LASER DE LIF:F⁻₂ BOMBEADO POR Nd:YAG CW CHAVEADO EM CAVIDADES ACOPLADAS

Wagner de Rossi, Fábio Eduardo da Costa, Izilda Marcia Ranieri, Nilson Dias Vieira Junior, Spero Penha Morato IPEN-CNEN/SP Cx.P. 11049, CEP 05422-970 São Paulo-SP

Centros de cor F_2^- em cristais de LiF foram obtidos de maneira otimizada [1] e utilizados como um absorvedor saturável em um laser de Nd:YAG contínuo de nossa fabricação [2]. Desta maneira obtivemos a ação laser com chaveamento passivo em um ressonador não otimizado, e os resultados estão na tabela 01.

Plampada	Ps (W)	f(KHz)
<u>(</u> KW)	λ=1.064	
2,9	limiar	
3,1	0,5	1,6
3,4	2, 1	2,7
3,7	3,5	3,9
4,1	6,4	4,2
4,4	8,2	5,0
4,9	10,6	6,7
5,3	13,1	6,7

Tabela 01- $P_{lampada}$ = potência elétrica entregue à lâmpada; Ps é a potência média de saída do laser chaveado; f é a taxa de repetição. Largura temporal do pulso do Nd \approx 175ns.

O laser é formado por um ressonador plano-paralelo com espelho de saída de refletividade R=13%; um bastão de Nd:YAG de diâmetro de 4,0mm e comprimento de 79mm, não paralelo e com coating antirefletor; e um cristal de LiF:F₂ de 1x1x2,5 cm sem coating antirefletor, com transmissão inicial To= 88% para λ =1.064nm. O mesmo ressonador, quando em regime multimodo, sem o cristal de LiF:F₂ apresenta uma potência de saída Ps=60 Watts; e a grande diminuição na eficiência é explicada pela absorção residual não saturável existente no LiF de \approx 10% e pela reflexão nas suas superfícies. Os dados da tabela 01 mostram que o LiF:F₂ pode suportar densidades de potência muito mais altas que os

corantes normalmente usados para chaveamento Q passivo. Contudo, sabemos que para potência média intracavidade de 10W [3], uma degradação eletroóptica começa a ocorrer quando o cristal não é refrigerado, como neste caso. Portanto, uma perda de eficiência adicional é esperada para as potências mais altas. Um outro cristal de LiF: F_2 foi produzido para ser utilizado como meio laser ativo quando bombeado pelo laser descrito acima. Nesta condição, o cristal deve possuir a máxima concentração possível de F_2 , com o mínimo de perda residual nos comprimentos de onda de absorção e emissão. Assim, utilizamos um cristal de 1x1x3cm, To=30% (em λ =1.064), plano-paralelo sem coating antirefletor. A figura 01 mostra o esquema utilizado para a ação laser do F_2 .

Figura 01

(a) - LiF: F_2 (1)-To=88%; (b) - Nd:YAG; (c) - LiF: F_2 (2)-To=30%; M1 espelho de fundo; M2 espelho com R=87%; M3 espelho dicróico.

O espelho M3 é um espelho dicróico, com reflexão total_para a radiação do neodímio e parcial para a emissão do LiF:F₂ (λ =1,13 μ m). Dois espelhos diferentes foram utilizados: I) R=97% e II) R=80%. Salientamos que a reflexão total R^{*} para o centro de cor depende também de M2, pois este não é dicróico. Assim, para o caso I, R⁼ 84% e para o caso II, R⁼ 70%. A tabela 02 mostra os resultados obtidos com estas configurações.

