ESTUDO DO DESEMPENHO DA COMBINAÇÃO DO CRISTAL DE CEI(T1) COM O FOTO DIODO TIPO PIN.

MARGARIDA M.HAMADA¹, CARLOS H.MESQUITA¹, PAULO R.RELA¹, TOMOKO HASHI 1. INTITUTO DE PESQUISAS ENERGETICAS E NUCLEARES-ONEN/SP

2. INSTITUTE FOR ATOMIC ENERGY, RIKKYO UNIVERSITY, JAPAN

RESIMO

Estudou-se o desempenho do detector de CsI(T1) acoplado ao fotodiodo PIN quanto as características espectrofotométricas, rendimento de luz e a resolução energética pa ra a radiação gama. A resolução intrínseca foi determinada para radiação gama no

INTRODUÇÃO

CsI(T1) cristal de apresenta 0 quanto a vantagens sobre 0 NaI(T1), resistência mecânica, higroscopicidade e comprimento de radiação (CsI(Tl): 1,85 cm e NaI(T1): 2,59 cm)2. A precária sobreposição entre o espectro de emissão luminosa do CsI(T1) cristal COM 0 perfil de das fotomultiplicadoras sensibilidade limitou o uso do sensor CsI(Tl) (Fig. 1). O recente desenvolvimento dos fotodiodos de silício com baixa capacitância e grande área de sensibilidade tem estimulado a sua utilização para medidas de cintilação, pois os fotodiodos apresentam vantagens sobre as fotomultiplicadoras. O cristal de CsI(Tl) é considerado um dos cintiladores mais adeguados para ser acoplado aos fotodiodos PIN devido ao seu espectro de emissão luminosa combinado COM a Ber bem distribuição espectral do fotodiodo (Fig. 1), tornando promissor a utilização desse cristal.

FIGURA 1: CURVAS DE EMISSÃO LUMINOSA DOS CRISTAIS Nel(TI) e Cal(TI) e Curvas de Sensibilidade de um FOTODIODO & UMA FOTOMULTIPLICADORA

A combinação do fotodiodo com o cristal de Cal(T1) reune as qualidades de alta sensibilidade, eficiência resolução e energética nas medidas de radiação X e gama e para identificação de particulas. Permite configurações compactas, leves, estáveis, praticamente insensiveis a campos magnéticos . opera en baixa tensão. Estas características conduzem a simplificação eletrônica, redução de custos e possibilita a sua utilização em ambientes adversos ou com campo magnético (2.7).

Neste trabalho foram avaliadas 85 características espectrofotométricas, 0 rendimento de luz e a resolução energética do detector de CsI(T1) acoplado ao fotodiodo PIN.

PROCEDIMENTO EXPERIMENTAL

O crescimento do cristal de Cal(Tl) foi efetuado pelo método de Bridgman. A concetração de Tl foi de 1mM. O cristal foi usinado nas dimensões de 7x7x7mm3 e acoplado diretamente a um fotodiodo PIN HAMAMATSU S1790 de 10x10mm², utilizando graxa de silicone.

As características do fotodiodo e arranjo experimental se encontram na Fig. 2.

Estudou-se a eficiência de coleção de do detector CaI(T1) acoplado 80 fotodiodo utilizando diferentes refletores e superficies de polimento do cristal. Os sinais foram amplificados por um préamplificador sensivel a carga (CANERRA 2003BT), um amplificador (ORTEC 572) com constante de tempo de 3 ns e un ADCAN (ORTEC 7450). A tensão de operação foi de 30 V. A corrente de fuga medida foi de 1 a 5 nA e a capacitáncia de entrada de 70 pF.

Fig. A З mostra a relação da capacitância de entrada do pré-amplificador e seu respectivo ruído.

A altura de pulso foi Calibrada utilizando o detector de silicio irradiado com raio X e gama do 241Am. número de fotoelétrons emitidos pelo catodo de fotodiodo pode ser estimado, considerand

do fotodiodo pode ser estimado, considerando a energia de 3,6 eV como necessária produzir um par de elétron-lacuna silício(⁶). pio(8). Determinou-se a resolução energética a radiação gama de diferando Determinou-se a radiação gama de diferente detector para a radiação conceito da larma

detector para a rautava de la largura do pico espectral observa do energias, utilizando o compectral dargura a meia altura do pico espectral observado

M). A resolução intrínseca foi determinada pulsador de sinais (openador) A resolução intrineda de sinais (ORTEC

RESULTADOS E DISCUSSORS

A Tabela 1 mostra a influência da A Tabela 1 mostra a influencia da gualidade do polimento da superfície do cristal e do refletor na eficiência do luz do detector de Catade cristal e do refletor na eliciencia de coleção de luz do detector de Cel(Tl)acoplado ao fotodiodo. A combinação do fotodiodo com o cristal finamente polido (espelhado) e envolto com fita teflon (refletor) apresentou a melhor eficiência. teflon

