IX ENFIR - Caxambu, MG (Outubro 1993)

CÁLCULO DE TAXAS DE REAÇÃO EM FOLHAS DE ATIVAÇÃO NO INTERIOR DO "BEAM HOLE" NÚMERO 8 DO REATOR IEA-RI UTILIZANDO O CODIGO DE TRANSPORTE DE RADIAÇAODO DOT-3.5 (IX-ENFIR)

Margaret de Almeida Damy, Ulysses d'Utra Bitelli, Arlindo Gilson Mendonça e Adimir dos Santos Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN-/SP -Travessa R número 400 CEP 05508-900

RESUMO

Neste trabalho são apresentadas comparações entre valores de taxas de reação medidas através da técnica de Ativação por Folhas e calculadas utilizando o código DOT-3.5, ao longo do eixo de simetria do canal de irradiação 8 do reator IEA-R1. Avaliou-se a utilidade da metodologia adotada para o cálculo do transporte da radiação em problemas de penetração em dutos vazios.

INTRODUÇÃO

É objeto de interesse do grupo de Blindagem do IPEN, validar os métodos de cálculo utilizados para o cálculo do transporte da radiação em problemas de penetração profunda, com o objetivo de conhecer-se o comportamento da incerteza associada aos cálculos de blindagem, com relação à medidas experimentais.

Com esta finalidade, foram realizadas medidas da distribuição espacial de taxas de reação (1) a nêutrons térmicos e medidas de taxas de reação a nêutrons rápidos ao longo da direção axial do canal de irradiação número 8 do Reator IEA-R1 (BH-8), através da técnica de Ativação de Folhas.

O objetivo deste trabalho foi o de calcular as taxas de reação em folhas de ativação inseridas no interior do BH-8 do reator IEA-R1, com o código DOT-3.5(2) e compará-las àquelas obtidas experimentalmente

METODOLOGIA EXPERIMENTAL E DE CÁLCULO

A descrição completa e detalhada do experimento é apresentada em referências citadas neste trabalho(1,3). Basicamente, foram realizadas 10 operações de irradiação à potência de 100kW no reator IEA-R1. Para tal, monitorou-se a Câmara de Ionização Compensada (CIC) do canal linear ao nível de corrente de 3,0 μ A, além de reproduzir em cada operação o mesmo posicionamento de barras de controle do reator. Com isso, procurou-se garantir uma mesma intensidade neutrônica ao longo do canal de irradiação número 8 do reator.

Assim, em cada operação de 1 hora, foram irradiados ao longo do eixo de simetria do citado canal, os seguintes isótopos presentes nas folhas de ativação: Au-197, Ni-58, Mg-24, Ti-46, Ti-48, Fe-54, Fe-56 e In-115. As folhas de ouro foram irradiadas com e sem cobertura de Cádmio, enquanto as demais folhas de ativação foram irradiadas cobertas por Cádmio.

As espessuras das folhas, as massas de cada uma delas, a posição de irradiação, bem como as reações nucleares induzidas nos isótopos, são apresentadas nas tabelas 1 e 2. As concentrações dos elementos utilizadas para as várias regiões que compõem a configuração geométrica esquematizada para o problema, são apresentadas na tabela 3.

As taxas de reação foram calculadas com o código DOT-3.5 em uma estrutura de 22 grupos de energia de néutrons desde a energia de 1,0x10⁵ev até o limite de 17,3 Mev em geometria cilíndrica R-Z. Apenas 1 grupo de energia de gamas foi empregado no problema, onde a fonte foi zerada. Os limites de energia dos grupos são apresentados na tabela 4.

As seções de choque microscópicas foram calculadas para as 7 regiões definidas na figura 1, (núcleo, água logo após o núcleo, grafita, água sob o concreto, aço carbono, concreto barita e ar), com o código XSDRNPM(4) e as seções de choque para as folhinhas de ativação também foram geradas para o problema através do sistema AMPXII(4), com excessão da folha de índio, a qual não há resultados para comparação. Para o cálculo das seções de choque macroscópicas, tanto dos materiais que constituem o núcleo e o canal de irradiação número 8 do IEA-R1, bem como das folhas de ativação, foi utilizado o código AXMIX(5).

das folhas de concódigo AXMIX(5). A biblioteca de seções de choque utilizada para todos os materiais constituintes do problema, provieram do arquivo VITAMIN-C(7); Para as folhas de ativação (especificamente as de ouro), foi utilizada a ENDFB-V, enquanto que para as demais folhas a ENDFB-VI. Nestes últimos casos, a transtormação em parâmetros de multigrupo foi efetuada pelo NJOY(8).

