IX ENFIR - Caxambu, MG (Outubro 1993)

MODELO PARA DETERMINAÇÃO DA ATIVIDADE DA AGUA EM REATORES DE PISCINA COM CIRCULAÇÃO ASCENDENTE NO NUCLEO

GRACIETE S. ANDRADE E SILVA^(*) e SÉRGIO DE Q. BOGADO LEITE^(**) (*)Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP Travessa R, 400 - Cid. Universitária - São Paulo-SP, 05508-900 (**)Coordenadoria Para Projetos Especiais - COPESP Av. Lineu Prestes, 2242 - USP - São Paulo-SP, 05598-900

RESUMO

Em reatores tipo piscina, com circulação ascendente no núcleo, o mecanismo de contaminação da água da piscina dá-se, geralmente, através de uma interligação entre o primário e a piscina e pode ser descrito por um conjunto de equações diferenciais acopladas, relacionando os radionuclídeos no combustível, circuito do núcleo e piscina. Neste trabalho, um modelo para as atividades dos produtos de fissão liberados na água de um reator de teste de materiais com circulação ascendente é apresentado e soluções analíticas são obtidas, como funções da taxa de escape do combustível e da capacidade de retenção do sistema de purificação.

INTRODUÇÃO

A determinação precisa do termo fonte na água de reatores de piscina é importante para o conhecimento dos níveis de radiação em locais como a superfície da piscina e sistema de purificação.

específica da A atividade água do circuito primário de um reator em qualquer instante provém, basicamente: i) da atividade induzida no refrigerante (intrínseca), ii) de produtos de corrosão e impurezas ativados e iii) dos produtos de fissão liberados para a água, oriundos da impregnação superficial do combustível ou que escapam em caso de falhas do revestimento.

No presente trabalho, apresenta-se um modelo matemático para o cálculo da atividade específica dos produtos de fissão na água do circuito primário e da piscina, para um reator tipo piscina com circulação ascendente água no núcleo, semelhante ao reator de OSIRIS [1], com potência térmica de 70Mw e combustível tipo placa, com pastilhas de UO2 compartimentadas, revestidas por Zircaloy revestidas por Zircaloy (combustível caramelo).

FORMULAÇÃO DO PROBLEMA

Hipóteses. Para 0 estudo das concentrações dos produtos de fissão na água do circuito primário e piscina, as seguintes hipóteses foram assumidas:

- 1) A liberação de produtos de fissão do combustível dá-se de duas formas:

 liberação contínua devido a irradiação do U-235 que fica impregnado externamente às placas combustíveis quando de sua fabricação, a qual ocorre desde o instante t=0. ocorre desde o instante t=0;
 - ii) liberação contínua através de uma falha no revestimento do combustível ocorrida a partir de um instante t_o qualquer.
- 2) Os produtos liberados são homogeneamente instantaneamente misturados e no circuito, produtos voláteis e não voláteis sendo tratados indistintamente.

- 3) A cadeia de radionuclídeos é descrita por quatro termos, isto é, admite-se 4 tipos de nuclídeos com forma de decaimento do k-ésimo para o k-ésimo+1.
- 4) O modo de escoamento do reator é como indicado na Figura 1, onde q , q , q (=q +q sp) e q são vazões (cm³/s) dos circuitos primário, piscina, de equilíbrio e sistema de purificação, respectivamente e N e P representam o número total de átomos do k-ésimo isótopo, no instante t, no circuito primário e na piscina. A vazão de primário e na piscina. A vazão de equilíbrio, que desce pela chaminé do q_{cp} reator e soma-se à vazão na de saída do núcleo. á tubulação estabelecida para evitar a ascensão de produtos ativados à superfície da piscina e é responsável pelo acoplamento das equações que descrevem os produtos de fissão nos dois circuitos.

Figura 1 Esquema do modelo de reator

Modelo Matemático. Utilizando-se as hipóteses descritas anteriormente, equações que governam o comportâmento hipóteses as dos produtos de fissão no combustível e na água do primário e da piscina são dadas por:

$$\frac{dn_1}{dt} + \left(\lambda_1 + \alpha_1\right)n_1 = Y_1K$$
(1)

$$\frac{\mathrm{d}n_{k}}{\mathrm{d}t} + \left(\lambda_{k} + \alpha_{k}\right)n_{k} = Y_{k}K + \delta_{k-1}\lambda_{k-1}n_{k-1} \qquad (2)$$

$$(k = 2, 3, 4)$$

$$\frac{dN_1}{dt} + \left(\lambda_1 + \frac{q_e}{V_N}\right)N_1 = \alpha_1 n_1 + P_1 \frac{q_e}{V_P} + Y_1 Z \quad (3)$$

$$\frac{dN_{k}}{dt} + \left(\lambda_{k} + \frac{q_{e}}{V_{N}}\right)N_{k} = \alpha_{R}n_{k} + P_{k}\frac{q_{e}}{V_{P}} +$$

