SÍNTESE POR COMBUSTÃO DO UAI_x: UM ESTUDO PRELIMINAR

Ricardo Mendes Leal Neto; José Mestnik Filho; Paulo Iris Ferreira INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES COMISSÃO NACIONAL DE ENERGIA NUCLEAR Caixa Postal 11049 - Pinheiros - 05422-970 - São Paulo - Brasil

RESUMO

Neste trabalho foi investigada uma rota alternativa à fusão para a obtenção da liga UAl_x , material destinado à fabricação de alvos de irradiação para a produção de ⁹⁹Mo no IPEN. O UAl_x , particularmente o UAl_3 , foi sintetizado a partir de uma reação de combustão entre pós de UH_3 e de Al. O processo consiste no aquecimento da mistura compactada desses pós até a temperatura em que a reação ocorre expontaneamente, e que neste caso foi inferior à temperatura de fusão do alumínio. As pastilhas de UAl_3 resultantes são porosas e friáveis, adequadas portanto à obtenção do pó do composto. Os resultados são apresentados e discutidos.

INTRODUÇÃO

As reações fortemente exotérmicas têm sido empregadas na síntese de uma grande variedade de materiais há mais de um século [1]. Nos últimos vinte anos, e particularmente na última década, verificou-se um aumento significativo do número de investigações práticas e teóricas sobre a chamada síntese por combustão. A sigla SHS ("Self-Propagating High-Temperature Synthesis), introduzida nos anos 70 pela escola soviética [2], passou a designar desde então este tipo de processamento. Um bom número de revisões disponível na literatura [3-8] atesta o interesse pelo assunto. A síntese de um determinado composto pode se promovida de duas maneiras. Na primeira delas, a reação química pode ser iniciada de modo localizado numa mistura de reagentes, autopropagando-se, em virtude de seu caráter exotérmico, através da mistura em questão. Já na "combustão simultânea" [8] os reagentes são aquecidos globalmente até a temperatura dita de ignição, a partir da qual a reação ocorre de maneira expontânea em toda a mistura. A combustão simultânea se faz imperativa no caso onde as reações envolvidas tem baixa exotermia, tornando dificil ou até impossível a autopropagação. É o que ocorre geralmente com reações entre metais, como aquelas verificadas na síntese de compostos ou fases intermetálicas [4].

Dentre as vantagens do processo SHS, como a elevada pureza dos produtos obtidos e a simplicidade do processo, a mais importante é, indubitavelmente, a autogeração de energia advinda da reação de síntese. A economia não é apenas energética, mas também infraestrutural, pois o processamento pode se conduzido em equipamentos mais simples e baratos. Tais vantagens compõem um dos fatores que motivaram a presente contribuição.

-A liga UAl_x

A liga intermetálica frequentemente denominada UAl_x é na verdade uma mistura de aluminetos de urânio, a saber, UAl_2 , UAl_3 , e UAl_4 , em proporções variáveis conforme a composição química e o método de processamento da liga. O material é usado tradicionalmente como combustível nuclear de reatores de pesquisa do tipo MTR. Geralmente, a liga é obtida com a predominância do UAl₃, uma vez que o UAl₂ é extremamente pirofórico e o UAl₄ possui o menor teor de urânio. No IPEN, o UAl_x foi escolhido, recentemente, para a fabricação de alvos de fissão destinados à produção de ⁹⁹Mo (a partir da reação 235U(n,f)⁹⁹Mo), radioisótopo necessário à geração de ⁹⁹mTc, de larga aplicação medicinal.

Convencionalmente, tais ligas têm sido produzidas por fusão a indução ou a arco sob atmosfera de gás inerte [9-12]. A fusão a indução é conduzida em cadinhos de material refratário, que se constituem numa potencial fonte de contaminação. Esta dificuldade é contornada no caso da fusão a arco, pois ela é conduzida em lingoteiras de cobre refrigeradas à água. A fusão da liga é realizada em temperaturas elevadas, da ordem de 1600°C. Uma vez que o UAl₃ se forma a partir de uma reação peritética (cuja cinética é baixa) durante o resfriamento, isto obriga, no caso da fusão a indução, um recozimento por um período longo em temperaturas abaixo da peritética -por exemplo, 1300°C durante 5 horas [9]- a fim de homogeneizar a liga. Na fusão a arco a homogeneização pode ser conseguida à custa de repetidas fusões [11]. Obtida a liga, há que se processar sua cominuição, pois a técnica adotada para a confecção dos alvos, similar a empregada na fabricação de placas combustíveis, baseia-se na metalurgia do pó [10]. Durante a cominuição as principais preocupações se referem à oxidação da liga, à natureza pirofórica dos pós em questão, e à geração de finos, esta última especialmente importante quando uma faixa granulométrica específica é requerida.

