

OBTENÇÃO DO PÓ DE U308 PARA COMBUSTÍVEIS MTR A PARTIR DO TRICARBONATO DE AMÓNIO E URANILO

JICAMP

Gilberto H. Marcondes - IPEN-CNEN/SP Humberto G. Riella - Coordenadoria para Projetos Espe-

Este trabalho descreve o desenvolvimento em andamento no IPEN para a obtenção de pó de U₃O₈ a ser utilizado na fabricação de combustíveis tipo MTR, a partir do tricarbonato de amônio e uranilo (T.C.A.U.). Os principais parâmetros do pó sinterizado como densidade, tamanho e área de superficie específica das partículas são analisadas em função da tem

INTRODUÇÃO

O princípio básico de operação dos reatores é a fissão de determinados isótopos de U (U-233 e U-235) através de neutrons térmicos, gerando-se a cada fissão uma quantidade de energia (aproximadamente 200 MeV), produtos de fissão radioativos e 2 a 3 neutrons rápidos. A fissão de vários núcleos promove a emissão de vários neutrons rápidos que, após moderação, provocam novas fissões. Gera-se assim, uma rea ção em cadeia que controlada, pode ser utilizada por exemplo, para geração de energia(rea tores de potência), testes de ativação e irra diação de materiais, bem como produção de radioisótopos para fins médicos, industriais e agrícolas (reatores de pesquisa).

Dentre os reatores de pesquisa, encontram-se os reatores tipo piscina, moderados e refrigerados a água leve, tal qual o reator do IPEN-CNEN/SP. possui 25 Elementos Combustiveis, cada qual com 18 placas à base de uma dispersão de U₃O₈-Al enriquecida a 20% em U-235 /1/. Os parametros operacionais de reatores ti po MTR (material Testing Reactor) como IEA-R1, exigem características físicas e quimicas muito bem definidas do pó de U₃O₈ comp<u>o</u> nente das placas combustíveis. São consider<u>a</u> dos aspectos relativos ao comportamento do com bustivel em operação, bem como aqueles relati vos à fabricação do briquete que resultará na placa combustível após laminação. Deste modo, o pó de U₃0₈ deve satisfazer a alguns requisi tos como:

- concentração de impurezas abaixo de limites máximos permissíveis /2/
- densidade superior a 8,0g/cm³ /2/
- área de superfície inferior a 0, lm2/g
- tamanho de partícula entre 44 e 88 m/2/
- alta resistência à compressão /3,4/
- morfologia das partículas definida para facilitar a homogeneização dos pós. 13,41.

Cada um destes requisitos tem sua finali dade: Partículas pouco densas e angulosas tendem a produzir durante a laminação uma estrutu ra texturada. /5,6/; Partículas maiores que 88 m apresentam maior probabilidade à fragmen tação durante a laminação do briquete e à for mação de "White Points" (partículas de U₃O₈ que penetram no Al no final do núcleo); partículas menores que 44 m comprometem requisitos de estabilidade à irradiação. /7/. Porém,

um teor de finos de até 50% em peso é admiti do /8/.

O método atual de obtenção do pó de U₃O₈ utilizado no IPEN, emprega o diuranato de amônio e uranilo (D.U.A.) /6/, que tem co mo inconveniente o fato de ser precipitado em diversas condições de pH, o que faz com que ocorra uma variação considerável de suas pro priedades físicas /9/. Com o intuito de mini mizar a falta de reprodutibilidade das carac terísticas do D.U.A., o IPEN procede a uma granulação do U30g calcinado, para que se te nha um maior controle da área de superfície específica e da granulometria do produto. Por outro lado, o T.C.A.U. é precipitado em condições de pH e concentração de reagentes bem definidas /10/, o que facilita sua reprodutibilidade. Além disto, uma enorme vantagem que ele possui em relação ao D.U.A., é que poderia tornar-se uma matéria prima utilizada tan to para a fabricação de pastilhas combustiveis para reatores tipo PWR, como também para a fabricação de placas combustiveis para reatores tipo MTR, o que resultaria na adoção de uma mesma linha de processamento. A figura l apresenta os diagramas relativos aos métodos de obtenção do U₃O₈. Ela mostra que o método 2 (investigado) apresenta ainda a vantagem de possuir um número menor de etapas de processa mento, devido à eliminação da etapa de granu-lação do U_3O_8 calcinado empregada no método l (atualmente adotado).