Para o termo fonte, considerou-se a presença de 3 elementos combustíveis em frente ao canal de irradiação ou "beam hole" número 8 do reator IEA-R1.

O espectro de nêutrons de fissão é apresentado na tabela 4, juntamente com os limites de energia por grupo de nêutron. As densidades isotópicas das folhinhas de ativação foram consideradas mínimas para a convergência do problema.

A configuração geométrica utilizada no cálculo das taxas de reação nas folhas de ativação no interior do canal de irradiação para o DOT-3.5 encontra-se na figura 1. Onde especificou-se um total de 165 "meshes" espaciais na região axial do cilindro

	1			
MATERIAL da FOLHA	POSIÇÃO (FIG.1)	MASSA (g)	ESPESSURA [Cm]	REAÇÃO de OCORRÊNCIA na FOLHA
Au	• A.	0,01850	0,00125	Au^{197} (n, γ) Au^{198}
Au	в	0,02080	0,00125	Au ¹⁹⁷ (n, 7) Au ¹⁹⁸
Au	с	0,02221	0,00125	Au^{197} (n, γ) Au^{198}
Au	D	0,02390	0,00125	Au^{197} (n, γ) Au^{198}
Au	E	0,02181	0,00125	Au^{197} (n, γ) Au^{198}
Au	F	0,02015	0,00125	Au^{197} (n, γ) Au^{198}
Au	G	0,02250	0,00125	Au^{197} (n, γ) Au^{198}
Au(Cd)	В	0,02115	0,00125	Au^{197} (n, γ) Au^{198}
Au (Cd)	c	0,02150	0,00125	Au ¹⁹⁷ (π,γ) Au ¹⁹⁸
Au(Cd)	D	0,01980	0,00125	Au ¹⁹⁷ (n,γ) Au ¹⁹⁸
Au(Cd)	E	0,02095	0,00125	Au ¹⁹⁷ (n,γ) Au ¹⁹⁸
Au(Cd)	F	0,02348	0,00125	Au ¹⁹⁷ (n,γ) Au ¹⁹⁸
Au(Cd)	G	0,02400	0,00125	Au^{197} (n, γ) Au^{198}

TABELA 1 - DADOS RELATIVOS às FOLHAS de OURO

.

.

4

2

.

.

TABELA 2 - DADOS RELATIVOS às OUTRAS FOLHAS

-

MATERIAL da FOLHA	POSIÇÃO (FIG.1)	MASSA (g)	ESPESSURA [cm]	REAÇÃO de OCORRÊNCIÀ
Ni	В	0,28510	0,0254	Ni ⁵⁸ (n,p) Co ⁵⁸
Ni	E	0,28652	0,0254	Ni ⁵⁸ (n,p) Co ⁵⁸
Mg	В	0,02976	0,0127	Mg ²⁴ (n,p) Na ²⁴
Mg	E	0,02958	0,0127	Mg ²⁴ (n,p) Na ²⁴
Ti	В	0,14090	0,0254	Ti ⁴⁶ (n,p) Sc ⁴⁶
Ti	E	0,14154	0,0254	Ti ⁴⁶ (n,p) Sc ⁴⁶
Ti	В	0,14090	0,0254	Ti ⁴⁸ (n,p) Sc ⁴⁸
Fe	В	0,13728	0,0127	Fe ⁵⁴ (n,p) Mn ⁵⁴
Fe	в	0,13728	0,0127	Fe ⁵⁶ (n,p) Mn ⁵⁶
Fe 🦯	E	0,56522	0,0500	Fe ⁵⁶ (n,p) Mn ⁵⁶
In	В	0,12190	0,0127	In ¹¹⁵ (n,n') In ^{115m}
In	E	0,12190	0,0127	In ¹¹⁵ (n, n') In ¹¹⁵