Em razão das dificuldades encontradas na fusão, métodos alternativos têm sido propostos [10,11,13-15]. A idéia central é produzir uma liga sem os inconvenientes da reação peritética ocorridos na fusão. O que se procura também é um processo mais simples e econômico, que contenha um menor número de etapas e/ou facilite a etapa final de obtenção do pó da liga. Um desses processos tem como material de partida o tetrafluoreto de urânio [10,11,14,15]. A partir do aquecimento de uma mistura de pós de UF₄ e Al, processa-se uma reação aluminotérmica que produz a liga UAl_x e o monofluoreto de alumínio, este último posteriormente evaporado por destilação a vácuo. Maiores detalhes deste processo poderão ser obtidos na referência 15. Um outro método é baseado na reação de combustão entre o urânio e o alumínio [10,11,13]. Os materiais de partida são os pós de hidreto de urânio, UH₃, e de Al. O UH₃ é utilizado, pois a hidretação do urânio é a maneira mais simples e eficiente de obtê-lo na forma pulverulenta. A mistura dos pós é inicialmente aquecida sob vácuo até cerca de 300°C, para permitir a decomposição do UH3. Segue-se um aquecimento até cerca de 600°C, quando ocorre a reação, produzindo o alumineto em questão com elevada pureza. Alguns autores sugerem um tratamento térmico adicional a 1300°C durante 13 horas [13].

Com o objetivo de se ampliar o leque de alternativas de obtenção de UAI_x no IPEN, o presente trabalho propõe a síntese por combustão a partir do UH₃ e Al. Este método têm sido apenas brevemente comentado na literatura, o que também justifica a presente contribuição, a fim de que se possa conhecer melhor as variáveis e difilculdades envolvidas no processo.

Figura 1 - Micrografias eletrônicas de varredura dos pós de hidreto de urânio (a) e de alumínio (b).

TRABALHO EXPERIMENTAL

Primeiramente realizou-se a hidretação do urânio metálico natural. O material utilizado estava na forma de barras de 12,5 mm de diâmetro. Foram hidretadas pequenas amostras destas barras pesando não mais do que 50 gramas. Para a remoção da camada de óxido superficial, as amostras foram imersas num banho de ácido nítrico, seguido de uma lavagem em água e depois acetona para facilitar a secagem. A hidretação foi conduzida num equipamento de laboratório destinado à hidrogenação controlada de pequenas amostras. Como câmara de hidretação empregou-se uma retorta cilíndrica de aço inoxidável inserida num forno resistivo tubular posicionado na vertical. O procedimento geral de hidretação consistiu-se das seguintes etapas:

- a) Purga do recipiente com o auxílio de um sistema de vácuo (bomba mecânica e difusora) e injeção intermitente de hidrogênio;
- b) Injeção de hidrogênio (até no máximo 200 kPa) seguido de aquecimento até 300°C à taxa de 10°C/min;
- c) Manutenção da temperatura com injeções intermitentes de 100 a 200 kPa de hidrogênio enquanto se observasse a sua absorção pela amostra;
- d) Resfriamento mediante extração da retorta do interior do forno,
- e) Purga do sistema com argônio e retirada da amostra hidretada.

Como produto de hidretação obteve-se um material inteiramente pulverulento. A microscopia eletrônica de varredura (Figura la) revelou um pó constituído de partículas extremamente finas e menores do que 10 μ m. A difração de raios-X comprovou se tratar do UH₃. A análise térmica diferencial do hidreto foi conduzida sob um fluxo de argônio.

O pó de aluminio utilizado (ALCOA tipo 123) foi obtido por atomização gasosa e é constituído por partículas passantes na peneira de malha 325 mesh (< 44 μ m), possuindo uma forma arredondada, como mostrado na .Figura 1b. Os pós de hidreto de urânio e alumínio foram inicialmente pesados na proporção estequiométrica para a obtenção do UAl₃. As amostras, com massas de 4 e 8g, foram preparadas individualmente. A mistura foi realizada ao ar num misturador Turbula® a 35 rpm durante 10 minutos. As amostras foram compactadas uniaxialmente em matriz cilíndrica ($\emptyset = 14$ mm) com 200 MPa de pressão, obtendo-se cerca de 60 % da densidade teórica. A análise térmica diferencial foi efetuada em fragmentos de uma das amostras compactadas (fluxo de argônio).