Plampada (KW)	Ps(I) m₩	f (1) (KHz)	Ps(II) mW	f(II) (KHz)
2,0	limiar			
2,5	186	3,3	limiar	
2,9	292	4,5	83	1,8
3,1	345	7,5	165	2,5
3,5	477	7,5	248	4,0
3,7	689	7,5	314	7,0
4,1	986	10,0	330	7,0
4,4	1140	10,0	-	-
4,9	1166	10,0	-	-
5,3	1431	10,0	-	-

Tabela 02-Largura temporal para 1,13 μ m é 80ns para o caso I e 50 ns para o caso II; para 1,064 μ m é de 120ns. Ps é a potência média total calculada para o centro de cor, a partir da potência medida na saída de M3. O esquema de cavidades acopladas foi utilizado por sua maior eficiência no bombeio do F_2 . Este esquema contudo modifica as características do laser apresentado na tabela O1, e tambem deveria modificar o ressonador M2M3 (pois M2 é transmissor para $\lambda=1,13\mu$ m); tal fato não ocorre na prática, porque a divergência da radiação do F_2 é muito grande devido

ao tamanho do seu ressonador, e o acoplamento é pobre.

O ressonador para o Nd:YAG é formado, no caso de cavidades acopladas, por Ri e Ref, Onde Ref é a refletividade efetiva do conjunto R2, R3 e T (a transmissão do centro de cor). Ref é dado por [4]:

$$R_{ef} = \frac{\left[\sqrt{R_2} + T\sqrt{R_3}\right]^2}{\left[1 + T\sqrt{R_2R_3}\right]^2}$$

Antes da ação laser, T=To (To = transmissão de pequeno sinal do LiF: F_2), e após a ação laser, com a saturação, T 1. Assim:

$$R_{ef}$$
 (T=To) = 0,92
 R_{ef} (T 1) = 1

Destes dados, calculamos uma variação de ganho Ag no desenvolvimento do Q-switch maior para o caso de cavidades acopladas do que no caso de cavidades desacopladas:

> $\Delta g(des.) = \alpha_1$ $\Delta g(acopl.) = \alpha_1 - \ln(Ref) > \Delta g(des.)$

Onde α_1 é o coeficiente de absorção não saturado do F_2 (1) por duplo passo.

Este aumento em Δg significa uma maior extração de energia do neodímio, a qual circula no ressonador com um tempo de vida de fóton longo. Após o desenvolvimento do pulso do neodímio, o LiF: F_2 (2) entra em ação laser (com um certo

atraso em relação a este) e absorve a energia que circula no ressonador. Isto implica num tempo de fóton menor para λ =1,064 μ m, como visto na tabela 02, e em um aumento significativo na intensidade de saturação do F_2 , o que obviamente aumenta a eficiência na transferência de energia de bombeio.

Um balanço adequado dos fatôres envolvidos e a eliminação de perdas por reflexão, podem levar a uma eficiência muito mais alta, possibilitando a sintonia do laser de centro de cor.

Sumarizando-se, obteve-se uma eficiência efetiva de até 69%, o que é esperado em esquema de bombeio com cavidades acopladas para baixas potências onde os efeitos térmicos são desprezíveis. Obteve-se também pulsos chaveados C.W. muito inferiores aos obtidos por chaveamento ativo (200ns) de até 50 ns de duração e com potência pico de F_2 de alguns KW. Referências

[1] W. de Rossi; F. E. Costa; I. M. Ranieiri; N. D. Vieira Jr.; S. P. Morato; Anais do V Simpósio Estadual de Lasers e Aplicações, 1992 pg.46-48.

[2] W. de Rossi; G. E. C. Nogueira; J. R. Berretta; I. M. Ranieri; S. P. Morato; Anais do V Simpósio Estadual de Lasers e Aplicações, 1992 pg. 241-243.

[3] T. T. Basiev; A. Yu. Dergachev; P. G. Zverev; V. A. Konyushikin; B. G. Lysoi; S. B. Mirov; V. V. Osico; Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya; Vol. 51, N.8, pp. 1440-1446, 1987.

[4] N. D. Vieira Jr.; L. S. Assis; S. P. Morato; Optics Comm. Vol. 79, N. 1,2 October 1990, pp. 71-76.