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Introduction

This paper deals with the solution of the Inverse Elastostatics Problem (IESP) of reconstruction of bound-
ary tractions using response measurements from sensors located at discrete. interior or exterior, locations

of a solid. Computational techniques for the solution of such problems may provide non-destructive evalu-

ation tools, such as identifying contact regions in neighboring objects. as well as hybrid experimental and
numerical methods for the analyses of solids [1, 2].

In solid mechanics, given sufficient traction and displacement boundary conditions, one can solve the
boundary value problem for displacement, strain, and stress fields [3]. The same is not true when a
boundary data is missing. This type of problem is defined as an inverse problem {4]. Much of the literature
on the solution of inverse problems has been devoted to Inverse Heat Conduction Problems IHCP [5]. A
limited literature exists on the solution of TESP’s. The IESP’s fall under two main categories. namely
the reconstruction problems and the identification problems [6]. Solutions for inverse problems do not
necessarily satisfy conditions of existence, uniqueness, and stability [7). The numerical solution of inverce
problems may be obtained using the finite element method (FEM) or the boundary element method
(BEM). The significant advantages offered by the BEM for such problems were outlined in Bezerra and
Saigal [8] where a BEM based formulation for inverse identification problems was presented. The inverse
problem of boundary traction reconstruction in elastostatics, despite its numerous physical applications. has
reccived scant attention in the literature. Such formulations, may be employed in characterizing tractions at
inaccessible regions of critical components in sensitive mechanical equipment. Maniatty, Zabaras. Stelson.
Molerras, and Schnur [9, 10, 11] have used the FEM and the BEM along with the spatial “key-node”
regularization procedure for the solution of such problems. These contributions have been presented only
recently and deal with the determination of the magnitude of simple distributions of tractions at a given
location on the surface of the body. For realistic applications, it is necessary to develop further formulations
to treat more general traction distributions as well as to include the treatment of a priori unknown regions
of the application of these tractions. In this paper, the IESP of boundary traction reconstruction is
first explained and briefly defined in terms of mathematical encm:osm.. The problem is then formulated

as a constrained non-linear least-squares optimization problem in a BEM framework. Using function

specifications for the unknown boundary tractions and opitimization methods, the solution procedure

adopted seeks to minimize, in the least-squares sense, the difference between the vector ¢ consisting

of simulated experimental data and the vector y' of corresponding computed quantities. The geometric
«

constraints that the boundary tractions lie within a certain given portion of the boundary of the solid
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are imposed when necessary by a simple direct search approach. The design sensitivities required in the
numerical optimization procedure are obtained by the implicit differentiation [12] of the boundary integral
equations. An example involving a rectangular panel is presented to demonstrate the effectiveness of the
E.mmmsa solution procedures in reconstructing boundary tractions. Good results were solution was obtained
for a.w.mm case including with the introduction of small Gaussian errors in the simulated experimental data.
It is noted that the present study deals with the determination of: (a) the magnitude and extent of the
Bmmmr_m boundary traction data, and (b) the location of the distribution. The latter has not been attempted

previously in the literature to the best knowledge of the authors.

Definition of the Problem

Consider a homogeneous, isotropic, linear elastic, two-dimensional solid, 2 , bounded by its boundary T.
The direct field problems in elastostatics involve the determination of displacement, strain, and stress fields
in @, provided the following are known [4]: (a) the domain, Q , and the boundaries, T, of the solid, (b)
the governing equations in the domain, (c) the appropriate boundary conditions on T, (d) the material
v_.oma_.:mm involved in the governing equations, and (e) the forces or other inputs acting on the solid. Under
these conditions the solution may be calculated by a direct analysis using analytical or numerical schemes.
If EG of the above information is lacking, incomplete, or overdefined, a direct analysis cannot be carried
o_:;.m and the problem is regarded as an inverse problem. In this study, the reconstruction of a missing
vccman traction, along the boundary, ', of the solid, 2 , constitutes an inverse problem since: (a) the
Ewm.smr&m and the location of the boundary traction are not known, (b) internal measurement data within
the WG_E, Q , is available as additional information to overcome the lack of sufficient boundary conditions.