A combustão foi realizada sob vácuo $(10^{-2} \text{ a } 10^{-3} \text{ Pa})$. Empregou-se como retorta um um tubo de quartzo fechado em uma das extremidades. Para o aquecimento foi utilizado um forno resistivo tubular. Quatro experimentos foram realizados segundo o ciclo térmico adotado, a saber:

- Aquecimento a uma taxa de 15°C/min até 1000°C resfriamento forçado mediante retirada do tubo de quartzo do interior do forno;
- Aquecimento à razão de 5°C/min até 250°C patamar de 30 minutos - reaquecimento à razão de 5°C/min até 400°C patamar de 4 horas - reaquecimento à razão de 15°C/min até 1000°C - resfriamento forçado;
- Aquecimento à razão de 5°C/min até 250°C patamar de 30 minutos - reaquecimento à razão de 5°C/min até 500°C patamar de 4 horas - reaquecimento à razão de 15°C/min até 900°C - resfriamento forçado;
- 4. Aquecimento à razão de 5°C/min até 250°C patamar de 30 minutos reaquecimento à razão de 5°C/min até 500°C patamar de 4 horas reaquecimento à razão de 15°C/min até 700°C patamar de 1 hora resfriamento forçado;

O primeiro patamar isotérmico (250°C), realizado nos experimentos 2, 3 e 4, foi efetuado porque a partir desta temperatura registrava-se uma queda acentuda do nível de vácuo, que chegava a tingir uma pressão superior a 10 Pa. O tempo de 30 minutos era o suficiente para que o nível de vácuo fosse restabelecido.

As pastilhas reagidas tiveram sua densidade determinada geometricamente. As fases presentes foram identificadas por difratometria de raios-X (radiação do $Cu_{k\alpha}$). A espectroscopia de energia dispersiva (EDS) foi utilizada na determinação da composição química média e de microrregiões da seção transversal polida das amostras.

RESULTADOS E DISCUSSÃO

Na Figura 2 são apresentados os resultados da análise térmica diferencial do hidreto de urânio e da mistura UH₃-Al. A comparação das duas curvas evidencia que o primeiro pico endotérmico é relativo ao UH₃. Pode-se afirmar que este pico se refere à dissociação do hidreto, pois a temperatura medida está em concordância com a queda do vácuo observada durante o aquecimento das amostras. Além disso, a dissociação do hidreto é endotérmica, uma vez que a hidretação do urânio é um processo exotérmico [16]. Alguma diferença entre as temperaturas de dissociação, verificadas na análise térmica diferencial e nas experiências realizadas, já era esperada em virtude das diferentes atmosferas empregadas em cada caso, ou seja, argônio (pressão ambiente) e vácuo, respectivamente. O segundo pico, exotérmico, certamente se refere à reação de combustão entre o urânio e o

Figura 2 - Análise térmica diferencial (atmosfera de argônio) do pó de hidreto de urânio (a) e da mistura UH₃-Al (b).

Experimento	1	2	3	4
Massa do compactado	4g	4g	4g	8g
T. ignição	não observada	não observada	não observada	620°C
$\Delta V = \frac{\rho_r - \rho_r}{\rho_r}$	não medida	- 8%	- 15%	- 12%
Fases presentes (DRX)	UAl ₃ (M) UH ₃ (m) ? (m)	UAl ₃ (M) UH ₃ (m)	UAl ₃ (M) UH ₃ (m)	UAl ₃ (M) UH ₃ (m) ? (m)

alumínio. Nota-se que o intervalo de temperatura associado à reação é bem estreito, ao contrário do observado na dissociação do hidreto.

Na Tabela I estão sumarizados os resultados obtidos quanto à temperatura de ignição, variação volumétrica e fases presentes nas pastilhas reagidas, conforme o experimento realizado.

A reação só foi observada no experimento 4, provavelmente em razão da maior massa do compactado (8g). O fato de que a reação não foi observada nos demais experimentos, não significa necessariamente que ela não ocorreu. É preciso considerar que, na verdade, a reação não é intensa e a elevação da temperatura da amostra dura apenas alguns segundos, o que dificulta a visualização. Além disso, as perdas térmicas em uma amostra de menor massa (e de menores dimensões, neste caso) são maiores, diminuindo a temperatura máxima atingida durante a reação.