REGIÁO (# no DOT)	Nuclídeo	CONCENTRAÇÃO [# de átomos/barn]
Núcleo	U-235	8.394E-05
(1)	U-236	4.780E-06
	U-238	1.876E-04
	Pu-240	5.533E-08
	Pu-239	5.237E-07
	Pu-241	1.145E-08
	Pu-242	6.949E-10
	0-16	1.895E-02
	H-1	3.681E-02
	A1-27	1.517E-02
Grafita	C-12	8.023E-02
Água	0-16	3.343E-02
(3,4)	H-1	6.686E-02
Aço	C-12	2.882E-02
Carbono(s)	Si	3.001E-04
	Fe	5.805E-02
	Nb-93	1.426E-04
	Mn-55	4.505E-05
Concreto	0-16	4.726E-02
Barita (6)	H-1	1.827E-02
	Al-27	4.900E-04
	Na	1.037E-04
	Mg	1.962E-04
	Si	1.358E-03
	Fe	3.997E-04
	Mn-55	3.945E-06
	Ba-134	1.594E-04
	Ba-135	4.309E-04
	Ba-136	5.069E-04
	Ba-137	7.293E-04
	Ba-140	4.583E-03
Ar (7)	0-16	8.986E-06
	N-14	3.380E-05

Tabela 3 - Concentração dos Materiais (DOT-3.5)

representado pelo problema e 55 "meshes" nadireção radial.

Para este problema utilizou-se um conjunto de quadratura "biased" onde são escolhidos diferentes números de direções positivas e negativas para os ângulos η . Foram tomadas 65 direções positivas e apenas 35 direções negativas, totalizando 100 ângulos "up" que caracteriza o problema, pois há uma região de grande vazio ou "streaming" de nêutrons, que é o próprio interior do "beam hole".

Calculou-se as taxas de reação apenas para as folhas de ouro, não cobertas por cádmio, por não se ter tido tempo de gerar as seções de choque para o cádmio. Também para as demais folhas não se utilizou o cádmio como cobertura, pois nestas, este elemento não é importante nos cálculos, haja visto que o DOT calcula as taxas de reação no ponto onde deseja-se obter os resultados e

Figura 1-Esquema Representativo da Geometria do Canal de Irradiação nº 8 do Reator IEA-R1 Utilizado no DOT-3.5.

devido apenas à reação de interesse, no caso, a reação (n,p).

RESULTADOS

As taxas de reação foram medidas através da Técnica de Ativação de folhas de ouro (nuas e cobertas com cádmic) em 7 pontos ao longo do "beam hole" número 8 no eixo central do mesmo, a partir do início do canal de irradiação.

Os pontos onde foram medidas as taxas de reação são:

Entrada	d	0 0	canal	de
axial,	a	44,0) cm	da
irradiaç	āo;			
axial,	a	88,0) Cm	da
axial,	a	132,	0 Cm	da
axial,	a	176,	0 Cm	da
axial,	a	220,	0 cm	da
axial,	a	264,	0 Cm	da
	Entrada axial, irradiaç axial, axial, axial, axial, axial,	Entrada d axial, a irradiação; axial, a axial, a axial, a axial, a axial, a	Entrada do d axial, a 44,0 irradiação; axial, a 88,0 axial, a 132, axial, a 176, axial, a 220, axial, a 264,	Entrada do canal axial, a 44,0 cm irradiação; axial, a 88,0 cm axial, a 132,0 cm axial, a 176,0 cm axial, a 220,0 cm axial, a 264,0 cm

Grupo	Limite Superior [Mev]	Espectro de Fissão
1	17,3333	1,6998E-04
2	12,214	8,8542E-04
3	10,000	3,4477E-03
4	8,1873	1,3837E-02
5	6,3763	3,4194E-02
6	4,9659	4,7735E-02
7	4,0657	1,0630E-01
8 _	3,0119	8,8161E-02
9	2,4660	2,3321 E-0 2
10	2,3457	1,1891E-01
11	1,8268	2,1610E-01
12	1,1080	1,6504E-01
13	6,3928E-01	1,6572E-01
14	1,1109E-01	1,6100E-02
15	3,3546E-03	8,2193E-05
16	5,8295E-04	5,9611E-06
17	1,0130E-04	4,1655E-07
18	2,2603E-05	3,3144E-08
19	1,0677E-05	1,3490E-08
20	3,0590E-06	1,8982E-09
21	1,1254E-06	2,8771E-10
22	6,8256E-07 * (1,0E-11)	2,5755E-10