Experimental. O T.C.A.U. utilizado para a obtenção do U₃O₈, fornecido pelo departamen to de Química do IPEN, foi obtido a partir de em meio uma solução de nitrato de uranila aquoso contendo bicarbonato de amônio /10/. As condições de precipitação desse sal de ura nio, (que é um monocristal amarelo) foram mui to bem controladas, para reprodutibilidade de seu tamanho e de sua morfologia. Recebido em lote, procedeu-se à sua transformação U₃O₈, mediante calcinação ao ar, durante 3 ho ras de patamar a 600, 700 e 800@C por condição. A quantidade calcinada foi de 1Kg, com resuma camada de 2,5cm de espessura. Após res-friamento dentro do próprio forno, o material foi classificado granulometricamente em lotes de 100g durante 15 minutos, a fim de se sepa-rar o material entre 44 e 177 m (faixa de cal cinação) e o abaixo de 44 m (finos de calcina ção). Os pós de $U_{3}O_{g}$ calcinados a 600, 700 e 800°C por 30 horas é classificados nas fra-ções entre (44 e 177 m) e abaixo de 44 m foram

FIGURA 1. METODOS DE OBTENÇÃO DO U.O.

sinterizados em separado num forno tipo caixa com 8 resistores de carbeto de silício dispos tos lateralmente em 2 grupos de 4, por 1400°C de patamar durante 6h, a fim de se aumentar a densidade das partículas. Foram utilizados bo tes de alumina, carregados com uma camada de 3,5cm de espessura, e posicionados dentro do limite definido pelos resistores, com um gradiente térmico de 35°C. nesta região. Após resfriamento natural abaixo de 1100°C, o U₃O₈ foi classificado granulometricamente em lôtês de 100g por 15 minutos tanto para a sin terização de finos de calcinação (abaixo de 44 m), como para a de faixa de calcinação (en tre 44 e 177 m), resultando nas frações entre (44 e 88 m) e abaixo de 44 m.

Caracterização dos pôs de U₃O₈. Após as etapas de calcinação e de sinterização, proce deu-se à caracterização física e química do U₃0₈. Utilizou-se o método espectrográfico pa ra a determinação de impurezas, comparando-se os teores obtidos com os máximos admissíveis especificados. /2/. Para a identificação do material processado, utilizou-se a difração de raios X. A área de superfície do U.O. fo determinada pelo método de adsorção gasosa, foi utilizando-se nitrogênio, com equipamento mar ca STROHLEIN INSTRUMENTS (método B.E.T.). A avaliação morfológica das partículas foi realizada por microscopia eletrônica de varredu-ra. A densidade das partículas de U₁O₂ foi de terminada por porosimetria de mercúrio, que é o método mais adequado para este fim, devido à necessidade de se avaliar sua fração de poros abertos e de poros fechados /11/. Frações maiores de porosidade fechada são desejadas pa ra uma maior capacidade de retenção de produtos de fissão.

Discussão de Resultados. A tabela 1 apresenta resultados dos teores de impurezas encontrados no U₃O₂ calcinado a 800ºC, no U₃O₃ calcinado a 800ºC e sinterizado a 1400ºC e dos teores máximos admissíveis /2/. Ela mo<u>s</u> abaixo dos limites especificados.

ELEMENTO	CONCENTRAÇÃO 146 / 8 UI		CONC MASIMA PER-	
	40 CALCINADO	55 SINTERIZEDO		
Cd	0.1	0,1	0,5	
R	0.1	0,1	2	
P	110	55	250	
Fo	25	40	250	
Cr.	95	5	200	
Ni	4.4	12	200	
NI		3	250	
MO	1.5	10	250	
an	10	16	250	
51	45	10	250	
AL	14	11	250	
Mn	22	22	200	
Mg+Ca	20	20	250	
Pb	1	1	250	
Sn	1	1	250	
V	3	3	0.20	
Cu	14	5	250	
Co	10	10	10	
F+C1	10	10	350	

TABELA 1 - Teores de impurezas no U₃O₈ calc<u>i</u> nado e no U₃O₈ sinterizado.

Resultados de caracterização física do U₃O₈ calcinado são apresentados na tabela 2. Ela nos mostra que com o aumento da temperatura de calcinação, houve uma diminuição da área de superfície especifica do pô, um aumento do teor de finos e da densidade aparen tote além de uma diminuição da porosidade tal. Todos esses efeitos, são indicativos de que houve uma aniquilação de poros e de trin cas nas partículas de U.O. Tais poros e trin cas podem ser observados na figura 2 e são devidos à brusca liberação da amônia contida nas partículas de T.C.A.U., durante a calcinação. A figura 3 apresenta o aspecto das partículas de TCAU sem a presença desses poros e trincas.

