LASER DE Nd:YLF BOMBEADO COLINEARMENTE POR LASER DE ARGÔNIO

E. P. Maldonado, I. M. Ranieri, N. D. Vieira Jr. e S. P. Morato

Instituto de Pesquisas Energéticas e Nucleares, CNEN-SP Supervisão de Materiais Optoeletrônicos P.O.Box 11,049 Pinheiros, São Paulo, Brazil 05549

RESUMO

Desenvolveu-se um laser de Nd:YLF, a partir de um cristal sintetizado em nossos laboratórios, que consiste em um bastão de 4 cm de comprimento com faces em ângulo de Brewster, em uma cavidade de três espelhos com compensação astigmática, e bombeado colinearmente por um laser de Argônio na linha de $\lambda = 514$ nm. O projeto do ressonador óptico, assim como os resultados de uma caracterização preliminar são discutidos. O laser fornece 50 mW c.w. TEM₀₀ para uma potência de bombeio de 800 mW, o que corresponde a uma eficiência da ordem de 6%.

INTRODUÇÃO

Lasers de Nd bombeados longitudinalmente por outros lasers, usualmente lasers de diodo, consistem em sistemas altamente eficientes, com coerência espacial e temporal muito maiores que as de um laser de diodo e com vida útil muito maior que a deste último. Além disso, o feixe óptico gerado por um oscilador de Nd.YLF, por exemplo, pode ser amplificado por amplificadores de Nd:vidro de alto ganho, esquema usualmente utilizado para fusão nuclear por confinamento inercial. As linha de absorção estreitas, mas intensas, de materiais tais como o Nd:YAG ou Nd:YLF, tornam estes materiais bastante adequados para bombeamento óptico de banda estreita. Quando o feixe de bombeio é colinear com o ressonador (bombeamento longitudinal), a sobreposição entre o volume bombeado e o modo TEM₀₀ pode ser otimizada [1,2], maximizando a eficiência do sistema.

CONFIGURAÇÃO EXPERIMENTAL

1) O bastão de Nd:YLF.

Um bastão de Nd:YLF foi extraído de um cristal sintetizado em nosso laboratório de crescimento de cristais, de forma que o eixo do bastão (que corresponde aproximadamente à direção de crescimento do cristal) está alinhado com o eixo c cristalino. Com comprimento de 40 mm, as faces deste bastão foram cortadas em ângulo de Brewster para minimizar as reflexões do feixe de bombeio e do feixe intracavidade. O cristal foi caracterizado quanto à absorção do feixe de bombeio, o que resultou em um valor de 0,22 cm⁻¹ para $\lambda_p = 514,5$ nm. Para $\lambda = 488$ nm, a transmissão óptica do bastão é de 95%, o que demonstra as baixas perdas passivas deste elemento. O comprimento de 40 mm do bastão de Nd:YLF, que corresponde a quatro ou oito vezes os comprimentos típicos utilizados para lasers de Nd bombeados por lasers de diodo, é motivado pela baixa absorção do Nd:YLF no comprimento de onda disponível para o bombeio ($\lambda_p = 514,5$ nm).

2) O ressonador idealizado.

O projeto do ressonador inicia-se pelo cálculo da cintura do feixe de bombeio, com a condição de que o comprimento óptico do bastão de Nd:YLF corresponda a duas vezes o parâmetro confocal deste feixe [3]. Assim:

$$\ell_{op} = \frac{2.\pi.\mathbf{w}_{\mathrm{P}}^2}{\lambda_{\mathrm{P}}} \tag{1}$$

onde, $\ell_{op} = n.\ell$; n é o índice de refração do Nd:YLF para a polarização σ (perpendicular ao eixo-c) : n = 1,45. Dado que ℓ = 40 mm, temos :

$$w_{\rm P} = 69 \mu \,\mathrm{m} \tag{2}$$

Apesar de ligeiramente diferente deste valor ideal, uma cavidade com $w_p = 64\mu m e w_0 = 91,5\mu m (w_0 / w_p \cong \sqrt{2})$ pôde ser desenvolvida com o conjunto de espelhos disponíveis no laboratório. O ressonador consiste de um espelho de +5 cm de raio de curvatura, R₁, um espelho de +1 m de raio de curvatura, R₃, e um espelho de saída plano, R₂. O feixe refletido pelo espelho R₁ e o feixe refletido pelo espelho R₃ formam um ângulo de 20° entre si, tendo o espelho R₃ como vértice. O ângulo de incidência de 10° no espelho R₃ compensa exatamente o astigmatismo introduzido pelo bastão em ângulo de Brewster [4]. Dentre outras qualidades, este ressonador possui um feixe de saida com parâmetro confocal de 10 m, o que é conveniente para o ajuste do comprimento da cavidade, para o regime de travamento de modos. O comprimento total do ressonador é igual a 150 cm, o que corresponde a uma separação em frequência de 100 MHz para os modos longitudinais. A distância entre o espelho R₁ e o espelho R₃ deve ser igual a 52,40±2,3 cm para satisfazer o intervalo de estabilidade do ressonador. O ressonador projetado possui também uma baixa sensibilidade a desalinhamentos dos espelhos [5,6]. O modo TEM₀₀ desse ressonador é mostrado na figura 1 A tabela 1 mostra os parâmetros calculados para o ressonador.