Tabela 4 - Estrutura dos Grupos de Energia de Nêutrons e Espectro de Fissão

All the second second

* - Limite Inferior do Grupo 22.

Para as folhas de ouro, têm-se valores experimentais para as sete posições de irradiação definidas acima, sendo que o cálculo foi feito para até a posição F (distante 2,2 m do início do "beam hole"), pois para um detalhamento dos intervalos espaciais no interior do canal de irradiação, não foi possível atingir-se o ponto G localizado na saída do canal.

Nas folhas de Ni-58, Mg-24, Ti-46 e Fe-56, temos disponível as medidas experimentais em duas posições dentro do canal de irradiação. Enquanto que para as folhas de Ti-48 e Fe-54 temos apenas uma medida no interior do B.H. (posição B).

As taxas de reação foram calculadas em 6 posições (de A a F) ao longo do canal de irradiação, para as folhas de ativação de ouro. Para as folhinhas de magnésio, níquel, titânio e ferro, as taxas de reação foram calculadas para duas posições ao longo do "beam hole" número 8 do IEA-R1, mesmo para as folhinhas onde não dispúnhamos de resultado experimental.

A tabela 5 apresenta os valores das taxas de reação medidas escalculadas para as várias folhas de ativação colocadas no interior do "Beam Hole" número 8 do reator IEA-R1, nas posições descritas acima. Na mesma tabela apresenta-se os valores de C/E, ou seja, valor calculado dividido pelo valor medido.

Um outro valor importante é a atenuação dos nêutrons ao longo do canal de irradiação, ou seja, a razão das taxas de reação normalizadas em relação às taxas de reação de entrada no "Beam Hole". Os valores das taxas de reação normalizadas encontram-se na tabela 6, sendo que na última coluna desta, compara-se os valores entre si, ou seja, os valores normalizados calculados divididos pelos valores normalizados experimentais (C/E).

COMENTARIOS FINAIS

•

Neste trabalho, foram comparadas as medidas e cálculos de taxas de reação em várias folhas de ativação dispostas ao longo do eixo de simetria do canal de irradiação número 8 do Reator IEA-R1. Faz parte de um esforço conjunto dos grupos teórico e experimental do Departamento de Tecnologia de Reatores do IPEN em avaliar a metodologia de cálculo empregada nos trabalhos efetuados pelo grupo de Blindagem nos cálculos de fuga de radiação em dutos vazios ("streaming").

Esta é a primeira iniciativa feita no reator do Instituto, para analisar o comportamento espacial das taxas de reação relativas aos neutrons rápidos dentro de um dos canais de irradiação do IEA-R1. Comparações com a distribuição espacial das taxas de reação a neutrons térmicos também vêm sendo efetuadas através de medidas com detetores de ativação apresentadas aqui nas folhas de ouro.

Cabe salientar que estudos semelhantes, também estão sendo realizados, utilizando o método de Monte Carlo, porém até a presente data não temos conhecimento dos resultados encontrados. Estes, serão de grande importância como orientação em nossos estudos.

Observa-se da tabela 5, onde são comparados os valores absolutos das taxas de reação medidas e calculadas, que os valores são coerentes no tocante à magnitude do campo neutrônico no interior do BH-8.

Verifica-se que os valores medidos e calculados para os isótopos Au-197 (posições A, B, C e D), Ni-58 (posição A), Ti-46(posição E), Ti-48 (posição B) e Fe-54, apresentam uma razão cálculo/experimento (C/E) < 2, o que pode ser considerado para o propósito do trabalho, como um bom resultado. Todavia encontraram-se algumas discrepâncias; o Ti-46 apresentou um excelente resultado na posição E enquanto constatou-se um desvio muito grande entre os valores medidos e calculados na posição B do BH-8.