In mathematical notation, this can be expressed as

giji(x) = =bj(x);x€Q ) 1)
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where g;; is the stress tensor; i,7,] = 1,2; b; are the body forces; ¢;; is the strain tensor; A and p are
the J.&Bm,m constants; &;; is the Kroneker's delta; n; denotes the outer normal to the boundary T; &
and u; are the tractions and displacements, respectively; an overbar (™) denotes prescribed quantities; a
tilda (") denotes experimental measurements; v; are the measured displacements, strains, or stresses along
direction i at location & ( k = 1,2,3...m ); and m is the total number of experimental measurements
available. In this study, the m observations Yk lie inside Q . Eqs. (1) and (2) denote, respectively, the
equilibrium equations and the constitutive relations; Eqs (3) and (4) denote the traction and displacement
boundary conditions, respectively; and Eq. (5) denotes the measured data. The solution of the inverse

problem of houndary traction reconstruction involves the determination of the design variables, z, such
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that the quantities % match the experimentally measured quantities % in the least-squares sense. This
is accomplished by minimizing the difference between the mapping ¥= Az and the data vector ¥ and is

expressed as

m 2
J@ =0 Y (v - da)’ (6)
“ k=113=1

where w is a weighting parameter included to enhance numerical sensitivity in the minimization process.
Due to the ill-posed nature of the problem, small changes in the given data may produce distinctly answers
unless restrictions on the smoothness of the solution are imposed (5, 7, 11]. To overcome such instabilities,
a-priori information on the desired solution is often introduced in the form of smoothness conditions that
are implemented through the use of approximating functions or by regularization of the objective function
to be minimized (5, 7). In the present study, the unknown tractions, ®; = o;;n;, that are required to be
reconstructed are assumed in the form ; = &;(z); where w, 7, and v are a magnitude, a span, and a
position that completely define the missing boundary traction using the smooth function ¢;. The form of

the smooth function, ¢, is assumed to be known.

Minimization Procedure

The numerical procedure adopted in this study for the solution of the IESP of boundary traction recon-
struction involves the am_od:m:v.:o: of the model vector, z, such that f(z) in Eq. (6) is a minimum. The
vector z contains the parameters that completely define the position and the amplitude of the function
describing the missing boundary tractions. The possible location of the missing tractions is limited to
a bounded set of locations on the body, say T;. This condition of limiting the location of the missing

boundary tractions to a feasible geometrical region is expressed in the form of constraint equations as
Ci(z)=2xF (a2 0 i=Lpj=1L (7)

where z; are the components of the vector z; L is the number of geometry constraints; p is the number
of design variables used to define the missing boundary tractions; a is a constant and represents the
bounds of the domain; and ¢ is a small number to ensure that the reconstructed tractions lie within an
€ — neighborhood inside the prescribed portion, Ty, of the object boundary. The constraints in Eq. (7),
together with the minimization of Eq. (6), lead to a constrained minimization problem in the theory of
optimization. In this paper, when a constraint is violated, the technique of retracting the pattern of the
step-length is used. Such a procedure must start from a feasible point and be exercised with care or the
minimization process may terminate prematurely [13, 14]. An alternative strategy using inverse penalty
functions was presented by Bezerra and Saigal in Refs. [15]. Numerous other direct search techniques are
available in the literature. Further discussions on these methods may be found in Ref. [13, 14]. In this
study, an unconstrained method to search for the minimum is adopted after the step-length reduction is
performed to avoid the violation of a constraint. The unconstrianed <~,_.m,,v¢_m metric method is adopted for

this purpose. This method involves constructing in each iteration n, a mcoa approximation, A(™, to the




inverse Hessian matrix H=! by computing only the gradient V f(z). The BFGS algorithm was adopted to
update A(™ [16]. This algorithm starts with an initial feasible guess for the missing tractions defined by

the vector z(%), and generates subsequent updates to this vector according to the following relations

