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ABSTRACT '

The unreinforced masonry arch responds to horizontal ground acceleration as a four-link mechanisp,
The resulting governing equation is comparable to that of a single rocking block, with additional terns amj
with highly non-linear behavior resulting from the mechanism kinematics. A typical arch displays a high
excitation threshold. below which it is not excited, but it possesses relatively little resistance to eXCitationg
exceeding that threshold. A number of additional mechanics questions are outlined in this article.

INTRODUCTION

Figure | depicts a kinematically admissible motion for an arch as a planar four-link mechanism. yy,
assume the arch 1o be composed of rigid blocks, which possess no tensile strength, which are incompressible,
and which rotate without slipping at points A, B. C, and D); we believe this Lo be a reasonable charac Lerization
of voussoir masonry arch construction. We next assume that this mechanisim motion constitutes the responge
to horizontal ground acceleration. Examining Figure 1, the four-link mechanisin is a single DOF system ang
we choose as generalized co-ordinate the angle 6 measured to link AB. The original (unexcited) geotnetry
corresponds Lo a repose angle 0,; the sense of motion shown. for which 0 is less than 6,, would be initiateq
by a ground acceleration in the negative x-direction. In carhier work {1] a rectangular portal mechanism of
precast concrete construction was studied, and the behavior was described as a more-general case of t)e
dynaics displayed by the simple rocking block [2]. ‘The response of the arch as a four-link mechanism hag
recently been studied [3], and this paper now compares the mechanics to that of a single rocking block; and
discusses some additional mechanics questions which emerge.

ANALYSIS

The analysis is offered for an example part-circular arch with radius a to the middle surface. The equation
of motion for the system in Figure | is expressed as:

M(0)mad + L(8)ma®8® + F(8)ma’g = P(0)ma’i, )

Here m is the mass per unit length, and all coefficients M, L, F, P are non-linear in 6. The coefficient formed
by M can be interpreted as a generalized inertia multiplying the angular acceleration; it is highly non-linear
because of the changing mechanism geometry. The coefficient formed by L includes the effects of centrifugal
and coriolis accelerations, and further captures large contributions to thé generalized force resulting from
the changing mechanism geometry. The coefficient formed by F represents the generalized gravitational
force which the structure experiences at any displaced state, and in -equation (1) that generalized force is t
a function of @ but not a term in 4. Having chosen @ to be the generalized co-ordinate, the left-hand side
of equation (1) equals the external torque applied to link AB; mechanical engineers experienced with the
force-acceleration analysis of mechanisms, or with the dynamics equations for a robot manipulator, will
recognize the Lh.s. of equation (1) to constitute that same analysis. In this case the r.h.s. of equation (1)
constitutes the external generalized force (torque) resulting from horizontal ground acceleration; the forcing
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function is formed with ground acceleration Z4, which varies with time, and with coefficient P, which varies
with 8. Finally, we observe that equation (1) is continuous only for values of 6 less than 8,. For values of 8
greater than 6, a different mechanism geometry (not shown) will apply and a different governing equation
will be established, in the same manner with which a single rocking block changes its toes of rotation.

Numerical Example It is instructive to examine equation (1) with instantaneous (constant) values of its
coeflicients, forming a tangent approximation of system response at displacement state 6. When evaluated
at the repose angle, 0,, the resulting equation describes small rotations about the original geometry. We
examine a representative arch with a equal to 10m, thickness equal to 1.5m, angle of embrace equal to
7n/8, and hinge locations at central angle spacings of 37/8,7/4 and /4 measured clockwise from A to D.
(Note: This precise geometry is not the one portrayed in Figure 1, which depicts only generally the four-link
mechanism and the motion sense.) For such an arch the original geometry corresponds to 8, equal to 0.8972
radians. Cancelling the unit mass m from each term, equation (1) becomes:

43700 + 590000° — 867 = 239 i, (2)

We can also write equation (2) in terms of rotation ¢ measured with respect to the original geometry, defined
as (0, — 0), and the coefficient formed by F(8) can then be expressed as a Taylor series expansion about 8,.
Doing so, and also dividing by gravity, equation (2) becomes;

4456 + 60104* — 230¢ = —88.4 — 2393,/g ®)

The instantaneous form of the governing equation is meaningful only for a very small range of rotation; the
non-linearities in the coefficients, introduced by the mechanism kinematics, are far more pronounced than
in typical structural applications or in preceding studies of rigid block systems.