Valores pouco satisfatórios, foram encontrados nos isótopos Au-197 (posições E e F), Ni-58 (posição F), Fe-56 (posição E), e Mg-24 (posição E) que apresentaram valores de C/E situados entre 2,0 e 3,6. Tal fato pode estar indicando o afastamento, já constatado para nêutrons térmicos (61, dos valores calculados em relação aos experimentais, a medida que afasta-se do núcleo do reator. O que reflete a dificuldade encontrada de avaliar-se o transporte e espalhamento dos nêutrons rápidos em problemas de penetração profunda, haja visto a diversidade de elementos químicos que compõem o concreto barita que circunda o BH-8 (com início próximo ao ponto D).

Vê-se, da tabela 6, que a atenuação dos nêutrons ao longo do BH-8, para nêutrons rápidos (de B para E) nos resultados calculados para os vários isótopos estudados, apresentam o mesmo comportamento, o que é esperado, visto que o material entre as duas

FOLHA	POSIÇÁO	TAXA de REAÇÃO Calculada	TAXA de REAÇÃO Experimental	C/E
	A	1,0495E+10	(2,7961 ± 0,039) E+10	0,375
	В	1,5111E+09	(2,7679 ± 0,031) E+09	0,546
	с	3,4422E+08	(5,5183 ± 0,080) E+08	0,624
Au-197	D	1,3117E+08	(9,9011 ± 0,014) E+07	1,325
	Ē	6,2171E+07	(2,9142 ± 0,042) E+07	2,133
	F	3,0534E+07	(1,2324 ± 0,018) E+07	2,478
	G	-	(6,4619 ± 0,093) E+06	-
	A	1,0915E+07	(1,0877 ± 0,061) E+07	1,004
Ni-58	В	1,7538E+06	· –	-
	E	1,9401E+05	(5,4292 ± 0,041) E+04	3,573
Fe-56	В	2,2711E+04	(5,7285 ± 0,006) E+03	3,965
	E	2,5931E+03	(9,0785 ± 0,002) ±+02	2,856
Ti-46	В	2,6703E+05	(1,7710 ± 0,037) E+04	15,07
	Е	3,0158E+04	(2,4277 ± 0,008) E+03	1,24
	В	7,4856E+04	(5,7084 ± 0,013) E+04	1,311
Mg-24	E	8,5690E+03	-	-
	F	5,6021E+03	(1,5976 ± 0,007) E+03	3,510
Ti-48	В	7,1322E+03	(1,6721 ± 0,008) E+03	1,527
	E	8,1671E+02	-	-
FE-54	В	1,4207E+06	(2,2430 ± 0,020) E+06	0,632
	E	1,5764E+05	-	-
In-115m	В	-	(1,1371 ± 0,022) E+06	_
	E	-	(4,2142 ± 0,014) E÷04	-

Tabela 5 - Taxas de Reação Calculadas e Medidas dentro do "Beam Hole" número 8 do Reator IEA-R1 C/E - Valor Calculado/ Valor Medido

4

ويحمد المتنقط الدوائة وليعيط والتعمين

الارا والمتعادين المتعادين

ومطاد بالقائب للامح للحنط والريسا كراد

.

.

د. د افغان می این از فیطرد از ا ا ہے۔ بیران برمدہ اختار رہے تلحقمه محمد المعام مربو المارين

Tabela 6 - Atenuação das Taxas de Reação Medidas e Calculadas ao longo do Canal de Irradiação Número 8 do IEA-R1.