$$\delta_{k-1} \lambda_{k-1} N_{k-1} + Y_{k} Z$$
(4)
(k=2,3,4)

$$\frac{\mathrm{d}P_{1}}{\mathrm{d}t} + \left(\lambda_{1} + \frac{q_{e}}{V_{p}}\right)P_{1} = N_{1}\left(1 - \beta_{1}\right)\frac{q_{sp}}{V_{N}} + N_{1}\frac{q_{p}}{V_{N}}$$
(5)

$$\frac{dP_{k}}{dt} + \left(\lambda_{k} + \frac{q_{e}}{V_{p}}\right)P_{k} = \frac{N_{k}}{V_{N}}\left[q_{p} + q_{sp}\left(1 - \beta_{k}\right)\right] + \frac{\delta_{k-1}\lambda_{k-1}P_{k-1}}{(k = 2, 3, 4)}$$
(6)

sujeitas às seguintes condições:

a)
$$n_{k}(0) = N_{k}(0) = P_{k}(0) = 0, \forall k,$$

b) $\alpha_{k} \equiv 0$ para $t < t_{0}$,
c) $n_{k}(t_{0}) = n_{k}(t_{0}); N_{k}(t_{0}) = N_{k}(t_{0});$
 $P_{k}(t_{0}) = P_{k}(t_{0}), \forall k.$

e onde:

- n = número de átomos do k-ésimo isótopo no combustível,
- N = número de átomos do k-ésimo isótopo no circuito primário, = número de átomos do k-ésimo isótopo no
- Pk circuito piscina,
- = constante de decaimento (s^{-1}) , λ α^k k
- = taxa de escape do k-ésimo isótopo
 (s⁻¹), (α =0 para 0≤t<t),
 = rendimento de fissão do[°]k-ésimo isótopo
- Y_k (átomos/fissão), **** de fissão no Combustível к = taxa
- cana de fissão no compustível (fissões/s),
 z = taxa de fissão na superfície externa do combustível (fissões/s),
 δ = fração do k-ésimo isótopo que decai
- para o k-ésimo+1, = percentual de purificação para
- βĸ k -ésimo isótopo durante a operação, V_p = volume da piscina + circuito
- de equilibrio + sistema de purificação ≃ volume da piscina (cm³),
- $V_{\rm N}$ = volume do circuito primário (cm³).

SOLUÇÃO DAS EQUAÇÕES

As equações (1) e (2) são lineares de primeira ordem e são facilmente solucionadas utilizando-se o método do fator integrante.

A solução das demais equações pode ser encontrada isolando-se e derivando-se N das expressões (5) e (6), e substituindo-o nas equações (3) e (4), respectivamente. Com isto chega-se a um conjunto de equações diferenciais lineares não homogêneas de segunda ordem com coeficientes constantes, para os produtos de fissão na água da piscina, do tipo:

$$\frac{d^2 P_k}{dt^2} + r_k \frac{dP_k}{dt} + s_k P_k = R(t), \qquad (7)$$

onde R(t) contém termos de acoplamento com o k-ésimo-1 isótopo.

Para cada k a partir de k=1, P (t) é obtido e substituido nas equações $(5)^{k}$ ou (6), com as condições iniciais adequadas, para a obtenção de N_k(t). As soluções finais podem ser escritas na seguinte forma:

A) Intervalo 0≤t<t (anterior à falha</p> do revestimento):

$$n_{k}(t) = A_{k}^{n} + \sum_{i=1}^{k} C_{ki}^{n} e^{-h_{i}t}$$
 (8)

$$N_{k}(t) = A_{k}^{N} + \sum_{i=1}^{k} \sum_{j=1}^{2} B_{k i j}^{N} e^{m_{i j} t}$$
(9)

$$P_{k}(t) = A_{k}^{P} + \sum_{i=1}^{k} \sum_{j=1}^{2} B_{kij}^{P} e^{m_{ij}t}$$
(10)

B) Intervalo $t \ge t_{0}$:

$$n_{k}(t) = A_{k}^{n} + \sum_{i=1}^{k} C_{ki}^{n} e^{-h_{i}(t-t_{0})}$$
(11)

$$N_{k}(t) = A_{k}^{N} + \sum_{i=1}^{k} \left[\sum_{j=1}^{2} B_{kij}^{N} e^{m_{ij}(t-t_{0})} - b_{ij}(t-t_{0}) \right]$$

+
$$C_{ki}^{N} e^{-n_{i}(t-t_{0})}$$
 (12)

$$P_{k}(t) = A_{k}^{P} + \sum_{i=1}^{k} \left[\sum_{j=1}^{2} B_{kij}^{P} e^{m_{ij}(t-t_{0})} + C_{ki}^{P} e^{-h_{i}(t-t_{0})} \right]$$
(13)

onde:

