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Abstract— This work reports experimental and theoretical 
results from research into X-band traveling-wave tube amplifier 
design. A suitable microwave slow-wave circuit is 
investigated through the solution of dispersion equation. 
For this end a numerical solution for dispersion equation, 
following the Pierce approach, has been carried on and a 
mean gain of 20 dB has been obtained. The cathode 
perveance measured is 0.2 gerveance and the life time of 
the cathode is also investigated and reported in this work. 
The dependence of the traveling-wave tube gain as 
function of the microwave frequency at X-band is also 
investigated. 

Key tvords— Traveling wave tube, microwave electron devices, 
microwave tubes, thermoionic cathode. 

I. INTRODUCTION 

It is well known that the traveling-wave tube amplifier 
(TWT) has a property of a relatively constant gain over an 
octave of frequency or band of operation. The use of TWT is 
very attractive when compared with the use the other 
microwave tubes like klystrons and magnetrons. TWT are 
largely used in telecommunication links, satellites 
communication and radar systems. The TWT features come 
from of its particular mechanism of interaction of electron 
beam with the slow-wave structure. A general suitable slow-
wave structure is obtained from a helix tape. As a helix tape 
is not a tuned circuit. TWT is considered a broad band 
device. In addition, the slow-wave structure is able to reduce 
the phase velocity of the electromagnetic making it equal to 
the velocity of the electron beam. This effect increases the 
interaction parameter between the electromagnetic field and 
the electron beam, so these TWT features provide devices 
with gains of 30 to 50 dB over a broad band in frequency. 

In this work we describe the design and performance of a 
X-band traveling wave tube amplifier that has been 
developed is our laboratory at Centro Tecnológico da 
Marinha em São Paulo, (CTMSP). It is investigated a suitable 
microwave slow-wave circuit through the solution of the 
dispersion equation. The cathode life time and cathode 
perveance is also investigated and reported The dependence 
of the TWT gain as function of the microwave frequency at 
X-band was also investigated. 

teik@if.usp.br . pascholati@ifusp.br , Tel 55-11-8177142. Fax 55-11- 
8144695: ccmotta@net.ipen.br , Tel. 55-11-8177256. Fax 55-11-8144695. 

This work has been supported in part by Fundação Amparo Pesquisa do 
Estado de Sao Paulo (FAPESP), proc. number 99/06087-1. 

This paper is organized as follows: In Section II. a TWT 
theory amplification following a linearized model is outlined. 
In Section III, a solution of dispersion equation TWT helix in 
presented. In Section IV, the major cathode termoionic 
features are discussed. In Section V, the general results of 
TWT performance are shown. Conclusions are found in 
Section VI. 

TVVT AMPLIFICATION THEORY 

The interaction between the electromagnetic field sustained 
by TWT helix and the electron beam that moves away from 
the cathode region toward to the collector can be adequatek 
described by Lorentz force as the resultant force in the 
motion equation I1)-[3), 

—+ (v • Vdpi-t, = n ee[k + (-% x 
[:( 

(1 ) 

where -■*,, is the electron beam velocity, p, is the charge 
density, Ile is the electron number density, me is the electron 
mass, e is the electron charge. The electric and magnetic 
fields are denoted by E and È • respectively. Equation (1) 
can be linearized by using the perturbation theory. i. e.. the 
time dependent quantities can be considered as a small 
variation around the dc values. These values are represented 
by subscript O. So for this purpose one can write. 

(?,t) 	+ V(?,/), (2) 

Pr (F. t) = Po + 	, 
, 	= Bo + T3(1-- , 	, 

(3) 
(4) 

1, (I- , 	= jo + 	(F (5) 

where 3, is the total beam density current. Under this 
hypothesis, the first-order linearized motion beam equation 
(1) becomes 

— + ( v V )] = - ---e [E- + ( x )1 . 

[:( - 	 me 

For the cylindric beam under consideration, Do, the magnetic 
field produced by the external solenoid. with the purpose of 
avoiding the radial electron beam dispersion, can be 

• ) 

1'01 

/1, 

as 
da 

os 
os 
da 

os 
te. 