Todas as pastilhas apresentaram um expansão volumétrica, ou seja, uma variação em volume negativa, conforme definido na Tabela I. No experimento I, onde não houve patamar de desidretação, a pastilha não pôde ser medida, uma vez que sua integridade ficou um tanto comprometida, dado o excessivo inchamento e o grande número de fissuras. Tal fato pode ser atribuído à expulsão do hidrogênio durante e mesmo após a reação, uma vez que a desidretação antes da combustão deve ter sido incompleta. Nos demais experimentos, onde houve um tratamento para permitir a desidretação antes da combustão, a expansão volumétrica foi menor. As razões para a falta de densificação são várias. Primeiramente, deve ser considerada a possibilidade de que mesmo após a desidretação haja um certo teor de hidrogênio que, ao ser expulso durante a reação, prejudicaria a contração da pastilha. Em segundo lugar, outros fatores podem contribuir para a geração de poros, como o efeito Kirkendall e a variação de volume molar entre os reagentes e o produto [6,8]. Por último, variáveis não estudadas aqui, como a distribuição granulométrica dos pós reagentes, a densidade a verde e a velocidade de aquecimento influem no modo como ocorre a reação e, portanto, a densificação.

Legenda:

- ΔV = variação volumétrica ρ_r = densidade da pastilha reagida
- ρ_v = densidade do compactado a verde
- M = fase majoritária
- m = fase minoritária
- ? = fase não identificada

A difração de raios-X revelou a presença do UAl₃ em todas as pastilhas reagidas (Figura 3), não sendo detectada a formação de qualquer outro intermetálico do sistema U-Al. Nota-se a presença de picos de UH₃, mais pronunciados nos difratogramas das Figuras 3a e 3b (exp. 1 e 2) e menos intensos nas Figuras 3c e 3d (exp. 3 e 4). As maiores temperaturas de desgaseificação empregadas nos exp. 3 e 4 em relação ao exp.2 podem explicar o menor teor de UH₃ presentes nas pastilhas reagidas. Na pastilha do exp. 1, o maior teor de UH₃ é explicado pela não realização de um tratamento térmico

Tabela I - Massa inicial, temperatura de ignição, variação volumétrica e fases presentes nos experimentos I, 2, 3 e 4.

Figura 3 - Difratogramas de raios-X referentes às pastilhas reagidas nos experimentos 1 (a), 2 (b), 3 (c) e 4 (d).

prolongado para a desidretação. Algus picos de difração de baixa intensidade, observados nos difratogramas da Figura 3a (exp. 1) e 3d (exp. 4) não puderam até momento ser associados à alguma fase conhecida.

A porosidade típica de uma pastilha reagida pode ser observada na micrografia eletrônica de varredura da Figura 4 (exp. 3). Observa-se a presença de poros maiores, provavelmente interconectados, bem como poros bastante finos. Tal porosidade permite que as pastilhas sejam facilmente cominuídas, o que representa uma vantagem do ponto de vista de obtenção do pó de UAI₃. O teor de urânio e alumínio determinados por EDS foram da ordem de 27 e 73 % at., respectivamente, bastante próximos portanto da estequiometria do UAI₃ (exp. 2, 3, e 4). Valores semelhantes foram determinados tanto na análise da composição média de grandes áreas, como de microregiões das pastilhas, o que é uma indicação da homogeneidade das pastilhas. Logo não foi necessário a realização de qualquer tratamento térmico em temperaturas elevadas, conforme aquele efetuado por outros autores [13] no processamento de amostras maiores (500g).

COMENTÁRIOS FINAIS

Este trabalho comprovou que a síntese do UAl₃ via reação de combustão, a partir dos pós de UH₃ e Al, é um processo relativamente simples. O UAl₃ pode ser obtido em baixas temperaturas, exigindo, portanto, equipamentos de baixo custo. A presença de UH₃ e de outras fases não identificadas nas pastilhas reagidas, embora em pequenas quantidades, deverá ser melhor avaliada e eliminada.

Figura 4 - Micrografia eletrônica de varredura (el. retroespalhados) da seção transversal da pastilha reagida no experimento 3.

Investigações futuras se fazem necessárias para o devido controle da síntese por combustão, mediante a variação de parâmetros pertinentes (tamanho de partícula dos reagentes, densidade a verde do compactado e velocidade de aquecimento). Amostras de maior massa deverão ser processadas, não apenas para que se verifique o efeito da massa na reação, mas também para que se obtenha uma quantidade de pó significativa e mais apropriada para a caracterização.