-

$$C_{k1}^{n} = \frac{\delta_{k-1}\lambda_{k-1}C_{k-11}^{n}}{\left(h_{k} - h_{1}\right)} , \ k \neq i$$
 (15)

$$C_{kk}^{n} = n_{k}^{0} - \left(A_{k}^{n} + \sum_{\substack{i=1\\(k>1)}}^{k-1} C_{ki}^{n}\right)$$
(16)

$$\begin{split} \mathbf{A}_{k}^{P} &= \frac{1}{\mathbf{S}_{k}} \left[\begin{array}{c} \boldsymbol{\gamma}_{k} \left(\mathbf{Y}_{k} \mathbf{Z} + \boldsymbol{\alpha}_{k} \mathbf{A}_{k}^{n} \right) + \\ &+ \delta_{k-1} \lambda_{k-1} \left(\mathbf{g}_{k} \mathbf{A}_{k-1}^{P} + \boldsymbol{\gamma}_{k} \mathbf{A}_{k-1}^{N} \right) \right] (17) \\ \mathbf{A}_{k}^{N} &= \frac{1}{\mathbf{\gamma}_{k}} \left(\mathbf{f}_{k} \mathbf{A}_{k}^{P} - \delta_{k-1} \lambda_{k-1} \mathbf{A}_{k-1}^{P} \right) \quad (18) \\ \mathbf{B}_{k1j}^{P} &= \frac{\delta_{k-1} \lambda_{k-1} \left[\left(\mathbf{m}_{1j} + \mathbf{g}_{k} \right) \mathbf{B}_{k-1}^{P} + \mathbf{\gamma}_{k} \mathbf{B}_{k-1}^{N} \right] \\ \left(\mathbf{m}_{1j} - \mathbf{m}_{k1} \right) \left(\mathbf{m}_{ij} - \mathbf{m}_{k2} \right) \quad (19) \\ \mathbf{B}_{k1j}^{N} &= \frac{1}{\mathbf{\gamma}_{k}} \left[\left(\mathbf{m}_{ij} + \mathbf{f}_{k} \right) \mathbf{B}_{kij}^{P} - \delta_{k-1} \lambda_{k-1} \mathbf{B}_{k-1ij}^{P} \right] \\ \left(\mathbf{x}\neq 1 \right) \end{array} \right] \\ \mathbf{C}_{ki}^{P} &= \left\{ \mathbf{\gamma}_{k} \alpha_{k} \mathbf{C}_{ki}^{n} + \delta_{k-1} \lambda_{k-1} \left[\left(\mathbf{g}_{k} - \mathbf{h}_{i} \right) \mathbf{C}_{k-11}^{P} + \right. \\ \left. + \mathbf{\gamma}_{k} \mathbf{C}_{k-1i}^{N} \right] \right\} \right\} \left(\mathbf{h}_{i} + \mathbf{m}_{k1} \right) \left(\mathbf{h}_{i} + \mathbf{m}_{k2} \right) \quad (21) \\ \mathbf{C}_{ki}^{N} &= \frac{1}{\mathbf{\gamma}_{k}} \left[\left(\mathbf{f}_{k} - \mathbf{h}_{i} \right) \mathbf{C}_{ki}^{P} - \delta_{k-1} \lambda_{k-1} \mathbf{C}_{k-1i}^{P} \right] \\ \left(\mathbf{x}\neq 1 \right) \quad (22) \\ \mathbf{B}_{ki1}^{P} &= \left\{ \mathbf{\gamma}_{k} \mathbf{N}_{k}^{0} - \left(\mathbf{m}_{k2} + \mathbf{f}_{k} \right) \mathbf{P}_{k}^{0} + \\ \left. + \delta_{k-1} \lambda_{k-1} \mathbf{P}_{k-1}^{0} + \mathbf{m}_{k2} \mathbf{A}_{k}^{P} + \end{array} \right. \end{split}$$

$$+\sum_{\substack{i=1\\k>1}}^{k-1}\sum_{\substack{j=1\\k>1}}^{2} \left(m_{k2} - m_{1j}\right) B_{k1j}^{P} + \sum_{\substack{i=1\\k=1}}^{k} \left(m_{k2} + h_{i}\right) C_{k1}^{P} \right] / \left(m_{k1} - m_{k2}\right)$$
(23)

$$B_{kk2}^{P} = -\left[\gamma_{k}N_{k}^{0} - \left(m_{k1} + f_{k}\right)P_{k}^{0} + \right. \\ \left. + \delta_{k-1}\lambda_{k-1}P_{k-1}^{0} + m_{k1}A_{k}^{P} + \right. \\ \left. + \sum_{\substack{i=1 \ j=1}}^{k-1}\sum_{\substack{j=1 \ (k>1)}}^{2} \left(m_{k1} - m_{ij}\right)B_{kij}^{P} + \right. \\ \left. + \sum_{\substack{i=1 \ (k>1)}}^{k} \left(m_{k1} + h_{i}\right)C_{ki}^{P}\right] / \left(m_{k1} - m_{k2}\right) \\ \left. \left(24\right) \right] \\ \left. B_{kkj}^{N} = \frac{1}{\gamma_{k}}\left(m_{kj} + f_{k}\right)B_{kkj}^{P}, \quad j=1,2 \quad (25) \right]$$

$$C_{kk}^{P} = \frac{\gamma_{k} \alpha_{k} C_{kk}^{n}}{\left(h_{k} + m_{k1}\right) \left(h_{k} + m_{k2}\right)}$$
(26)

$$C_{kk}^{N} = \frac{\begin{pmatrix} f_{k} - h_{k} \end{pmatrix} C_{kk}^{P}}{\gamma_{k}}$$
(27)

e onde:

