PREPARATION OF SAMARIUM-153-EDTMP: PREVIOUS RESULTS

Haroldo Taurian Gasiglia, Helena Okada Instinuto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) Caixa Postal 11049. CEP 05422-970. São Paulo/SP. Brasil.

SUMMARY.

Samarium-153-ethylenediaminetetramethylene phosphonate (153 Sm-EDTMP) has been proposed to palliate pain resulting from bone cancer. This paper describes the preparation of 153 Sm chloride with 4 to 8 mCi/ml, the ability of 153 Sm to complex with EDTMP in liquid and frozen dried forms. The evaluation of radiolabelled EDTMP is made with paper chromatographic system.

INTRODUCTION

Recent advances in targeted radiotherapy offer a new approach for the management of metastatic bone pain. A great part of the malady and mortality associated with cancer can be attributed to skeletal metastases [1].

Interest in employing radiopharmaceuticals for diagnosis and cancer therapy has increased and significant advances have been possible by combined developments in the fields of new chelates and of availability of a wider range of beta emitting nuclides [2].

Many different specific tumor-seeking radiopharmaceuticals are being applied both for diagnostic scintigraphy and treatment, using multiple routes and mechanisms to targe radionuclide at tumors [3].

Samarium-153 has favourable characteristics for imaging of its biological biodistribution with a principal gamma emission energy 0.103 MeV (28%) and for therapeutical use with the mean beta emission energy 0.227 MeV (100%). Samarium-153 has a half-life of 46.7 hrs [4].

46.7 hrs [4]. Among ¹⁵³Sm chelates, EDTMP has shown promise for the treatment of bone cancer. When ¹⁵³Sm is chelated to EDTMP, it forms in vitro and in vivo stable complex and it concentrates in bone tumors due to high metabolic avidity for phosphorous [5]

Approximately half of the injected dose of ¹⁵³Sm-EDTMP in rats, rabbits and dogs localizes in the skeleton, while the remainder is rapidly excreted into the urine with minimal uptake in nonosseous tissues. The physical half-life of 153Sm-EDTMP is 1.8 days [6].

METHODS AND MATERIALS PREPARATION OF ¹⁵³SAMARIUM CLORIDE

Two-four mg of natural samarium oxide (99.9% of rare earth content expressed as Sm_2O_3 , BHD) is converted to samarium nitrate by dissolving it in about 40-80 ul of 1 N nitric acid.

The sample is put into a high-purity quartz irradiation vial and evaporated to dryness, leaving a thin film of samarium nitrate fixed to the botton of the quartz vial. The quartz vial is flame-sealed and encapsulated in an aluminum container for irradiation.

The irradiation of samples takes place in the research reactor (IEA-R₁/IPEN). The available thermal flux is approximately $1.0*10E13 \text{ n/cm}^{2*}$ sec. A run time of 8 hrs is sufficient to produce the activity for our research.

After irradiation, the quartz vial is removed from its aluminium capsule. The sample is measured for 1^{53} Sm activity, transferred to a glove-box, broken, dissolved by heating in 2.0 ml of 0.1 N hydrochloric acid, and transferred to a glass vial. The 1^{53} SmCl₃ was

diluted to the appropriate volume with 0.1N hycrochloric acid to produce a stock solution (0.9 mg of Sm/ml) which was used for complex preparation.

PREPARATION OF ¹⁵³Sm-EDTMP

In basic medium, 153Sm-EDTMP can be readily prepared with a complexing yield not less than 97.5%.

a. EDTMP in solution

The 153 Sm-EDTMP was set up by adding 1.0 ml of 153 SmCl₃ (0,9 mg Sm) to 60 mg/1.5 ml EDTMP at pH 9 (molar ratio 1:23, Sm/EDTMP, w/w). The pH of reaction mixture was risen to 10-11 and placed in 60-70°C water bath for 30 min. After incubation the pH was adjusted to 7.5-8.

b. EDTMP in lyofilized form

A kit formulation consistes of 60 mg of hypphilized EDTMP titrated with base to pH=10.3. Addition of 1.7 ml of a 0.1N 153 Sm chloride solution (0.9 mg Sm) yields a solution with a pH of 7.5-8 (molar ratio 1:23,Sm/EDTMP,w/w).

QUALITY CONTROL OF ¹⁵³Sm-EDTMP

Chromatographic procedures: The radiochemical purity of 153Sm-EDTMP was performed using Whatman 3MM paper strips (1.5 cm x 13.0 cm) as support and two mixture of solvents, pyridine:ethanol:water (1:2:4, $\nu/\nu/\nu$) and ammonia:ethanol:water (0.1:2:4, $\nu/\nu/\nu$) as developing systems. The chromatograms were developed for a distance of 11.0cm. With the chromatographic procedures using ammonia:ethanol:water and pyridine:ethanol:water, 153Sm-EDTMP migrated in close proximity to the solvent front, whereas 153SmCl3 remained at the origin.