Tabela - 1

Tipo da Superfície do Cristal	REFLETORES				
	Folha de Al		Pintura c/ MgO Fita + Fita Teflon Teflor		
	Graxa de Silicone	Sem Graxa	Graza de Silicone	Sem Graxa	Com Graxa
Polimento (Rude)	68	55	98	93	89
Polimento (Fino)	54	73	92	99	91
Rspelhado	42	65	67	93	100

As Fig. 4 e 5 ilustram os espectros obtidos para as radiações gama do 137Cs (662 KeV) e BCO (1173 KeV e 1332 KeV) respectivamente. Os pares de elétron-lacuna MeV produzido pelo detector de CaI(T1)-05 foi fotodiodo compativel com correspondentes encontrados na literatura (3,4,8).

4 e 5, inferimos que a Das Fig. resolução para 662 KeV foi de 6,74% e para 1332 KeV de 4,83%. Com a utilização de u pulsador de sinais determinou-se a resolução intrínseca do detector como sendo de 5,20% para 662 KeV e 4,32% para 1332 KeV.

FIGURA 5: ESPECTRO DE ENERGIA DO CO COM DETECTOR DE CoI (TI) ACOPLADO AO FOTODIODO

A Fig. 6 mostra a resolução intrínseca obtida em função da energia da radiação gama incidente. Os resultados são similares para aqueles obtidos por Sakai⁽⁸⁾ para o cristal de CsI(T1) de 10x10x7mm³ acoplado ao fotodiodo (HAMAMATSU S1790-01) e por Grassmann e Col.⁽¹⁾ para o cristal de 10x10x24mm³. A resolução é diminuída para os niveis baixos de energia da radiação gama. Limitouse o estudo da resolução ao nivel de 100 KeV devido ao ruído causado pela corrente de fuga e capacitância do fotodiodo(s).

O rendimento de luz do detector foi igual a 5,3x10⁴ Fótons/MeV, considerando-se 70% de eficiência quântica do fotodiodo na região espectral do CaI(T1) e a eficiência de coleção de luz de 100%. A mesma medida para o cristal de NaI(T1) resultou em 4,3x10⁴ Fótons/MeV.

AGRADECIMENTOS

Os autores expressam seua agradecimentos ao Dr. S. Kubota de Rikkyo University pelo continuo estimulo e sugestões e Sr. S. Sakuragi da Union Material Inc. pela orientação na preparação do cristal de CsI(T1).

REFERENCIAS BIBLIOGRAFICAS

[1] GRASSMANN, H.; MOSER, H.G.; DIETL, H.;
RIGEN, G.; FONSECA, V.; LORENZ, E.; MAGERAS,
G. Improvements in photodiode readout for small CsI(T1) crystal. Nucl. Instrum. Meth., A234: 122-24, 1985.

[2] GUNJI, S.; HANADA, N.; HOSHINO, T.; KAMAE, T.; MIYASAKI, S.; TAKAHASHI, T.; TAMURA, T.; YAMAGAMI, T.; MURAKAMI, H.; MORI, K.; TANAKA, H.; YAMAMOTO, K. Use of a large area photodiode in Cal(T1) scintillation counters. Nucl.Instrum. Meth., A295: 400-04, 1990.

[3] HAMADA, M.M.; HASHIMOTO, T.; SHIRAISHI, F. Performance of the Cal(Tl) crystal coupled to photodiode. Proceedings of the sixth workshop on radiation detectors and their uses. KKK, 55-7, Japan. January 29-30, 1991. [4] HOLL, I.; LORENS, E.; MAGERAS, G. A measurements of the light yield of common inorganic scintillatore. IEEE Trans. Nucl. Sci., NS-35(1): 105-9, 1988.

[5] KUBOTA, S.; SAKURAGUI, S.; HASHIMOTO, S.; RUAN, J. A new scintillation material: Pure Cal with 10ms decay time. Nucl. Instr. and Meth., A268: 275-77, 1988.

[6] SAEAI, E. Recent measurement scintillator photodetector systems. IEEE Trans. Nucl. Sci., NS-34(1): 418-22, 1987.

[7] SCHOTANUS, R.; KAMERMANS, R.; DORENBOS, P. Scintillation characteristics of pure and Tl-doped Cal crystals. IEEE Trans. Nucl. Sci., 37(2): 177-82, 1990.

SUMMARY

and the set of the second of the second s

The pulse height distributions, the light output performance and resolution of CsI(T1) scintillators coupled to a photodiode PIN are investigated. The intrinsic resolution of the system for gamma ray energy between 100 KeV and 3000 KeV was determined.

and the second s