.

$$g_{k} = \lambda_{k} + \frac{q_{e}}{V_{N}}$$
(28)

$$f_{k} = \lambda_{k} + \frac{q_{e}}{V_{p}}$$
(29)

$$\gamma_{k} = \frac{\left(q_{e} - \beta_{k}q_{sp}\right)}{V_{N}}$$
(30)

$$\mathbf{r}_{\mathbf{k}} = \mathbf{f}_{\mathbf{k}} + \mathbf{g}_{\mathbf{k}}$$
(31)

$$s_{k} = g_{k}f_{k} - \frac{q_{e}\tilde{\gamma}_{k}}{V_{p}} = m_{k1}m_{k2}$$
 (32)

$$m_{k1} = \frac{-r_{k} + \sqrt{r_{k}^{2} - 4s_{k}}}{2}$$
(33)

$$m_{k2} = \frac{-r_{k} - \sqrt{r_{k}^{2} - 4s_{k}}}{2}$$
(34)

$$h_{k} = \begin{cases} \lambda_{k} , \text{ se } 0 \leq t < t_{0} \\ \lambda_{k} + \alpha_{k} , \text{ se } t \geq t_{0} \end{cases}$$
(35)

$$n_{k}^{0} = \begin{cases} 0 , se \ 0 \le t < t_{0} \\ n_{k}(\bar{t_{0}}) , se \ t \ge t_{0} \end{cases}$$
(36)

$$N_{k}^{0} = \begin{cases} 0, \text{ se } 0 \le t < t_{0} \\ N_{k}(\overline{t_{0}}), \text{ se } t \ge t_{0} \end{cases}$$
(37)

$$P_{k}^{0} = \begin{cases} 0, \text{ se } 0 \leq t < t_{0} \\ P_{k}(\overline{t_{0}}), \text{ se } t \geq t_{0} \end{cases}$$
(38)

CASO EXEMPLO

Os valores das constantes que definem o modo de escoamento do reator (vide Figura 1) foram escolhidos iguais aos do reator OSIRIS [1], a saber: $q_p = 44,65 \text{ Kg/s}, q_{sp} = 10,65 \text{ Kg/s}, q_e = 55,30 \text{ Kg/s}, V_N \cong 1,718\times10^8 \text{ cm}^3$ e $V_p \cong 5,363\times10^8 \text{ cm}^3$.

A taxa de fissão no combustível (K), para o reator operando a 70 MW, como no OSIRIS, é da ordem de 2,118x10¹⁶ fissões/s. Para o cálculo da taxa de fissão proveniente do UO2 impregnado externamente nas placas combustíveis quando de sua fabricação, admitiu-se que 10µg de UO2 ficam impregnados na superfície de cada placa. Como no reator OSIRIS existem 38 elementos combustíveis padrão, contendo 17 placas cada um e 6 elementos de controle com 14 placas cada, tem-se um total de 7,3mg de UO2 a gerarem produtos de fissão na água do primário e da piscina. Levando-se em conta que, à potência de 70MW do OSIRIS corresponde uma massa total de 4,2x10⁵ g de UO2, com taxa de fissão equivalente a 2,188x10¹⁶ fissões/s, a taxa de fissão devido a impregnação (Z) é da ordem de 3,802x10¹⁰ fissões/s valendo-se da mesma proporcionalidade. Dos produtos de fissão produzidos nas superfícies impregnadas, estima-se que apenas metade é liberada para a água, o restante ficando retido no revestimento [2,3].

As taxas de escape admitidas neste caso exemplo, variam desde valores encontrados em PWR, como os da Tabela 1 para o reator Chalk River [4], até 10⁻³ e 10⁻⁵ vezes esses valores, para aferirmos a sensibilidade dos níveis de atividade alcançados. O percentual de purificação para cada

O percentual de purificação para cada radionuclídeb considerado está indicado na Tabela 2, para um sistema típico de resinas catiônicas e de leito misto [5].