O laser de argônio disponível no grupo é um laser Spectra-Physics modelo 171. O feixe de saída é polarizado verticalmente devido às janelas de quartzo em ângulo de Brewster que delimitam o tubo de argônio. Uma abertura regulável intracavidade, próxima do espelho de saída, permite a seleção do modo TEM_{00} . Acoplado ao espelho de fundo, um prisma permite a seleção de uma das linhas de operação deste laser. A máxima potência de saída corresponde a 2 W em 38 A, para modo TEM_{00} puro e comprimento de onda igual a 514,5 nm.

O feixe de saída foi então caracterizado quanto a posição e o valor de sua cintura, de onde se obteve uma expressão geral para a propagação deste : $w_0 = 0,39(2)$ mm e $z_0 = -94(6)$ cm, onde a origem do eixo z corresponde ao espelho de saída do laser. Foi utilizado o método da borda de lâmina para esta caracterização [7].

O feixe de bombeio é focalizado por um sistema de duas lentes, injetado na cavidade pelo espelho R_1 , sendo que o ajuste final para a focalização correta é feito através de medidas cuidadosas do feixe, através do método da borda de lâmina. Fisicamente, a distância entre R_1 e R_3 é aumentada, para se estabilizar o ressonador, devido à refração provocada pelo bastão de Nd:YLF, na cintura do feixe. Medidas cuidadosas do desvio na posição desta cintura foram feitas, sendo que não foi possível detectar a presença de efeitos de lente térmica no bastão. A cavidade é então aumentada em 28 mm, no braço entre R_1 e R_3 , para compensar este efeito.

fig.1) Modo TEM₀₀ do ressonador desenvolvido para o laser de Nd:YLF bombeado por laser de argônio. O comprimento total corresponde a 150 cm. O espelho R_1 tem +5 cm de raio de curvatura ; o espelho R_3 tem +1 m de raio de curvatura, e o espelho de saída R_2 é plano. O feixe refletido pelo espelho R_1 e o feixe refletido pelo espelho R_3 formam um ângulo de 20° entre si, tendo o espelho R_3 como vértice.

	$\lambda = 1053 \text{ nm}$	$\lambda_p = 514,5 \text{ nm}$
Estabilidade do ressonador	$g_1 \cdot g_2 = 0.506$	$g_1 \cdot g_2 = 0.506$
Cintura do feixe esquerda	91,5 µm	64,0 μm
Distância do espelho R ₁	23 mm	23 mm
Cintura do feixe direita	1,83 mm	1,28 mm
Distância do espelho R ₂	0	0
Cintura do feixe em R_3	1,83 mm	1,28 mm

tab. 1) Parâmetros do ressonador para os comprimentos de onda de bombeio e emissão.

3) Caracterização Preliminar.

O laser está atualmente operacional, com limiar para potência de 100 mW de bombeio. A otimização do sistema e a sua completa caracterização estão em andamento. Dados iniciais da potência de saída em função da potência de bombeio são mostrados na figura 2.

٦

fig.2) Potência de saída do laser de Nd:YLF desenvolvido em função da potência do laser de bombeio, para duas diferentes refletividades do espelho de saída. O laser opera no modo TEM_{00} .

CONCLUSÕES

O laser de Nd.YLF está sendo otimizado e caracterizado quanto aos parâmetros fundamentais da cavidade (coeficiente de ganho, perdas, taxa de bombeio). Através da determinação experimental do perfil espacial do modo TEM₀₀ oscilante e do conhecimento das características geométricas do feixe de bombeio, uma análise dos parâmetros do laser mais detalhada poderá ser realizada. Estudar-se-á também a performance deste sistema no regime de chaveamento-Q. O laser será então estudado com profundidade no regime "mode-locked" Espera-se que, através de uma análise cuidadosa do travamento de modos ativo, efeitos não-lineares tais como auto-modulação de fase e auto-focalização possam ser quantificados nesse sistema, o que irá fornecer o conhecimento necessário para a realização do regime "Kerr lens mode-locking" no laser de Nd:YLF [8].

BIBLIOGRAFIA

- Laporta, P.; Brussard, M.; "Design Criteria for Mode Size Optimization in Diode-Pumped Solid State Lasers": IEEE J. Quant. Electr. 27 (1991) 2319
- [2] Frauchiger, J.; Albers, P.; Weber, H.P.; "Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers": IEEE J.Quant.Electr. 28 (1992) 1046
- [3] Koechner, W.; "Solid State Laser Engineering": (1988) Springer-Verlag, N.Y.
- [4] Kogelnik, H.W.; Ippen, E.P.; Dienes, A.; Shank, C.V.; "Astigmatically Compensated Cavities for CW Dye Lasers": IEEE J.Quant.Electr. 8 (1972) 373
- [5] Magni, V.; "Resonators for Solid-State Lasers With Large-Volume Fundamental Mode and Alignement Stability", Appl. Opt. 25, (1986) 107
- [6] Silvestri, S.; Laporta, P.; Magni, V.; "Misalignement sensitivity of solid-state laser resonators with thermal lensing", Opt. Commun. 59, (1986) 43
- [7] Khosrofian, J.M.; Garctz, B.A.; "Measurement of a Gaussian Laser Beam Diameter Through the Direct Inversion of Knife-Edge Data": Appl.Opt. 22 (1983) 3406
- [8] Liu,K.X.; Flood,C.J.; Walker,D.R.; van Driel,H.M.; "Kerr Lens Mode Locking of a Diode-Pumped Nd:YAG Laser": Optics Lett. 17 (1992) 1361