Enginecring Results 'Two results of engineering interest can be extracted. Examining the r.hs. of
cquation (3), we note that excitation (positive acceleration in ¢) commences only when the magnitude of
Iy, in the —r direction, exceeds 0.370g. This constitutes a threshold excitation, below which the structure
is not excited into mechanism motion. The threshold is observed o increase with greater arch thickness
and to decrcase with greater arch embrace, reflecting basic funicular arch behavior, and most practical arch
geometries will display a high acceleration threshold. In our opinion this threshold condition is one major
reason that masonry arches have withstood ground motion. Time-history analysis of the example arch [3)
then shows i1t to possess relatively little resistance to excitation once that threshold is exceeded, because the
mechanisin reaches a point of gravitational destabilization after relatively little rotation, about 0.07 radians
in this example.

COMPARISON TO THE ROCKING BLOCK

Equation (3), derived from equation (1), can be compared to the equation for simple rocking inotion of
a single block. The following observations can be made:
e For initial rotation from rest, for which & is zero, equation (3) is identical in form to that for a single
block. Equation (3) would correspond to a block with aspect ratio 0.37, rectangular dimensions 0.520m
by 1.045m, but with mass radius of gyration about the block centroid of 2.31m.

e Equation (3) is an instantaneous form of the governing equation, but it cannot be interpreted as a
lincarized form applicable over any useful range of motion, because the governing equation for the
four-link mechanism is highly non-linear. In contrast, for a single slender rocking block, a lincarized
equation can commonly be used as a reasonable npproximation throughout the range of motion.

e The inertia coeflicient for a single rocking block is a constant, independent of rotation, but the gener-
alized inertia coeflicient for the four-link mechanism captures kinematic conditions, and varies rapidly
with rotation 0. The single rocking block has no term in ¢2, but such a term is present for the four-link
mechanism, capturing coriolis and centrifugal effects, and its coelficient varies rapidly with rotation.
Finally, the terms resulting fromn gravitation and base excitation for a single rocking block involve
simple trigonometric quantities, allowing small-angle approximations, but the corresponding terms for
the four-link mechanism are again capturing full kinematic conditions and vary rapidly with rotation.

Other differences between the four-link mechanism and the rocking block are discussed in the next section.
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ADDITIONAL MECHANICS QUESTIONS

Establishment of Mechanism Geometry We commenced this analysis assuming, but not proving,
that the four-link mechanism characterizes arch response. Moreover, the masonry arch is constructed with
some greater number of voussoirs; each of the three rigid links in Figure 1 is therefore formed by multiple
voussoirs, requiring the assumption that within each such link the forces between voissours are resolved as

compressive resultants contained within the thickness of the masonry. Observations on these matters are
offered as follows:

e For any given arch there exist many different kinematically admissible four-link mechanisms; oy,
practice was to analyze the full set, and then select the mechanism forming at the lowest value of g,
as the governing one.

e The arguments were then tested with model experiments on a part-circular jointed voussoir arch iy
which the base plane was inclined to create an equivalent constant base acceleration. Inclination wag
increased until motion developed, and the predicted four-link mechanism was observed. We note tha
model experinents are inherently valid for rigid block structures. In particular. the threshold conditioy
for onset of mouion is identical in the scaled model as in the prototype.

e The force conditions at joiuts within each link could be monitored to trace the existence and persistence
of the four-link mechamsm. While the assumption of four-link mechanism motion is partly confirmed
above for initial motions, it seems certamn that the conditions could be violated during response 1o
excitation, implying that subsequent motion (and failure, most likely) would develop with additional
hinge formation. We have not yet performed such analyses.

o The force resultant within the masonry could be formulated analytically, and the initial ‘governing
mechanism could be identified by the extremal fit of that resultant within the masonry geometry.
This leads us to conclude that the forimation of the four-link imechanism may be a reasonable expected
outcome for the common arch geometries, but s certainly not a general imechanical principle for all rigid
body structures. It appears that geometnies could be found 10 produce any kinematically admissible
mechanism. Moreover, our study has considered only horizontal ground acceleration, and if vertical
excitation is icorporated then the mechamsim conditions can clearly be altered.