FOLHA	RAZÁO	R _H /R _I medido	R _C / R _I calculado	C/E
	B / A	9,90E-02	1,44E-01	1,45
	С/А	1,97E-02	3,28E-02	1,66
Au-197	D/A	3,54E-03	1,25E-02	3,62
Ni-58	B / A	_	1,61E-01	-
	E / A	4,99E-03	1,78E-02	3,56
Fe-56	E/B	1,58E-01	1,14E-01	0,72
Ti- 46	Е/В	1,37E-01	1,13E-01	0,82
Mg-24	E/B	-	1,14E-01	-
	F/B	2,80E-02	7,48E-02	2,67
Ti-48	Е/В	-	1,15E-01	-
FE-54	E/B	-	1,11E-01	-

Onde:

R, = Taxa de Reação Medida

R_c = Taxa de Reação Calculada

R_I = As Taxas de Reação são normalizadas em relação ao ponto mais próximo do início do núcleo (medido ou calculado)

posições para as diversas folhas é o mesmo, ou seja, ar. Este resultado também é observado nas medidas experimentais (Fe-56 e Ti-46), embora pode-se constatar que tem-se poucas medidas da Razão E/B.

poucas medidas da Razão E/B. Também da tabela 6, observando-se os resultados relativos (normalizados em relação aos pontos mais próximos do núcleo - ponto B), pode estar indicando que deve existir uma diferença entre o termo fonte utilizado no cálculo e o termo fonte experimental. (Razão E/B Calculada e medida variando de 0,82 a 0,72). Sugere-se a aquisição de mais medidas experimentais para obter-se uma maior estatística dos valores de taxas de reação nos pontos considerados e em mais pontos no interior do BH-8, com a finalidade de gerar mais dados, diminuindo a incerteza nos resultados medidos a nível de confiabilidade estatística.

Além disso, como proposta para continuidade deste estudo, sugere-se realizar o cálculo das seções de choque para a reação do espalhamento inelástico ocorrida na folha de Indio In^{115} do tipo (n,n'), produzindo o isótopo In^{115} metaestável. Este cálculo é particularmente importante, devido ao fato do limiar desta-reação ocorrer para nêutrons no início da faixa rápida de energia.

REFERÊNCIAS BIBLIOGRAFICAS

[1] - Bitelli, Ulysses d'Utra, Alves, Márcia
A. Pichi. Medidas de Taxa de Reação no B.H. 8 - Fase 1, relatório técnico interno da
Divisão de Física de Reatores do IPEN. Junho
1992. (RP230040S092-414).
[2] - Rhoades, W.A.; Mynatt, F.R. DOT-3.5 -

[2]- Rhoades, W.A.; Mynatt, F.R. DOT-3.5 -Two Dimensional Discrete Ordinates Radiation Transport Code, CCC-276, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. [3]- Alves, Márcia P.; Bitelli, Ulysses;

 [3] - Alves, Marcia P.; Bitelli, Ulysses;
 Coelho, Paulo R.P. Rotina Experimental para Mapeamento de Fluxo de Nêutrons Térmicos no BH 8 do Reator IEA-R1 - documento interno da Divisão de Física de Reatores do IPEN. 1992. (RP23-IP3-CH17-4RE-304).

[4]- Greene, N.M., Ford III, W.E. et alli. AMPX-II: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries from Data in ENDF Format, PSR-63, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

[5]- Haynes, G.C. The AXMIX Program for Cross Section Mixing and Library Arrangement, PSR-75, Oak Ridge National Laboratory, Oak Ridge, Tennessee USA.

FOR-70, OAK RIGGE NATIONAL Laboratory, OAK Ridge, Tennessee, USA.
[6]- Damy, Margaret de A. Reavaliação do Espectro de Nêutrons no BH8, documento interno da Divisão de Física de Reatores do IPEN. Abril 1991. (RP230040024-413).

[7]- R. W. Roussin et alli. VITAMIN-C - 171 NEUTRON, 36 Gamma-Ray Group Cross Sections on AMPX and CCCC Interface Formats for Fusion and LMFBR Neutronics - DCL-41. ORNL, July 1980.

[8]- Macfarlane, R. E. et alli. The NJOY Nuclear Data Processing System, Vol-I: User's Manual, LA-9393-M, Vol(ENDF-324), 1982.

ABSTRACT In this work there are shown compararisons between calculations and experimental values for the several foil reactions rates. The DOT-3.5 is used to make the transport calculation and to calculate the reaction rates of the activation foils. The results are compared with an experiment that was made at the IEA-R1 reactor in Sao Paulo - Brazil, were the foils were placed on the axis of beam hole number 8. The objective of this task, is to study the problem of penetration in voids. In: the general sense, good agreement has been found even though for some cases the results were in discrepancy.