36	11,01
W		CDTN	0,81	16,92	2,03	4,17
		IPEN	- 6,43	-83,57	-61,35	63,99
	Δp	CNEN	- 4,77	-61,52	-28,14	41,47
		CDTN	- 3,09	-87,53	-32,10	46,91

Tabela 4.1 Indicadores de Desempenho

Comparando-se os tempos de "coast down" calculados pelos participantes com os obtidos a partir dos dados ex perimentais, monta-se uma tabela com os erros relati-7 vos.

labela 4.2 Erros no lempo de Coast	down	
------------------------------------	------	--

CASO	72/2	IPEN	CNEN	CDTN
P 1	T 107 w	-54,31%	- 1,86%	7,48%
W 4	6 1% Δp	-47,35%	42,95%	-11,52%
P 1	6 10% w	-65,58%	2,05%	- 5,94%
5	6 12 Ap	-24,58%	32,78%	20,61%

4.5 ANÁLISE DAS COMPARAÇÕES

A comparação teórica-experimental do CTE-150, apresentada nas figuras 4.2 e 4.3 para o caso teste P1W4 e nas figuras 4.6 e 4.7 para o caso teste P1W5, foi baseado nos resultados oriundos da simulação apresentada nas referências [2 , 4]. Em função disto, as seguintes observações podem ser feitas:

- qualitativamente, os códigos avaliaram de forma satisfatória os dados experimentais do CTE-150, tanto para vazão mássica quanto para a diferença de pres são na bomba;
- os possíveis desvíos causados pelos códígos relativamente aos dados experimentais podem ser atribuidos a duas razões principais: modelos físicos de dinâmica de fluidos e modelos de dinâmica da bomba diferentes entre si;
- observa-se que os resultados de vazão mássica para os testes P1W4 e P1W5 apresentados pelo código FLOC [4] foram os mais representativos comparados aos dados experimentais. Isto se deve ao fato do código FLOC ter sido desenvolvido especificamente para representar a bomba do CTE-150;
- por outro lado, a simulação efetuada com o código TRAC/PF1 [3] utilizam as curvas homólogas referentes ao Circuito Semiscale guardando a similarida de com a velocidade específica da bomba do CTE-150;

- . para os cálculos teóricos da perda de pressão na bom ba, os códigos quantitativamente não representaram de forma satisfatória os dados experimentais, a exceção do final do transiente. Esta discrepância pode ser atribuida a falta de informações mais exatas sobre as curvas características da bomba do CTE-150;
- os códigos RELAP4/MOD5 [2] e TRAC/PF1 [3], subestimaram sistematicamente os resultados experimentais de vazão mássica e perda de pressão na bomba do CTE-150.

5.0 CONCLUSÕES E RECOMENDAÇÕES

A importância do exercício do TE/TH-2 é de funda mental relevância para a avaliação dos problemas existentes na área de termoidráulica, tanto do ponto de vista teórico quanto do desenvolvimento experimental.

Observa-se deste exercício que os codigos computacionais simularam qualitativamente bem os transientes de parada de bomba no CTE-150. Entretanto, um apri moramento mais detalhado dos fenômenos envolvidos deve ser feito de modo a representar mais realísticamente, do ponto de vista quantitativo o transiente proposto.

Tendo em vista a contribuição que este exercício proporcionarã a comunidade científica do TE/TH-2, a Co missão Organizadora do VIII ENFIR propõe a continuida de deste trabalho e sugere uma abordagem mais ampla, conforme citado a seguir:

- a. Passar a realizar o TE/TH anualmente, coincidindo com o ENFIR nos anos ímpares e com o CGEN nos anos pares.
- b. Criar, talvez no âmbito da ABEN, uma comissão para cuidar do planejamento de kongo prazo e definição de um programa de experimentos para a geração de problemas padrão para os próximos TE/TH⁻s.
- c. Criar uma comissão encarregada de redigir normas que balizem a definição, elaboração de rotinas, execução e documentação de experimentos e aquisição dos dados que servirão de base para os problemas padrão.
- d. Motivar a participação institucional nos TE/TH's, principalmente as do âmbito governamental.Espera-se obter colaboração de cunho oficial com alocação de mão de obra, utilização de bancadas experimentais, etc...

6.0 REFERENCIAS BIBLIOGRÁFICAS

- "29 Tema Especial em Termoidráulica- TE/TH-2 Especificação do Problema e Diretrizes aos Participantes". Comissão Organizadora do VIII ENFIR. 1990.
- [2] CONTI, T.N e SABUNDJIAN, C.; "TE/TH-2: Resultados do Grupo do IPEN/CNEN-SP". VIII ENFIR, Setembro de 1991, Atibaia, SP - Brasil
- [3] MADEIRA, A.A.; PONTEDEIRO, A.C.; DOMINGUEZ, L.M.F.; GALETTI. M.R. S. e BORGES, R.C.; "TE/TH-2: Resulta dos do Grupo da CNEN/RJ".; VIII ENFIR, Setembro de 1991, Atibaia, SP-Brasil.
- [4] VELOSO,M.A. e SIRIMARCO, L.F.; "TE/TH-2: Resultados do Grupo do CDTN/CNEN".; VIII ENFIR, Setembro de 1991, Atibaia, SP-Brasil.

AGRADECIMENTO

A Comissão Organizadora do TEMA ESPECIAL em Termoidráulica do VIII ENFIR deseja expressar seu agradecimento a COPESP, na pessoa do seu Presidente Vice-Almirante(EN) Othon Luiz Pinheiro da Silva pelas facilidades proporcionadas durante a execução deste trabalho.