Pre-motion Conditions We assumed that the arch takes up the mechanism geometry at the onset of
motion, and no mention was made of motions, or state transitions, prior to that instant. llowever, prior to
excitation any such arch is in repose as a three-hinged arch, in a typical arch geometry there will be two
contact points at the intrados near the springing points, and one contact point at the extrados near the
crown. It s clear that some transitions must occur to bring the arch from that static geometry into the
four-link mechanisin kinematic geometry. It is possible that those early transitions have negligible influence
on subsequent response, hecause the change in energy (potential and kinetic) as such transitions occur may
Le negligible in a well-fitted arch, but that condition awaits study.

Sliding Iu this study sliding has been ignored. Where blocks meet at planar non-keyed joints, the internal
force can always be expressed as a tangential-normal force pair. In general the joint integrity is maintained
by friction, provided that the tangential-normal ratio is less than the friction coefficient. Analysis of sliding
requires the time history solution for that force pair at each joint. During dynamic response the tangential-
normal ratio will vary, and when it exceeds the friction coeflicient a sliding motion is possible. In principle the
equations of motion can be extended to include that additional degrec-of-fréedom, and numerical integration
will produce the time history of the resulting net inotion. When the tangential-normal ratio decreases and
drops below the friction coefficient the sliding motion halts. This appears to be reflected in many surviving
structures where a block is seen displaced (by sliding) from its-original position. Failure would occur if a
block were to slide beyond the gecometric limits of contact. Sliding can develop during rigid body motions,
under ground acceleration less than the excitation threshold, and does not require the formation of the four-
link mechansim motion. Finally, the local condition for sliding is a necessary but not a sufficient condition;
there must also be a kinematically admissible form for the sliding motion.
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Conditions at Impact The mechanism pictured in Figure 1 is kinematically admissible only for motion
in the sense shown. If the arch responds as a four-link mechanism, at some time it will return to its original
geometry but with non-zero kinetic energy. We assume its motion may continue, but with the formation
of a different mechanism geometry, kinematically admissible for the new sense of motion. This condition is
comparable to the establishment of a new toe of rotation for a single rocking block, and it contributes the
discontinuity which characterizes these problems. However, the conditions at impact for the arch mechanism
differ fundamentally from those observed for the single rocking block, in both theoretical and practical terms.
The major issues are outlined as follows:

o For the single rocking block, there exists a well-known theoretical argument for loss of kinetic energy at
impact. That argument results from the instantaneous establishment of a new toe of rotation with the
observation that the only external impulsive force is applied at that toe. The moment of momentum
is conserved about that toe, and therefore the velocity after impact can be calculated. For a four-link
mechanism, no such theoretical argument applies, because every body is a three-force body.

e In practical terms, we believe that an arch will display significant corner rounding (crushing, fracturing,
chamfering) at impact. In contrast, most single rocking blocks, such as tombstones, are relatively low in
nass, and the analyst may be justified in neglecting the effects on stone of corner rounding for impact
loadings of low magnitude. However, the arch possesses a total mass greater by orders of magnitude
than that in any single block, while the impact is still applied to a single stone. Therefore we expect
that the actual response of archies will be marked by significant corner rounding at impact, and that the
structure will therefore display a degrading geometry. This is an important and untouched problem,
but its study should await physical or experimental evidence of stone material behavior under corner
impacts.
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Figure 1. The Masonry Arch as a Four-Link Mcchanism
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