DESENVOLVIMENTO DO PROCESSO DE PREPARAÇÃO DO UF, À PARTIR DA SOLUÇÃO HIDROLISADA DE UF6

MARYCEL ELENA BARBOZA FIGOLS REGINALDO PEREIRA GOMES

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES-IPEN-CNEN/SP

RESUMO

Apresenta-se neste trabalho o desenvolvimento de um processo de preparação de tetrafluoreto de urânio (UF $_4$) a partir da solução obtida da hidrólise do hexafluoreto de urânio (UF $_6$). Para isso fêz-se um estudo do melhor agente redutor entre as substâncias: cloreto de cobre I (CuC $_2$), cloreto de ferro II (FeC $_2$) e o hipossulfito de sódio (Na $_2$ S $_2$ O $_4$).

INTRODUÇÃO

No ciclo de fabricação do Combustível Nuclear desenvolvido no Brasil uma das etapas mais importantes é o processo de enriquecimento do urânio, onde se utiliza o UF6 como matéria prima. Neste procedimento obtém-se o UF6 enriquecido (tem maior teor de seu isótopo fís sil U-235) e o UF6 empobrecido (tem maior teor de seu isótopo fértil U-238), quando comparados com o UF5 natural (Matéria prima).

O UF6 enriquecido segue para a fabricação do compustível nuclear e o UF6 empobrecido
deve ser estocado. Como o UF6 é uma substância
extremamente volátil, procura-se transformá-la
num composto estável à temperatura ambiente, e
que ocupe menor volume possível. O objetivo é
transformá-lo em urânio metálico, mas para isso
e necessário obter um produto intermediário en
tre o UF6 e U°, que é UF4.

O UF, além de ser matéria prima para a preparação do uranio metálico, tem outra aplicação muito importante que é a preparação do proprio UF.

A obtenção do UF4 pode ser conseguida por meio de diversos processos que podem ser divididas em dois grupos: via séca (3) e via úmida (1.2)

Apesar de abandonados, os processos por via aquosa numa deixaram de ser extremamente interessantes pela simplicidade segurança de Operação.

Essencialmente o processo de preparação de UF, por via aquosa, a partir de soluções contendo o fon urânio no estado hexavalente, consiste em sua redução ao estado tetravalente e posterior precipitação como UF, por meio da adição de solução de HF.

O procedimento por via úmida tem encontr<u>a</u> do maióres aplicações na recupração de urânio contido em soluções.

PARTE EXPERIMENTAL

Todos os experimentos de precipitação do "" foram realizados em capela de laboratório, "" sistema composto de bequer de teflon (contendo a solução hidrolisada de UF6 e o agente redutor), placa agitadora aquecedora e um funil de separação em polietileno (contendo a solução de ácido fluorídrico (HF) para precipitação do UF4).

REAGENTES. Como agentes redutores estudaram-se as substancias $SnCl_2$, CuCl, $FeCl_2$ e $Na_2S_2O_4$ e como agente precipitante o HF.

Todos os reagentes utilizados foram de pureza analítica.

PROCEDIMENTO DE PREPARAÇÃO DE UF4. Colo ca-se a solução de UO2F2, proveniente da hidro lise do UF6, em um bequer de teflon. A solução é aquecida até temperatura determinada com agitação constante. Adiciona-se então, o agente redutor e em seguida, lentamente, a solução do agente precipitante, HF.

Após a precipitação do UF4, deixa-se a suspensão em repouso até temperatura ambiente. Faz-se então a separação do UF4 por filtração e efetua-se a secagem em estufa.

Para todos os experimentos utilizou-se um volume constante de 100ml da solução de 00_2F_2 com teor de urânio de 115,6g/L. Após a separação sólido-líquido, obtém-se um volume entre 400-500ml de efluente, com teor de urânio descriminados nas tabelas 1, 2, 3 e 4.

Estudaram-se os parametros: relação agente redutor/urânio e urânio/fluoreto, tempo e temperatura de precipitação para cada um dos agentes redutores estudados.

Pelos resultados apresentados nas tabelas 1, 2, 3 e 4, observa-se que com o uso dos agentes redutores $SnCl_2$ e $FeCl_2$ obtem-se uma massa de UF_4 maior que nos outros casos.

Dessa forma, calcularam-se as porcentagens de recuperação de urânio, para esses dois agentes redutores. Os resultados são apresenta dos na tabela 5.

O produto obtido foi caracterizado como UF4 por difração de raios-X. Nas tabelas 6 e 7 relacionam-se os resultados obtidos da caracterização química do UF4 utilizando-se os agentes redutores SnCl2 e FeCl2. Na tabela 8, apresenta-se os resultados da caracterização física do mesmo material.

Tabela 1. Resultados obtidos utilizando o SnCl2como agente redutor.

Massa U (g)	Massa SnCl ₂ (g)	Temperatura (°C)	Tempo (hs)	Volume HF (mL)	Massa UF, obtida(g)	Massa U obtida (g)	Massa U efluen- te (mg)
11,56	27,65	90	3	40	13.8	10.46	0.05
11,30	22,10				15.0	11.37	0.01
	16,58	State of the state of			13,5	10,23	0.04
11,56	22,10	90	3	30	15,0	11.37	0.02
				20	15.2	11,52	0.01
				10	12.5	9.47	0.16
11,56	22,10	90	3	20	15,5	11.75	0.06
		70			14.0	10.61	0.02
		50			13,5	10.23	0.20
		30			12,0	9,10	0.18
		20			10,0	7.58	2.58
11,56	22,10	90		20	15,0	11.37	0.01
			2		12,0	9,10	0.03
		State of the state	0.0016380	NEW THE PARTY	8,0	6.06	0.04

Tabela 2. Resultados obtidos utilizando o FeCl₂ como agente redutor.