TEMPERATURA CALCINADÃO (*C.)		
600	700	800
3,2	1,3	0,9
0/72/28	0/58/42	0/40/60
3,00	3,68	4,22
	1	
35,71	43,80	50,24
64,28	56,20	49,76
99,22	98,96	91,90
0,78	1,04	8,10
63,78	55,61	45,73
0,50	0,67	4,03
	600 3,2 0/72/28 3,00 35,71 64,28 99,22 0,78 63,78 0,50	600 700 3,2 1,3 0/72/28 0/58/42 3,00 3,68 35,71 43,80 64,28 56,20 99,22 98,96 0,78 1,04 63,78 55,61 0,50 0,67

TABELA 5 - REBULTADOS CARACTERIZAÇÃO FÍSICA 40 CALCINADO.

	TEMPERATORA CALCINAÇão			
PROPRIEDADE	600	700	800	
Area de superfície específica -BET (m²/g)	0,1	0,1	0,1	
Classificação gr <u>a</u> nulométrica (%) +170#/-170+325#/ -325# (+88ym/-88ym + 44ym/-44ym).	0/6733	0/68/32	0/68/32	
Densidade aparen te (g/cm³) (poro simetria)	8,20	8,24	8,25	
Densidade apare <u>n</u> te (%) Densidade teórica	97,62	98,10	98,21	
Porosidade total(%)	2,38	1,90	1,79	
Fração de poros abertos (%)	0	0	0	
Fração de poros fechados (%)	100	100	100	
Fração volumétrica de poros abertos(%) =P _{tot} . x F.P.A	o	0	0	
Fração volumétrica de poros fechados (%) = P _{tot} .x FPF	2,38	1,90	1,79	

(*****

mine courselo

Tabela 3. Resultados de caracterização físi ca do U₃O₈ sinterizado a 14009C.

A tabela 3. Apresenta os resultados de caracterização física do U_3O_8 sinterizado. Ela nos mostra que o percentual de finos de sinterização é independente quer da temperatu ra de calcinação, como também do teor inicial de finos gerado na calcinação. Os finos de sinterização, cujo percentual situa-se em tor no dos 32%, encontram-se abaixo dos 50% estipulados por renomados consultores da área nuclear reunidos em GEESTHATCH, Alemanha, em do cumento emitido pela Agência Internacional de Energia Atômica. /11/. O teor de finos gerado pelo método 1 situa-se em torno dos 21% /6/, aparentemente preferível em relação ao gerado pelo método 2 aqui proposto. Porém, deve-se considerar que a fração de poros abertos do po proveniente do TCAU é nula, enquanto que a do pó proveniente do D.U.A. situa-se em torno dos 35%, o que sugere que as partículas 10 U₃O₈ provenientes do TCAU possuam uma maior resistência à fragmentação na laminação das das placas combustíveis, gerando deste modo, uma menor quantidade de finos nesta etapa do processamento. Este raciocínio é reforçado, medi ante a comparação dos resultados obtidos de porosidade e de comprimento de núcleo de duas placas combustiveis utilizando o U₂O₈ obtido pelo método proposto, com a média de 27 pla-cas obtidas pelo método 1, a partir do DUA. A tabela 4. Fornece esses resultados, bem como os valores especificados /12,13/.

De acordo com essa tabela, não se pode afirmar que o mátodo proposto, por apresentar um maior teor de finos de sinterização, apre-

	DENSIDADE APARENTE (%) DENSIDADE TEORICA	POROSIDADE (%)	COMPRIMENTO DE RÚCLEO(mm)	
Método 1 (média 27 placa s)	92,85±0,96	7,20±0,91	606,0±4,0	
Método 2 placa G7	92,25	7,75	597,0	
Método 2 placa G8	93,20	6,80	602,0	
Especif <u>i</u> cado			600,0±100	

TABELA 4. Resultados de porosidade e de compri mento de núcleo de placas combustíveis a partir de D.U.A. e a partir de T.C.A.U.

sente um pior desempenho frente à laminação, uma vez que os resultados de porosidade e de comprimento do núcleo em ambos os métodos são semelhantes. Somente uma análise metalográfica com o uso de analisador e imagens comprovará o teor de finos presente na placa combustível nos dois métodos após laminação.