AGRADECIMENTOS

Os autores agradecem ao MSc. Osvaldo Júlio Júnior e ao Dr. Sadamu Koshimizu pela cessão de amostras de urânio metálico.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] HLAVACEK, V. Combustion Synthesis: A Historical Perspective. Ceramic Bulletin, 70, (2): 240-43, 1991.

[2] MERZHANOV, A. G.; BOROVINSKAYA, I. P. Self-Propagating High-Temperature Synthesis of Refractory Inorganic Compounds. **Dokl. Akad. Nauk. SSSR (chem.)**, 204: 429-32, 1972.

[3] MUNIR, Z.A. Synthesis of High Temperature Materials by Self-Propagating Combustion Methods. **Ceramic Bulletin**, 67, (2): 342-49, 1988.

[4] MUNIR, Z.A.; ANSELMI-TAMBURINI, U. Self-Propagating Exothermic Reactions: The Synthesis of High-Temperature Materials by Combustion. Materials Science Reports, 3: 277-365, 1989.

[5] RICE, R. W. Microstructural Aspects of Fabricating Bodies by Self-Propagating Synthesis. Journal of Materials Science, 26: 6533-41, 1991.

[6] SUBRAMANYAM, J.; VIJAYKUMAR, M. Self-Propagating High-Temperature Synthesis. Journal of Materials Science, 27: 6249-73, 1992.

[7] MERZHANOV, A. G. Self-Propagating High-Temperature Synthesis and Powder Metallurgy: Units of Goals and Competition of Principles. In: **Proceedings of the 1992 Powder Metallurgy World Congress** (San Francisco, CA, USA, June 21-26, 1992). Princeton, MPIF - APMI, 1992, Vol. 9, p. 341-68. [8] MUNIR, Z.A. The Synthesis and Consolidation of Powders by Self-Propagating Combustion Methods. Reviews in Particulate Materials, 1: 41-74, 1993.

[9] NAZARÉ, S., ONDRACEK, G., THUMMLER, F. Investigations on UAl_x-Al Dispersion Fuels for High-Flux Reactors. Journal Nuclear Materials, 56: 251-59, 1975.

[10] GIBSON, G. W.; deBOISBLANC, D. R. The Use of Uranium Aluminide Powders in Nuclear Reactors Fuel Elements. In: Modern Developments in Powder Metallurgy, Hausner, H. H. (ed.), New York, Plenum Press, Vol. 3, p. 26-35.

[11] THÜMMLER, F.; NAZARÉ, S.; ONDRACEK, G. The Technology of UAl₃-Al Irradiation Test-Plates. **Powder** Metallurgy, 10 (20): 264-87, 1967.

[12] PASCHOAL, J. O. A., PEREIRA NETO, V., KESTENBACH, H. J. Placas de Combustível por dispersão de UAl_x-Al. In: Anais do 3°Congresso Brasileiro de Engenharia e Ciência dos Materiais (Rio de Janeiro, RJ, Brasil, Dezembro, 1978) Rio de Janeiro, COPPE/UFRJ, 1978, p. G1.1-1.10.

[13] EDING, H. J.; CARR, E. M. High Purity Uranium Compounds. Illinois, Argonne National Laboratory, 1961. (ANL-6339).

[14] SAMEH, A. A.; ACHE, H. J. Production Techniques of Fission Molybdenum-99. Radioquimica Acta, 41: 65-72, 1987.

[15] LIMA, W. C.; FERREIRA, P. I.; LAINETTI, P. E. O. Obtenção do Composto UAl_x por Redução-Destilação do UF₄ com Alumínio. In: Anais do V Congresso Geral de Energia Nuclear (Rio de janeiro, RJ, Brasil, 29 de Agosto a 2 de Setembro, 1994). Rio de Janeiro, ABEN. A ser publicado.

[16] MULLER, W. M.; BLACKLEDGE, J. P.; LIBOWITZ, G. G. Metal Hydrides. New York, Academic Press, 1968, 791p.

ABSTRACT

The intent of this work is to verify an alternative route for obtaining UAl_x alloy. This material was chosen to be used in irradiation targets for ⁹⁹Mo production. UAl_x was synthesized from a reaction between uranium hydride (UH_3) and aluminum powders. The powders were weighted according to UAl_3 stoichiometry. The process starts with heating a compacted powder mixture, allowing dehydration and reheating until the onset of the combustion. The reaction was seen to happen at a lower temperature than melting point of aluminum. Reacted UAl_3 pellets are easily friable, therefore good for powder production, which is necessary for UAl_3 -Al dispersion core fabrication. The results are presented and discussed.