A rapid evaluation of free 153 Sm and 153 Sm-EDTMP was developed using a miniaturized chromatographic system with whatman 3MM paper strips (1.0 cm x 7.0 cm) as support and ammonia:ethanol:water (0.1:2:4, v/v/v) as solvent. The chromatograms were developed for a distance of 5.5cm. All the strips, between the spot point and front solvent, were cut in 0.5 cm and each piece counted in a well-type scintillation counter (ANSR gamma counter ABBOT LAB) with a 50-150 keV.

For a rapid and easy estimate of the radiochemical purity of 153 Sm-EDTMP, after setting up the distribution of radioactivity on the miniaturized cromatograms, the strips were cut in two portions

(section 1 and section 2).

STABILITY STUDY OF ¹⁵³Sm-EDTMP

The stability of 153-Sm-EDTMP for both preparations was tested for 8 days using a miniaturized chromatographic system.

RESULTS AND CONCLUSIONS

In basic medium, the EDTMP solution and frozen dried forms are readily complexed to 153Sm with yield not less than 97.5%. The complexing yields of both methods (n=6) evaluated by miniaturized chromatographic system were given in Table 1.

TABLE 1. % Complexing yields of ¹⁵³Sm-EDTMP.

$(1^{rst} day)$				
Labelling	ED	EDTMP		
n=6	in solution	kit formulation		
1	98.81	98.55		
2	98.35	98.23		
4	99.17	97.94		
5	99.04	98.47		
6	98.27	98.77		

The Fig. 1 shows the chromatographic behaviour of 153 SmEDTMP compared with that of 153 Sm chloride using Whatman 3MM paper strips (15x130mm) as support and pyridine:ethanol:water (1:2:4, v/v/v) and ammonia:ethanol:water (0.1:2:4, v/v/v) as developing solvent.

FIG 1 - Chromatographic behaviour of 153Sm-EDTMP and 153SmCl₃ by using Whatmann 3M strips (15x130 mm) and ammonia:ethanol:water and pyridine:ethanol:H₂O as solvent.

The distribution of radioactivity using a miniaturized chromatographic system with Whatman 3MM paper strips (10 x 70 mm) as support and ammonia:ethanol:water (0.1:2:4, $\nu/\nu/\nu$) as solvent is given in Fig 2. In the same figure, a rapid evaluation of free ¹⁵³Sm and ¹⁵³Sm-EDTMP by cutting the cromatograms in two sections is shown.

FIG 2 - Chromatographic behaviour of ¹⁵³Sm-EDTMP and ¹⁵³SmCl₃ by using Whatmann 3M strips (10x700 mm) and ammonia; ethanol:water.

Samarium-153-EDTMP was shown to be stable for at least 8 days after labelling by using EDTMP in solution or after reconstitutuion of the kits directly with 153Sm/HCl. Table 2 summarizes the stability of the final products.

TABLE 2.	153 _{Sm-ED7}	MP Stability	y Studies.
----------	-----------------------	--------------	------------

EDTMP					
Day	In solution (%)	Kit formulation (%)			
1	98.81	98.55			
2	98.05	98.26			
4	98.16	98.59			
8	98.12	98.80			

ACKNOWLEDGMENTS

We wish to thank M.Sc Felicitas M. Wirkner from IPEN/CNEN-SP for assistence in the graphical fitting and Dr. Mitiko Saiki from IPEN/CNEN-SP for Sm_2O_3 supply. This work was supported by Instituto de Pesquisas Energéticas e Nucleares/Comissão Nacional de Energia Nuclear-São Paulo (IPEN/CNEN-SP). The EDTMP was a gift from Monsanto do Brasil.

REFERENCES

[1]. Hoefnagel, C.A. Radionuclide therapy revised. Eur. J. Nucl. Med. 18:408-31, 1991

[2]. Lewington, V.J. Targeted radionuclide therapy for bone metastases. Eur. J. Nucl. Med. 20:66-74.

[3]. McEwan, A.J.B. Pain palliation and nuclear medicine. Eur. J. Nucl. Med. 20:1-3, 1993.

[4]. Volkert, W.E.; Goeckeler, W.F.; Ehrhardi, G.J.; Ketring, A.R. Therapeutic radionuclides: production and decay property considerations. J. Nucl. Med. 32:174-85, 1991.

[5]. Goeckeler, W.F.; Troutner, D.E.; Volkert, W.A.; Edwards, B.; Simon, J.; Wilson, D. 153Sm radiotherapeutic bone agents. Nucl. Med. Biol. 13(4):479-82, 1986. (Int. J. Radiat. Appl. Instrum. Part B.).

[6]. Farhanghi, M; Holmes, R.A.; Volkert, W.A.; Logan, K.W.; Singh, A. Samarium-153-EDTMP: Pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J. Nucl. Med. 33:1452-1458, 1992.