CS 

é 
ns 

C 

-1 

al 
io 

o 
-a 
.s 

, 

'Id 
)); 

Pierce Model for TWT Gain Analysis and 
Experimental Measurements 

Claudio C. Motta, 
Centro Tecnológico da Marinha em São Paulo. CTMSP. Av. Prof. Lineu Prestes 2242. Ski Paulo - SP - 05508.900 

Eik Tenório and Paulo R. Pascholati 
Laboratório do Acelarador Linear. LAL. IFUSP, Rua do Matio. Travessa R 187. Sio Paulo - SP - 05508.900 

(6) 

237 
	 coo 



Considering the z dependence expressed in terms of 
exp(—A3z), (10) becomes 

a2 	 a2 
A +--A +--A +(k2, —132)A, =—p0J,(11) ap2 	p 	z p 2 42 z 

considered as large enough so the transverse components of 
V, must vanish, and the term V x 	in the (6) will also 
vanish. Thus 	has a component in the z direction only. In 
addition, under the assumption of a time dependence 
expressed in terms of exp( jwf) where o = 2rcf is the 
angular frequency, (6) gives, 

Dv 	e 
jwv, + vo 	= — E,. 

az 	me (7) 

If V has only a z component. the current density It = piVi, 

with its two parts ,70 = paVo and = p-V-0 — poV having only 
a z component also. Furthermore 3 and p are related by the 
continuity equation that under the time dependence expressed 
in terms of exp( jwt) becomes 

DJ, 
+

.
03p = O. 

az 

Using (7) and (8) one can to express J, as a E, function. 
Since we are looking for a wave solution. we may assume 
that all small quantities have a z dependence in terms of 
exp(— jl3z), so one finds that 
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where co p = (n,e1 emear2 .s the plasma 

Po = u.) /y0 is the dc propagation constant for 
beam and E, is the electric permittivity of vacuum. 
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Figure 1 - A tape helix. p is the helix pitch. tit is the pitch angle. a is the tape 
helix radius and b is die inner radius of circular waveguide. 

The electric and magnetic fields in a slow-wave structure can 
be suitably described by the the magnetic vector potential A- . 
The magnetic vector potential satisfies the non-homogenic 
vetorial Helmholtz equation, 

V2;1+k,2,,1=-1.t.„3 	 (10) 

where ko= uljp.,E,, and go is the magnetic permeability of  
vacuum. The vector potential has only a z component due to 
the fact that the density beam current has only a z component. 

for the helix inner region, 0 p 5_ a , where p is the radial 

coordinate, and a is the radius tape helix. The helix is 
considered as thickness. b is the inner radius of the circular 
waveguide. If (9) is used to solve Jz , then (10) can be 
written as 

a 2 	
1

—
a

A, A +- 
1 	a 

Az+ p2A, 

fl 

P 0 

)2 

=0 	(12) 

(13) 

ap2 	z 	P aP 
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(i) 0 — 13 

For the region between the helix outer region and the circular 
wave guide, a 5. p b, J,=0, so that the Helmholtz 

equation for A, is written as 

a 2 	
1 a 

A +-- A +— —
a2

A +(k„z —0.2)A,=0 	(14) 
ap" P aP z 	a(P2 

The same equation is valid to the inner region of the tape 
helix without beam. 

Equations (11) and (12) have to be solved with suitable 
boundary conditions. The helix is considered as a sheath 
helix that is an approximate model of a tape helix. The tape 
helix, see Fig. 1, consists of a tape wound into a helical 
structure. The pitch is denoted by p. and the pitch angle by vv. 
If the spacing between turns and the tape width are made to 
approach zero, the resultant structure becomes electrically 
smooth. At the boundary surface (p = a ) the boundary 
conditions for the electric field may be considered to be that 
the conductivity in the direction parallel to the tape is infinite 
(a, = ) whereas that in the direction perpendicular to the 

tape is zero (o-, = 0 ). The use of these boundary conditions 
allows us obtain a solution for the electromagnetic field 
guided by the helix. This anisotropic conducting cylinder 
model of a tape helix is called the sheath helix. The field 
solution shows that the sheath helix supports a slow wave 
with a phase velocity v p csinur , where c is the light 
velocity. 