Tabela 1 Coeficientes de Taxas	de	Escape
--------------------------------	----	--------

ISÓTOPOS	TAXA DE ESCAPE (s ⁻¹)
Cs, I, Xe, Kr, Rb, Br	1,3x10 ⁻⁰⁸
Sr, Ba	1,0x10 ⁻¹¹
Zr, Ce, outras terras raras	1,6x10 ⁻¹²
Те	1,0x10 ⁻⁰⁹
Мо	2,0x10 ⁻⁰⁹

Tabela 2 Percentual de Purificação

•			
	FRAÇÃO DE REMOÇÃO		
ISÓTOPOS	LEITO	RESINA	β
	MISTO	CATIÔNICA	
(Kr e Xe)	0	0	0
(Br e I)	0,99	0	0,99
(Rb e Cs)	0,5	0,9	0,95
demais nuclídeos	0,98	0,9	0,998

As demais constantes nucleares para o cálculo das concentrações de produtos de fissão na água do circuito primário e da piscina são apresentadas na Tabela 3.

Tabela 3 Constantes Nucleares Consideradas

k	NUCLÍDEO	$\begin{bmatrix} \lambda \\ seg^{-1} \end{bmatrix}$	RENDIMENTO DE FISSÁO	δ _k
1	Se-83m	9,902×10 ⁻⁰³	4,84×10 ⁻⁰³	1
2	Se-83	5,134×10 ⁻⁰⁴	4,83×10 ⁻⁰⁴	1
3	Br-83	8,056×10 ⁻⁰⁵	3,71×10 ⁻⁰⁵	1
4	Kr-83m	1,052×10 ⁻⁰⁴	3,99×10 ⁻⁰⁸	1
1	Se-84	3,501×10 ⁻⁰³	9,55×10 ⁻⁰³	1
2	Br-84	3,633×10 ⁻⁰⁴	1,80×10 ⁻⁰⁴	1
1	Br-85	4,030×10 ⁻⁰³	1,30×10 ⁻⁰²	1
2	Kr-85m	4,297×10 ⁻⁰⁵	1,37×10 ⁻⁰⁴	0,2110
3	Kr-85	2,049×10 ⁻⁰⁹	2,28×10 ⁻⁰⁵	0
1	Br-87	1,242×10 ⁻⁰²	2,19×10 ⁻⁰²	1
2	Kr-87	1,514×10 ⁻⁰⁴	3,42×10 ⁻⁰³	1
1	Br-88	4,252×10 ⁻⁰²	2,50×10 ⁻⁰²	1
2	Kr-88	6,782×10 ⁻⁰⁵	1,09×10 ⁻⁰²	1
3	Rb-88	6,490×10 ⁻⁰⁴	3,20×10 ⁻⁰⁴	1
1	Br-89	1,540×10 ⁻⁰¹	1,89×10 ⁻⁰²	1
2	Kr-89	3,644×10 ⁻⁰³	2,74×10 ⁻⁰²	1
3	Rb-89	7,600×10 ⁻⁰⁴	1,70×10 ⁻⁰³	1
4	Sr-89	1,589×10 ⁻⁰⁷	2,58×10 ⁻⁰⁴	1
1 2 3 4	Kr-90 Rb-90 Sr-90 Y-90	2,145×10 ⁻⁰² 4,530×10 ⁻⁰³ 7,542×10 ⁻¹⁰ 3,008×10 ⁻⁰⁶	4,72×10 ⁻⁰² 6,76×10 ⁻⁰³ 2,82×10 ⁻⁰⁴ 2,30×10 ⁻⁰⁶	1 1 1
1	Rb-91	1,191×10 ⁻⁰²	5,64×10 ⁻⁰²	1
2	Sr-91	2,027×10 ⁻⁰⁵	2,29×10 ⁻⁰³	0,5800
3	Y-91m	2,324×10 ⁻⁰⁴	2,72×10 ⁻⁰⁶	1
4	Y-91	1,371×10 ⁻⁰⁷	6,24×10 ⁻⁰⁶	1
1	Rb-92	3,767×10 ⁻⁰¹	1,49×10 ⁻⁰²	1
2	Rb-92	1,547×10 ⁻⁰¹	3,26×10 ⁻⁰²	1
3	Sr-92	7,105×10 ⁻⁰⁵	1,18×10 ⁻⁰²	1
4	Y-92	5,441×10 ⁻⁰⁵	9,81×10 ⁻⁰⁵	1
1	Kr-93	5,458×10 ⁻⁰¹	5,05×10 ⁻⁰³	1
2	Rb-93	1,195×10 ⁻⁰¹	3,03×10 ⁻⁰²	1
3	Sr-93	1,540×10 ⁻⁰³	2,70×10 ⁻⁰²	1
4	Y-93	1,906×10 ⁻⁰⁵	9,81×10 ⁻⁰⁴	1
1	Kr-94	3,301×10 ⁺⁰⁰	2,27×10 ⁻⁰³	1
2	Rb-94	2,577×10 ⁻⁰¹	1,55×10 ⁻⁰²	1
3	Sr-94	9,169×10 ⁻⁰³	4,25×10 ⁻⁰²	1
4	Y-94	6,048×10 ⁻⁰⁴	3,52×10 ⁻⁰³	1
1 2 3 4	Y-95 Zr-95 Nb-95m Nb-95	1,100×10 ⁻⁰³ 1,254×10 ⁻⁰⁷ 2,223×10 ⁻⁰⁶ 2,282×10 ⁻⁰⁷	6,42×10 ⁻⁰² 2,95×10 ⁻⁰⁴ 1,29×10 ⁻⁰⁶ 1,72×10 ⁻⁰⁷	1 0,0100 1
1	Y-97	6,245×10 ⁻⁰¹	5,06×10 ⁻⁰²	1
2	Zr-97	1,139×10 ⁻⁰⁵	8,74×10 ⁻⁰³	0,9463
3	Nb-97m	1,155×10 ⁻⁰²	8,74×10 ⁻⁰³	1
4	Nb-97	1,602×10 ⁻⁰⁴	1,68×10 ⁻⁰⁴	1