2" = (0 4 g g Au?vv (8)
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where §() is the search direction; a!™) is the step-length along S(™); V is the gradient operator; and the
sequence A® AN AP A+ apnroaches H-L, starting with A(® = J. The above procedure reduces
the problem to a unidimensional optimization problem of determining the scalar a(®) in Eq. (8), that
minimizes the objective function along the direction S(*). To ensure that the components of the vector
z(™ lie inside the feasible boundary domain, Ty, the step-length (™) is retracted by 10%, whenever z(™)
lies outside the feasible domain. Given three feasible points, al®) < a(®) < a() that isolate the minimum
along direction S™), Brent’s method [16] is applied to find the minimun of f(z). With f(al®)) = f(z(®),
f(@®) = f(z®), and f(al)) = f(2(9)), solving the inverse interpolation problem, the variable Q?V

denoting the minimum of the interpolating parabola, is found as

. ?3 _ nEv» _ f(a®) - :n::_ _ ?E N oavn _:o:: _ :n?:_

?- = al®
a7 +3 2 (al®) - ala) ) [f(a®) = f(alo)) )] = (a® = ale) [f(a®) - \AQ?JH ae)

The above relation fails only if the three points are collinear. Brent’s method takes care of this situation
by shifting the search for the minimum to the Golden Section method [17] whenever necessary. Upon
(n)

ma..mﬁ:.:.:m the appropriate as, ' that minimizes f(z) in the search direction corresponding to iteration n,

Eqs. (11), (9), and (8) are used to update A, S, and z , respectively. If convergence has not been achieved,
the next iteration then starts with these updated values.

BEM and Sensitivity Analysis

The sensitivities, 81*/0z, in Eq. (10), are determined in this study using the boundary element method
(BEM). The compelling advantages of the BEM for sensitivity analysis have been demonstrated in,
Ref. [12], among others. The analytical formulation and numerical implementation considerations for
two-dimensional elastostatics sensitivity analysis considered here are available in Ref. [12] and are only
briefly discussed below.
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The BEM equations, starting from the Somigliana’s identity [18] for elastostatics and after discretization

using interpolation functions, are written in the matrix form as
[F]{u} = [G]{t} + {a} (15)

where [F] and [G] are the system matrices; {u} and {t} are the vectors of displacements and tractions,
respectively; and {q} is the vector of other influences such as body forces, etc. The implicit differentiation

of Eq. (15) with respect to the design variable, z, leads to
[F]{u}; = [G]{t} ; +[G] . {t} - [F] . {u} + {a}, (16)

where the subscript (,z) denotes differentiation with respect to z. The derivations of the matrices [F] and
[G] and their respective sensitivities as well as techniques for their numerical evaluations may be found in,
for example, Ref [12]. It is noted that the model vector, z, contains parameters that define the location,
the distribution, and the magnitude of the missing tractions. The sensitivities [F] , and [G] , exist only for
the components of z which are related to the location of the missing tractions. These matrix sensitivities
vanish for those component of z that are related to the magnitude of the applied loading. In the latter
case the sensitivities of {t} , in Eq. (16) are, however, non zero.

The sensitivities are obtained by first .mo?.m:m Eq. (15) for the unknown displacements and tractions,
substituting these quantities in Eq. (16), and finally solving Eq. (16) for the unknown displacement and
traction sensitivities. For the cases where strains and stresses are the measured quantities, the sensitivities
of strains and stresses may be obtained from the displacement and traction sensitivities obtained from

Eq. (16), following the procedure given by Kane and Saigal [19].

Example

A simply supported panel was considered to evaluate the effectiveness and the limitations of the formulation
presented here. The experimental measurements, &:: required in the ao_,B:Fso: were obtained from a
prior direct BEM analysis with the actual boundary tractions imposed on the structure. These boundary
tractions then also served as the "exact™ solutions for the purposes of comparison of the accuracy of the
present procedures. In this example, the measured quantities Pie are strains. The algorithm for the
minimization of the functional, f(z), in Eq. (6) proceeds in an iterative fashion and is considered to have
converged when two successive evaluations, f; and fa, of the functional are such that 2 | f; — f |<
éx (| fi| +| f2| 4%), where é is a prescribed tolerance and € is a small number to account for the special
case of converging to exactly zero function value. A value of ¢ = 1073 and € = 107® was used in the present
study. The weighting parameter, w, was selected such that wM >> ¢, where M is a typical magnitude of
the experimental data. In the present study, M ranges in magnitude from 1077 to 10%, and the parameter,
w, was accordingly chosen such that w x M = 10%. The geometric dimensions for the panel are shown
in Fig. 1. The panel is subjected to a normal stress with a .vwwwvo:n. distribution at its top edge. The
location, Z, of the parabolic distribution, the span, W, of the vvnwro_w“,. and the peak magnitude, P, of
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the parabola ate unknown and are desired to be reconstructed. The normal parabolic distribution may be