Without electron beam in the inner region of helix. the 
field solution for the helix consists of both TE and TM modes 
since these are coupled together by the boundary conditions 
at p = a . Along the direction of the tape, the tangential 
electric field must vanish, since a „ 	; thus 

(8) 

(9) 

frequency, 

the electron 
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Er, cos W + 	sen -= E ,2 cos + Ep2 sen 
	

(15) 

where the subscripts 1 and 2 refer to the field components in 
the two regions 05p5a and a5p5b. The component of 
the electric field on the cylindrical surface (p = a) that is 
perpendicular to the tape, must be continuous since a, = 0 in 

this direction. Hence 

Ei, cos IF - go, sen = E„ cos - Eo, sen 

The component of it tangential to the tape must also be 
continuous since no current flows perpendicular to the tape, 
so a third boundary condition is 

H,,, cost!' + II„ sen = 11,2 COST + H„ sen 	(17) 

Suitable expansions for the A, in the two regions can be 

%%ritten as 

4, (13, 	= 	a „E"' 1 „ (hp)e-flz to 0 5 p 5 a 	(18)  

for A, is proportional to I,(hp) and since E, is proportional 

to A, , we can choose 

E, = aoI0(gp)e-m 	 (21) 

where ao is an amplitude constant. The field components 

E, and Hip can be found from Maxwell's equation. 

Thus the expressions for the fields in the regions 
0 5 p 5 a and a. p b for the axially symmetric case are: 
For the TM modes 
i) 0 p 5 a 

= aolo(hp)e--43z 

Ep=.11-2/ii-a„1,(gp)e--113z 

H =-"ft°11° a I (gP)e -A3z 
9 	h 	° 

(16) 	= 	
j13 DE, 

and 119.—
ko 

YoEp 
132 	ap 

4; (p,cp, z) = 	b„e-in° K „ (hp) e- to a 5 p 5 b 	09) 	ii) 	p b 

where 1 o(hp) and K,, (hp) are the modificated Bessel's 
functions [101. The electric and magnetic fields components 
for the TE and TM mode can be obtained from (17) and (18). 
In the presence of an electron beam that propagates in 
direction of the helix axis, and for an electron beam with 
axially confined flow, where only a z component of velocity 
is permitted, the TE modes, 0 5. p 5 a region, are not affected 
bv the electron beam since these have E, =0 , and then they 
are the same the ones that exist without a beam. For the 
asp5b, region the TE and TM modes are the same modes 
in view that in this region there is no beam. On the other 
hand, the TM mode in 0 p 5 a will have its eigenvalues 
Oven by (13). In view of that fact, we are trying to find a 
.Aave solution that corresponds to a growing wave, in which 

eigenvalue p2 will turn out negative and it will be 

replaced by - 	 , so 

,g2 = (132 - k:)[1-(-(1) )2(  Í3°  )21 
130 —13 

(20) 

For the sheath-helix model it is possible to find a solution 
for a field that satisfies the boundary conditions (16) through 
IS) for each integer n. For the present, we are interested in 
he solution n= 0, which has circular symmetry. The solution 

= boK. (hP)e-1131 

Ep = 	boK,(hp)e--Ali 

H =-ic°11° b K, (hp) e-A31 
h 	° " 

For TE modes 
i) 0 p 5 a 

Hz= colo(hp)e--432 

Hp =4-3 col,(hp)e-fiz 

E --fall°  c I (hp)e-ffi'' 
``' 	h 	° 

ii)a5p5b 

Hi= c1„Ko(hp)e-J13z 

H 	d K,(hp)e--)9: 
° 	h 	" 

	doK, (hp)e-rn 

where the eigenvalue is 112 =IV 	. 

(22) 

(23) 

(24) 

(25) 

(26) 
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and 

(ha)2 = (I3a)2 –(koa)2 . 	 (37) 
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Figure 2. Dispersion equation solution 

The boundary conditions at p = a for the sheath helix 	conditions when used with (22) through (33) together will 
model are given by (15) through (17). These boundary 

	result in the following homogeneous equation system 

0 

K.(ha)siny 

– Ko(ha)cosy 

iwc°g K (ha)cosy 
h 

I.(ga)cosy 

A,(ga)cosy 

-ftne°g  I (ga)cosy 
h2 

It 
c, 

cf„ 

(0` 
0 
0 

(34) 

I,(ga)cosy 	0 
h 

cow 0 	 K,(ha) 
h 

*Pt. Ki(ha)sinw A (ga)snv 
h 	 h 

(ha)siny 	– K.(ha)siny 

For a nontrivial solution the determinant (34) must vanish. 
So, equating the determinant to zero gives the following 
equation dispersion 

I, (ga) 	(ha)  3 tan2  [  /. (ha)  K (ha)] 	K, (ha) 
(ga) 	 +  ° 	(ha) 

I.(ga) 	(koa)z 	I, (ha) K , (ha) 	K o (ha) 

(35) 
where the eigenvalues g and h are related by 

	

2 	a 	2 

(ga)2 = (ha)2[1–(–L -(1) )(-2--."–j], 
0) 	Do —  

so that (35) can now be solved by 
solution of (36) is shown in Fig.2. 