COMISTÃO NACION/L DE ENERGIA NUCLEAR/SP - IPEN

Tabela 3 Continuação

k	NUCLÍDEO	$\begin{bmatrix} \lambda \\ seg^{-1} \end{bmatrix}$	RENDIMENTO DE FISSÁO	δ _k
1	Nb-99	4,847×10 ⁻⁰²	5,92×10 ⁻⁰²	1
2	Mo-99	2,917×10 ⁻⁰⁶	2,87×10 ⁻⁰³	0,8755
3	Tc-99m	3,199×10 ⁻⁰⁵	3,34×10 ⁻⁰⁹	1
1	Ru-103	2,042×10 ⁻⁰⁷	3,15×10 ⁻⁰²	0,9006
2	Rh-103m	2,059×10 ⁻⁰⁴	1,05×10 ⁻¹¹	1
1	Mo-105	1,284×10 ⁻⁰²	$9,34 \times 10^{-03}$	1
2	Ru-105	4,338×10 ⁻⁰⁵	2,34 \times 10^{-05}	1
3	Rh-105m	1,540×10 ⁻⁰²	7,30 \times 10^{-05}	1
4	Rh-105	5,445×10 ⁻⁰⁶	5,20 \times 10^{-05}	1
1	Ru-106	2,179×10 ⁻⁰⁸	4,17×10 ⁻⁰³	1
2	Rh-106	2,318×10 ⁻⁰²	3,96×10 ⁻⁰⁹	0
1	Sn-127	9,169×10 ⁻⁰⁵	1,01×10 ⁻⁰³	1
2	Sb-127	2,084×10 ⁻⁰⁶	7,46×10 ⁻⁰⁵	0,1390
3	Te-127m	7,360×10 ⁻⁰⁸	8,93×10 ⁻⁰⁷	0,9760
4	Te-127	2,059×10 ⁻⁰⁵	5,45×10 ⁻⁰⁷	1
1	Sb-129	$4,458 \times 10^{-05}$	6,87×10 ⁻⁰³	0,1307
2	Te-129m	2,388 $\times 10^{-07}$	1,20×10 ⁻⁰⁴	0,6500
3	Te-129	1,660 $\times 10^{-04}$	1,48×10 ⁻⁰⁴	1
1	Te-131m	6,418×10 ⁻⁰⁶	2,76×10 ⁻⁰²	0,8500
2	Te-131	4,621×10 ⁻⁰⁴	1,19×10 ⁻⁰³	1
3	I-131	9,978×10 ⁻⁰⁷	4,15×10 ⁻⁰⁵	0,0100
4	Xe-131m	6,743×10 ⁻⁰⁷	1,04×10	1
1	Sn-132	1,733×10 ⁻⁰²	5,93×10 ⁻⁰³	1
2	Sb-132	4,126×10 ⁻⁰³	1,08×10 ⁻⁰²	1
3	Te-132	2,462×10 ⁻⁰⁶	1,54×10 ⁻⁰²	1
4	I-132	8,371×10 ⁻⁰⁵	2,06×10 ⁻⁰⁴	1
1	Te-133	9,279×10 ⁻⁰⁴	3,57×10 ⁻⁰²	1
2	I-133	9,257×10 ⁻⁰⁶	1,65×10 ⁻⁰³	0,0288
3	Xe-133m	3,664×10 ⁻⁰⁶	2,67×10 ⁻⁰⁵	1
4	Xe-133	1,529×10 ⁻⁰⁶	8,79×10 ⁻⁰⁶	0
1	Sb-134	6,301×10 ⁻⁰²	2,70×10 ⁻⁰³	1
2	Te-134	2,764×10 ⁻⁰⁴	6,18×10 ⁻⁰²	1
3	I-134	2,196×10 ⁻⁰⁴	4,57×10 ⁻⁰³	1
1	Te-135	3,610×10 ⁻⁰²	$3,31 \times 10^{-02}$	1
2	I-135	2,912×10 ⁻⁰⁵	$2,98 \times 10^{-02}$	0,1540
3	Xe-135m	7,556×10 ⁻⁰⁴	$1,70 \times 10^{-03}$	1
4	Xe-135	2,118×10 ⁻⁰⁵	$9,78 \times 10^{-04}$	1
1	I-136	8,351×10	3.07×10	0
2	Cs-136	6,123×10 ⁻⁰⁷	1,30×10 ⁻⁰⁴	
1	I-137	2,818×10	3,26×10 -02	0,9400
2	Xe-137	3,016×10 ⁻⁰³	2,87×10 -03	1
3	Cs-137	7,322×10 ⁻¹⁰	1,25×10 -03	0,9460
4	Ba-137m	4,527×10 ⁻⁰³	2,58×10 -06	1
1	I-138	1,083×10 ⁻⁰¹	1,66×10 ⁻⁰²	1
2	Xe-138	8,153×10 ⁻⁰⁴	4,56×10 ⁻⁰²	1
3	Cs-138	3,588×10 ⁻⁰⁴	3,01×10 ⁻⁰³	1
1	I-139	2,888×10 ⁻⁰¹	7,36×10 ⁻⁰³	1
2	Xe-139	1,755×10 ⁻⁰²	4,35×10 ⁻⁰²	1
3	Cs-139	1,229×10 ⁻⁰³	1,31×10 ⁻⁰²	1
4	Ba-139	1,397×10 ⁻⁰⁴	6,71×10 ⁻⁰⁴	1
1	Xe-140	5,097×10 ⁻⁰²	3,62×10 ⁻⁰²	1
2	Cs-140	1,086×10 ⁻⁰²	2,23×10 ⁻⁰²	1
3	Ba-140	6,273×10 ⁻⁰⁷	4,29×10 ⁻⁰³	1
4	La-140	4,787×10 ⁻⁰⁶	6,04×10 ⁻⁰⁵	1
1	Xe-141	4,030×10 ⁻⁰¹	1,18×10 ⁻⁰²	1
2	Ba-141	6,324×10 ⁻⁰⁴	1,46×10 ⁻⁰²	1
3	La-141	4,899×10 ⁻⁰⁵	1,94×10 ⁻⁰⁴	1
4	Ce-141	2,468×10 ⁻⁰⁷	2,43×10 ⁻⁰⁷	1
1	Cs-142	$4,077 \times 10^{-01}$	2,84×10 ⁻⁰²	1
2	Ba-142	1,080 $\times 10^{-03}$	2,93×10 ⁻⁰²	1
3	La-142	1,246 $\times 10^{-04}$	1,00×10 ⁻⁰³	1