Massa U (g)	Massa FeCî ₂	Temperatura (°C)	Tempo (hs)	Volume HF (mL)	Massa UF, obtida (g)	Massa U obtida (g)	Massa (efluen- te (mg)
	24,35	90	3	40	14.0	10,61	0.05
11,56	19,5	the state of			14.5	11.00	0.03
	14,65		No.		13,5	10,23	0.1
	19.5	90	3	30	14.5	11.0	0.04
11,56				20	14.5	11.0	0.04
				10	12.0	9.10	0.04
	19.5	90	3	20	14,5	11,5	0.04
11,56		70			12.0	9.10	0.06
		50			12.0	9.10	0.07
		30			10,5	7,96	0.02
		20			8.0	6,06	0.6
11.56	19,5	90	3	20	Plantines a	an estimated	0.04
			2		14,5 11,5	11.0	0.02
			1		9,0	8.72 6.82	# 5.01g

Tabela 3. Resultados obtidos utilizando o CuCi como agente redutor.

Massa U	Massa CuCl (g)	(°C)	Tempo (hs)	Volume (mL)	Massa UF, obtida (g)	Massa U obtida (g)	Massa U efluen- te (g)
11,56	6,59	900	3	20	13.0	9.85	0,29
	9,90				12,5	9,47	0,32
	13,20				10,0	7,58	2,98 (*)
11,56	9,90	90	3	20	12,5	9,47	0.39
			2		12,0	9,10	0,45
	Afficial Lance as		1		10,0	7,58	2,56 (*)

 $_{\text{Tabela}}$ 4. Resultados obtidos utilizando $_{\text{Na}_{2}\text{S}_{2}\text{O}_{4}}$ como agente redutor.

			7				
Massa U (g)	Massa Na ₂ S ₂ O ₄ (g)	Temperatura (°C)	Tempo (hs)	Volume HF (mL)	Massa UF ₄ obtida (g)	Massa U obtida (g)	Massa U efluen- te (g)
11,56	8.15	90	3	20	10,5	7,96	3,92*
	16,31				11.0	8,34	2,75*
	20,30				7,8	5,91	5.01*
14 56	16,31	90		30		0.24	3,15*
11,56	Loos a mountly 11	late de escatace	maria.	20	11,0	8,34	
	star bank done t		a grad		8.0	6.06	5,06*
AND THE PERSON NAMED IN	TOTAL BUILDING MARKET		H. T. O'R. S. L.		7,0	5,31	5.50*

^(*) Efetuada a separação sólido-líquido observa-se,após certo tempo, formação de precipitado no efluente.

Tabela 5. Porcentagem de Recuperação de Urânio

Theorem	Massa U (g)	Massa UF4 obtida (g)	Massa U obtida (g)	Recupera ção U (%)
SnC1 ₂	11,56	15.0	11,37	98,3
FeC1 ₂	11,56	14.5	11,00	95,1

Fe Cr Ni Mo Al Mn

390 40 <10 <5 100 5

Fluoreto (%F) 21,5

Impurezas Metálicas (ug/gU)

Tabela 7. Resultados obtidos na caracterização química do UF, obtido com o agente redutor FeCl;

		Fluoreto (%F) 2	22.7					
Tabela 6.	Resultados obtidos na caracterização	Impurezas	Fe	Cr	Ni	Mo	A1	Mn	Cu
Y sank to a second of the sank to the sank	química do UF ₄ obtido com o agente redutor SnCl ₂		>390	10	<10	< 5	40	< 5	5
Jranio	(%U) 72,6	(µg/g U)					2.0		1800

Uranio (%U) 71,9

fabela 8. Resultados obtidos na caracterização física do UF, obtido com os agentes redutores SnCl₂ e FeCl₂

	SnCl2	FeCl ₂
Superfície Específica (m²/g)	0,21	1,37
Densidade Batida (g/cm ³)	1,87	1,55
Densidade Solta (g/cm³)	1,16	1,06
Granulometria (µm)	15,00	7,60

CONCLUSÕES. Pelos resultados pode-se verificarque o processo para obtenção do UF4 por redução-precipitação, é um processo simples, obtendo-se uma recuperação quantitativa do urânio Os melhores resultados foram alcançados com os agentes redutores SnCl2 e FeCl2, obtendo-se uma precipitação de urânio da ordem de 95%.

Deve-se ressaltar que o produto(UF4) precisa ainda ser experimentado como matéria-prima para a preparação de urânio metálico.

REFERÊNCIAS

- (1) Allen, R.J.; Petrow, H.G.; Magno, P.J., "Precipitation of Uranium Tetrafluoride from Aqueous Solution by Catalytic Reduction", Vol. 50, N° 12, pág. 1748-1749, 1958.
- (2) Eccles, H.; Fell. S.A., "The production of Uranium Tetrafluoride" UK Patent Applica tion. GB 2.161.153A, 1986.
- (3) França JR., J.M. <u>Unidade Piloto de tetraflu oreto de urânio pelo processo de "Leito móvel" em operação no ÎEA</u>. São Paulo, Instituto de Energia Atômica, 1975. (IEA-PUb-381)

SUMMARY

UF4 process preparation from hydrolized UF5 solution is described SnCl_2 , CuCl_1 , FeCl_2 and $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_4$ as reductor agents from U° to U4 were verified. The relation: reductor agent / uranium, uranium/fluoride as well as time and temperature of UF4 precipitation were established. UF4 powder was charactezaded by chemical and physical analysis.