expressed as . |
eEnngﬂmm:mﬁﬁ%iwnmwml (17) <4
where s is the distance along the span of the parabola, and (Z - 0.5W) < s < (Z + 0.5W). The measured & m.. ) m
data consists of strains along the orthogonal z and y directions at 39 Jocations within the body. These : K =
locations are shown by cross symbols in Figure 3. The parameters P, W, and Z constitute the model vector, Z m M m o
z, for the present case. The initial guess for these parameters was selected as P = 500psi, W = 75in and g m m K 5 T2 M
Z = 50in. The evolution of the missing traction distribution, starting from this initial distribution, as m H M m %
the iterations in the present analysis proceed, is shown in Fig. 1. The exact traction distribution for this .M nm q o —wﬂ._M (o)
case js also shown in bold line in Fig. 1 for comparison and a good agreement is observed. As the missing / m - M m Wm uNua
tractions varied in position and span length after each iteration, the BEM mesh for the upper boundary m .m 9 p 2n WW\
edge was modified to accommodate such evolutions. Normally distributed random numbers were added to m M £ & Em
the experimental data to simulate experimental errors. The errors were considered to be uncorrelated, and 5 . 3 m © -« mmnu
were assumed 1o have a zero mean, and a constant variznce. The errors for stress in direction 1 are picked ] & . m
randomly, with a 99% probability, from the interval Aliw:+¢m.mv. where &; is the average of all strains . m W
along i in the strain data set. A higher value of # corresponds to larger measurement errors. The results BT W Mlu Mnn
were obtained for increasing values of 77 and are shown in Table 1 (inserted in Fig. 1). It is noted from _ n.lm M
these results that for the example studied, the proposed procedures are stable with respect to small errors ] m 2 0> < Wu M
in the experimental data. - s m o s bn e s @ — w .mm.
Z g BT
Conclusion : » [ zZw
- 3l ze 5 |5 {5 |5 [8[s o8
An optimization based integral formulation has been presented for the solution of inverse problems in = I~ S| |8 |8 |8 |8 |s]e Sk
elastostatics that involve the reconstruction of a missing or an inaccessible boundary data. The objective m e 5 12 12 |5 lsls m W
function used for the minimization in the optimization procedure was taken to be the square of the dif- w3l m w,u e |8 |g m m sle o -Qlu W
ference between a set of experimental measurements and their corresponding computed quantities. The m == 1= I+ Te = z - =} A.
minimization is performed using a variable metric method. The response sensitivities required in this algo- A z 218 |3 m m S m m an M
rithm are computed by an analytical approach by performing the implicit differentiation of the boundary m SEE R E P =l =0
integral equations. Using the present developments, a parabolic boundary tractions configurations, its loca- z |, < o.o vw .r 40 uo v.o v.o 5 m & mnv .ANln
. tion, extent of spread, and amplitude were closely predicted. The example demonstrated the validity of the 5% 818 8|% x|x x|x x|= .m 3 Ec
i present aproach to reconstruct boundary data from experimental measurements that may be contaminated ; =128 75|z SI8 512 818 $l.13l5 o MM
with usual order of experimental errors. The prime limitations of the present developments arise from: T .v... m m s<le sl sl s m W..h o mm
= () the optimization procedure may converge to a Jocal minimum especially for cases for which the initial T m 8 R R R R W m .m o m m
guess is far away from the actual boundary data, (b) the retraction of the step length to accommodate the m g e W 5 o_m s & M m
inequality constraints offers no rigorous guarantee of convergence. 2 m 5 P 3t 3 m ® M zI3 x |.. P w
slEE PPl R '3 "
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