0.41 

0.36 

0.31 

>'0.26 

0.21 

0.16 

(36) 

iterative methods. The 

III. DISPERSION EQUATION SOLUTION 

In this section is presented a solution of the dispersion 
equation for the helix structure. In order to solve the 
transcendental dispersion equation (35), the following 
approach is adopted. Since we are dealing with a slow-wave 
system, the square of propagation constant II' will be large 

when compared with k02, so h2 	Additionally we 

assume that 0 =NO+ 8) where 5 is a small complex 
'quantity. With this hypothesis, we can obtain a suitable 
complex propagation constant that corresponds to a growing 
wave. We choose 8 as 

5, = –
1 (
-
0),, ji 

4 	co 

1 Lo 
8 2 = 4 	co 

(1+ j 

2 

/45) 

, 

• 

(38) 

(39) 

1 ( 	\ 4 

so that 82 = 8 8 = – kto Ico)i . It can be seen that with this 
" 4 ° 

chosen 52 is a small quantity, because co « co. Therefore 

(36) can be wntten as 

Í 	

4 

0) 1-3- 
1ga) 3 = (ha)2 1– 4(--1- 	, 

to 

A third root for 5 can be seen to be 53 = (1/ 2kop/coS , and 

the correspondent propagation constants are 

[ 	
z 

01 = 013 1+-1 (—P–(113 (1–J'a , 4 co 

[ 	

2 

P 2 = 0 0 1 + —1 (-2–(13 13- 0 + iNri) • 4 co 

03 =00[1-1H-" T2 I, 
2 co 

and the growth constant a g is, by (37), given by 
2 

(0) p 
ag = Po — — • 4 	co 

TWT CATHODE 

The approach used to design the TWT cathode is based on 
Pierce [4]. A numerical code based on Poisson equation and 
integration of electron motion equation was developed to 
carry on the electron path. In Fig. 3 is shown the perveance 
cathode curve of the TVVT cathode [9]. (40) 

(41) 

(42) 

(43) 

(44) 
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Figure 3 Cathode perveance curve. 

Further details for the cathode design, cathode oxide and 
ultra high vacuum experimental techniques can be found 
elsewhere [7] [8]. 

V. RESULTS 

Table I shows the main features of the TWT developed in 
our laboratory. The TWT was operated for hundreds of hours 
in a Marconi radar mainframe type 910 and during this time 
all the parameters have been constants [91. 

TABLE I 
MAIN FEATURES OF TWT 

	

Quantity 	 Value  

	

Helix length 	 290 mm 

	

Helix radius 	 2.2 mm 

	

Helix pitch 	 5 mm 

	

Pitch angle 	 18° 

	

Circular waveguide 	radius 	 4.8 mm 
Mean beam current 	 120 mA 

Tipical anode voltage 	 30 kV 

	

Duty cycle 	 2% 
Mean heater power 	 50 W 

Gain 	 20 dB 

	

Frequency 	 x-band 
Grid bias 	 500 V 

Figure 4 shows the theoretical gain feature of IA\ I as a 
function of frequency, where it is assumed a 0.6 as plasma 
frequency reduction factor [111. 

28 

'= 24 

20 

8.4 	 9.6 	10.8 
	

12.0 
Frequency in GHz 

Figure 4. Theoretical gain curve with plasma frequency reduction factor 
0.6 [11]. 

Figure 5 shows the TWT with the cathode disassembled. 

Figtu-e 5 TVVT with cathode disassembled. 

VI. CONCLUSIONS 

This paper presents the experimental and theoretical 
results from a research on X-band traveling wave tube 
amplifier designed and operated at CTMSP laboratory. It is 
investigated a suitable microwave slow-wave circuit through 
a solution of the dispersion equation. Aniterative numerical 
solution for dispersion equation, following the Pierce 
approach, has been carried out and a mean gain of 20 dB has 
been obtained. The cathode perveance measured _is 0.2 
gerveance and until now the life time of the cathode is over 
1000 operation hours. 
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