A tabela 3 ainda nos mostra que toda a a porosidade aberta do pó sinterizado foi ani quilada nas 3 condições de calcinação, enquan to que a porosidade fechada diminuiu com o au mento da temperatura de calcinação dos pós sinterizados, densificando o pó guase que ao limite do valor teórico. A figura 4 apresenta o aspecto das partículas de U₃O₈ sinterizado.

Conclusões:

Os diferentes tipos de pós de U₁O₂ analisados atendem às especificações exigidas p<u>a</u> ra materiais combustíveis tipo MTR.

A condição de processamento do pó sinte rizado preferível é a de calcinação a 600°C, (por aspectos econômicos) em relação às de calcinação por 700 e 800°C. Além disto, é a condição que apresenta maior porosidade fecha da, ideal para a retenção de produtos de fissão. A calcinação do T.C.A.U. nas diversas condições, não influenciou a quantidade de fi nos gerados na sinterização.

O método aqui proposto, é muito promissor tanto do ponto de vista de um reduzido nu mero de etapas de processamento, quanto em re lação à padronização de matéria prima a ser utilizada tanto em elementos combustíveis tipo MTR como em PWR. Cabe no entanto, ressaltar-se a necessidade de um estudo mais amplo no sentido de se verificar o comportamento do pó de U₃O₈ na etapa de laminação em comparação com o U₃O₈ proveniente do D.U.A., a fim de se avaliar a integridade das particulas me diante análise metalográfica.

ABSTRACT

This paper describes the development carried out at IPEN-CNEN/SP in order to obtain the AUC powder to be employed in the MTR type fuelmaking, by AUC calcination. The main parameters of the sinterized powder like density, size and specific surface of the particles are analysed as function of AUC calcination temperature.

REFERENCIAS

- Reator de Pesquisas/São Paulo, Instituto de Energia Atômica, 1958/IEA-PUB.1).
- [2] Sapecificação do pô de U₃O₈ para a placa combustivel do Elemento Combustível Padrão do Reator IEA-R1 /Doc.nº R19-IPN -213PR-45E-001.
- [3] Castilho, F.J.; Marin, E.; Chavez, P. U₃O₈ para combustivel tipo disperso.
- [4] Samoilow, A.G.; Kashtanov, A.I.; Volvok, V.S. Dispersion Fuel Nuclear Reactor Elements. Jerusalém, IPST, 1968.
- 5/ Cintra, S.; Gentile, E.; Nishioka, I.; Abrão, M.; Ambrosio Filho, F. Análise de variáveis do processo de fabricação de placas com núcleos de dispersões Al--U₃O₈ - METALURGIA 26(146):31:43; 1970.
- [6] Leal Neto, R.M. Estudo de Processos de obtenção do pô de U₃O₈ empregado em ele mentos combustíveis do tipo MTR. São Paulo, 1989. (Diss. Mestrado, Instituto de Pesquisas Energéticas e Nucleares).
- Kucera, W.J.; Leitten, C.F.; Beaver, R.J. Specifications and procedures used in manufacturring U₃O₈-Al dispersion fuel elements for core I of the Puerto Rico Research Reactor. OAK Ridge; Tenn., OAK Ridge - National Lab., 1963 (ORNL-3458)
- (%) Standardization of Specifications and inspection procedures for leu platetype research reactor fuels. Doc. IAEA--TECDOC 467.
- Vollath, D. & Wedmeyer, H. Uranium dio xide, UO, preparation and crystallographic properties. In: Klein, R., ed. GMELIN HANDBOOK OF INORGANIC CHEMISTRY. 8. ed. Berlin, Springer Verlag, 1984. V. 55, p.315-17.
- /10/ Santos, L.R. Unidade Piloto de Obtenção do Tricarbonato de Amônio e Uranilo São Paulo, 1989. (Diss. Mestrado, Insti tuto de Pesquisas Energéticas e Nucleares).
- /11/ Standardization of Specifications and Inspection Procedures for Leu Plate-.Type Research Reactor Fuels./ Doc. IAEA-TECDOC-467, 1988.
- /12/ Análise dimensional de placas combustiveis internas - Documento Interno IPEN.
- /13/ Determinação da densidade hidrostática de placas combustíveis - Documento Interno, IPEN.

FIGURA 2 - M.E.V. U.O. CALCINADO (1000 X)

FIGURA 3 - M.E.V. T.C.A.U. (320 X)

79