Tabela 3 Continuação

k	NUCLÍDEO	$\begin{bmatrix} \lambda \\ [seg^{-1}] \end{bmatrix}$	RENDIMENTO DE FISSÁO	ð _k
1	Ba-143	5,097×10 ⁻⁰²	5,30×10 ⁻⁰²	1
2	La-143	8,252×10 ⁻⁰⁴	6,01×10 ⁻⁰³	1
3	Ce-143	5,835×10 ⁻⁰⁶	2,85×10 ⁻⁰⁴	1
4	Pr-143	5,914×10 ⁻⁰⁷	2,95×10 ⁻⁰⁸	. 1
1	Ba-144	6,301×10 ⁻⁰²	$4,25\times10^{-02}$	1
2	La-144	1,733×10 ⁻⁰²	1,1 \pm x10 ⁻⁰²	1
3	Ce-144	2,822×10 ⁻⁰⁸	6,09×10 ⁻⁰⁴	1
4	Pr-144	6,684×10 ⁻⁰⁴	8,25×10 ⁻⁰⁷	1
1	Ba-145	1,118×10 ⁻⁰¹	1,99×10 ⁻⁰²	1
2	La-145	2,390×10 ⁻⁰²	1,69×10 ⁻⁰²	1
3	Ce-145	3,851×10 ⁻⁰³	2,30×10 ⁻⁰³	1
4	Pr-145	3,219×10 ⁻⁰⁵	9,32×10 ⁻⁰⁶	1
1	Nd-147	7,254×10 ⁻⁰⁷	2,28×10 ⁻⁰²	1
2	Pm-147	8,372×10 ⁻⁰⁹	2,73×10 ⁻⁰⁹	1
1	Nd-149	1.113×10 ⁻⁰⁴	1,09×10 ⁻⁰⁵	1
2	Pm-149	3,627×10 ⁻⁰⁶	3,12×10 ⁻⁰⁶	1
1	Nd-151	9,316×10 ⁻⁰⁴	4,20×10 ⁻⁰³	1
2	Pm-151	6,782×10 ⁻⁰⁶	1,77×10 ⁻⁰⁵	1
3	Sm-151	2,441×10 ⁻¹⁰	3,80×10 ⁻⁰⁸	0

RESULTADOS E CONCLUSÕES

Com a solução analítica das equações diferenciais que regem o comportamento dos produtos de fissão no combustível e na água do primário e da piscina para reatores com circulação ascendente no núcleo, foi gerado um programa computacional no CDC-CYBER 180/830 da COPESP, em linguagem FORTRAN e dupla precisão. O programa fornece a atividade específica (Bq/cm³) e total para cada isótopo considerado, bem como a somatória dos mesmos.

