BETA RADIATION DETECTION WITH UT-Caso₄:Dy THERMOLUMINESCENT SAMPLES

Rosa, L.A.R., Cunha, P.G.

Instituto de Radioproteção e Dosimetria - CNEN - Brazil

Caldas, L.V.E.

Instituto de Pesquisas Energéticas e Nucleares - IPEN - Brazil

The possibility of beta radiation detection using ultra-thin thermoluminescent phosphors was investigated. The samples studied were Teledyne UT-CaSO $_4$:Dy with a thickness of 20 microns. The beta irradiations were performed utilizing the Beta Secondary Standard System of the IPEN calibration laboratory, with 90 sr $^{\circ}$ $^{\circ}$

Initially the individual reprodutibility of the detectors was investigated. Fifteen samples were sed and ten irradiations of 35mGy (90 Sr - 90 Y) under identical condition were performed. The average reproducibility found was 1.51% (1 $_{\circ}$).

Dose calibration curves (TLx absorbed dose) were obtained with 90 Sr $^{-90}$ Y, 204 Tl and 147 Pm sources. The detectores irradia ted with the 90 Sr $^{-90}$ Y source, between 0.145 and 300 mGy, presented a linear response from 0.50 mGy. When they were irradiated with the 204 Tl source, in the absorbed dose interval from 0.1 to 100 mGy a linear behavior above 1 mGy, was observed whi

le for 147 Pm they were exposed to radiation between 0.1 and 45 mGy, presenting a linear response above 2 mGy.

No dependence with the beta absorbed dose rate (within an uncertainty of 1%,1 \P) was found for the UT-CaSO $_A$:Dy TL response.

In another experiment, the 90 Sr - 90 Y irradiated samples were exposed to the ultraviolet (UV) light of a high pressure Hglamp (250 nm) to study the possibility of optical fading occurrence. The total irradiance was varied between 2.6 x 10^{-2} and 24.8 x 10^{-2} (Table I).

The angular dependence of the TL response was investigated for $^{90}{\rm Sr}$ - $^{90}{\rm Y}$ (20mGy) $^{204}{\rm Tl}$ (1mGy) and $^{147}{\rm Pm}$ (1mGy) sources at an gles of 0.30, 45, 90, 120, 135, 150 and 180°. In the most unfa vorable case (90°), the angular dependences found were 70, 70 and 60% respectively for $^{90}{\rm Sr}$ - $^{90}{\rm Y}$, $^{204}{\rm Tl}$ and $^{147}{\rm Pm}$ radiation fields.

Transmission factors for different thicknesses of tissue equivalent materials were obtained for the $UT-CaSO_4$: Dy detectors, using the three available beta sources (Table II).

Finally the energy dependence of the detector TL response was investigated and it was found to be less than 75% for the mean energy of 147 Pm, 0.06 MeV.

All results were compared with those of the literature $^{(1,2)}$. In conclusion, the results obtained for UT-CaSO $_4$:Dy show its use fulness in beta radiation detection and the possibility of using

this phosphor to develop a beta dosimeter.

Table I: Optical fading of UT-CaSO₄:Dy samples

Total Irradiance I (W.S.cm ⁻² .10 ⁻²)	Optical Fading (%)	
2.6	3.6	
7.4	11.5	
15.5	26.1	
24.8	48.7	
- Francisco Contractor de la contractor		

Table II: Transmission factors for UT-CaSO₄:Dy samples

Tissue	Thickness	147 _{Pm}	204 _{T1}	⁹⁰ Sr - ⁹⁰ Y
mm ·	mg/cm ²	* 1		
. 0	0	1.000	1.000	1.000
0.01	1	0.868	0.988	1.008
0.02	2	0.737	0.973	1.014
0.03	3	0.637	0.960	1.018
0.04	4	0.575	0.948	1.022
0.05	5 5 8	physical and a second	0.930	1.027
0.07	7		0.908	1.034
0.10	10		0.868	1.044
0.20	20	A car maj	0.740	1.072
0.50	50 .			1.100
1.00	100			1.083
2.00	200	deligna pro-		0.872
3.00	300			0.702

References:

- 1) Caldas, L.V.E., Thesis, University of São Paulo, Brazil, 1980.
- 2) Charles, M.V., Khan, Z.U., IAEA SM-229/24 (1979).