Os valores das atividades específicas apresentados nas figuras abaixo, foram obtidos multiplicando-se o número de átomos de cada isótopo da Tabela 3 pela respectiva constante de decaimento, somando-se sobre todos os k de todos os radionuclídeos considerados e depois dividindo-se pelos volumes correspondentes (combustível, água do primário ou da piscina).

Na Figura 2 tem-se a atividade específica dos produtos de fissão no combustível, água do primário e da piscina para o reator operando, durante um ciclo de 28 dias, sem e com escape de produtos de fissão desde o instante t=0; no caso considerou-se as taxas de escape da Tabela 1.

considerou-se as taxas de escape da Tabela 1. As Figuras 3 e 4 apresentam os valores das atividades específicas da água do circuito primário e da piscina, respectivamente, em função do tempo e com falha do revestimento ocorrida em t=0, levando-se em conta as várias taxas de escape adotadas neste trabalho.

Já as Figuras 5 e 6 representam o comportamento dos produtos de fissão na água do primário e da piscina, respectivamente, mediante uma falha no revestimento do combustível ocorrida nos instantes t=0, 14 e 27 dias e segundo as taxas de escape da Tabela 1.

Com os resultados apresentados podemos observar que, enquanto as variações percentuais nas concentrações dos produtos de fissão no circuito primário e na piscina são dramáticas, no combustível a concentração praticamente não se altera, com as taxas de escape escolhidas. Comparando-se os patamares de atividade específica da água com e sem escape ilustrado, por exemplo, na Figura 5, podemos identificar aplicações imediatas deste estudo: i) na avaliação da dose por produtos de fissão e sua evolução em seguida a uma falha do revestimento e ii) no estabelecimento de relações entre doses, taxas de escape e eficiência do sistema de purificação na retenção dos produtos de fissão.

PROXIMOS PASSOS

O passo seguinte será acrescentar, ao cálculo da atividade específica da água do primário e da piscina, a contribuição devido à ativação da própia água (denominada intrínseca) e de suas impurezas (produtos de corrosão).

No caso das impurezas da água, a referência [6] leva em consideração dois tipos de fontes: i) isótopos radioativos formados no revestimento dos elementos combustíveis, refletor e internos do reator, que se desprenderam para o refrigerante primário, e ii) isótopos radioativos formados de isótopos não radioativos que desprenderam para o refrigerante e isótopos se se ativaram ao passarem pelo núcleo. As equações que regem tal comportamento são do tipo das equações (4) e (6) com metodologia de solução análoga à utilizada neste trabalho.

Para a determinação da atividade induzida no refrigerante deverá ser analisado e, eventualmente adaptado, o modelo de circuito fechado, típico de reator PWR [7].

Figura 3 Atividade da agua do primario considerando varias taxas de escape devido a uma falha no combustivel

Figura 2 Atividade especifica para um ciclo de 28 dias sem e com escape de produtos de fissao devido a uma falha no combustivel

Figura 4 Atividade da agua da piscina considerando varias taxas de escape devido a uma falha no combustivel

REFERÊNCIAS

- [1] Reacteur OSIRIS Rapport Descriptif. Avril 1970. (CEA-R-3984).
- [2] BADANINA, N. G.; KONOPLEV, K. A.; SAIKOV, YU.P. Surface contamination of VVR-M fuel elements by fissionable material and its contribution to the fragment activity of the coolant. Atomnya Énergiya, 32 (4): 316-318, April 1972.
- [3] Progress Report Chemistry and Materials Division, Chalk River, Ontario, Jan. 1 to Mar. 31, 1971. (AECL-3900).
- [4] MONTGOMERY, D. W. The Effects of Fission Product Leakage on the NMSR Plant. May 1958. (BAW-1110).
- [5] American National Standard Radioactive Source Term for Normal Operation of Ligth Water Reactors. ANSI/ANS - 18.1. 1989
- [6] N M S R Project. Determination of the Purification Rate for Normal Operation. June 1958. (BAW-1015 Revised).
- [7] Rockwell, T. L. Reactor Shielding Design Manual. March 1956. (TID-7004).

ABSTRACT

Pool type reactors with ascending flow throught the core, have usually an equilibrium circuit which is responsible for the contamination of the pool and which can be described by a set of coupled differential equations relating the radioactive species in the fuel, core circuit and pool. In this work, a model for the activity due to fission products release to the water of a materials test reactor is presented and analytical solutions are obtained, as functions of the release rate from the fuel and the retention capacity of the reactor purification system.