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Summary: The main objective of this work is to review the Fourier Transform based numerical  

integration method applied to acceleration signals to obtain velocity signals used in vibration  
analysis of mechanical equipment. The acceleration signals are acquired from piezoelectric sensors  

positioned at the equipment. These signals are random continuous functions that are digitized by a  
data acquisition system generating a vector of discrete values. Several well established numerical  

integration schemes (Trapezoidal, Runge-Kutta, Open and Closed integration formulas) were tested  
and they failed since initial condition is not always available when random signals is being  
integrated . The Fourier Transform method proved to be the most adequate to integrate random  

signals since due its batch processing characteristic, it does not require initial conditions. The  

testing were conducted using inputs obtained from a high precision electronic .  function generator as  
well as real acceleration and velocity signals obtained experimentally in a rotating machinery fault  
simulator. The integration was carried out using both a high quality integrator amplifier as well as  

numerically.  

Keywords: :methods of integration, acceleration signals, velocity signals, vibration  

1. Introduction  

In a previous article, (Ting and Padovese, 2001) the authors presented a comparison among  
several numerical integration schemes applied to signals in accelerometry. The objective of that  
work was to assess a not commonly used method to obtain the velocity signal from the integration  
of acceleration signals based on the Fourier Transform and compare- it against classical schemes,  
namely: Trapezoidal, Runge Kutta, Open and Closed Integration Formulas (Carnahan et all, 1969  
and Pearson, 1974). The comparisons were carried out using analytically generated deterministic  
waveforms with well defined initial conditions (sine, cosine, squares, triangles and composition of  
them) and their analytical integrated forms. Noise was also analytically added.  

The main conclusions both in the time domain as well as in the frequency domain are that all  
integration methods performed well provided the initial condition is known but the one based on the  
Fourier Transform required the lowest sampling frequency (near Nyquist frequency) to reach a  
given precision while the others required much la rger sampling frequencies. Also, the Fourier  
Transform integration method proved to be more robust against random noise addition.  

The monitoring and diagnosis of industrial equipment and systems using vibration analysis  
requires generally the integration of acceleration signals sampled from accelerometers to generate 
velocity signals. The industrial standards and common practice indicate the velocity as the most 
appropriate variable to be used in vibration analysis for a wide range of applications. Sensors which 



generate directly signals that are proportional to the velocity are rarely used since they are  

difficult to fabricate and to use. The most commonly used sensors industry wise are based on  

piezoelectric elements actuated by inertial mass generating acceleration signals of the measured  

point.  
Obtaining velocity from acceleration signals can be done either by electronic integration or by  

numerical digital integration. Electronic integration is performed during the data acquisition before  

the signal conversion to digital format, by electronic RC type circuitry contained in the signal  

conditioning equipment. This technique is well consolidated and present adequate results requiring  

however conditioners which time response are compatible with the sample rate and the desired  

frequency range.  
The objective of this present work is to expand the validation of the Fourier Transform method  

for integrating acceleration signals by comparing it against integration performed by well  

established industrial electronic analog integrator amplifiers. Two classes of signals were employed:  

a) Analog waveforms inputs originated in a high precision function generator  

b) Real acceleration signals acquired from a rotating machinery fault simulator  

This work discuss the general problem of integrating signals and particularly, it address the  

numerical integration problem of both deterministic as well as of random signals. The influence of  

some parameters like the number of samples and the sampling frequency upon the velocity signal  

amplitudes and frequencies are also studied. The results shows that in the case of random signals  

when the initial condition for velocity is not known, the Fourier Integration method is a good  

alternative for electronic integration amplifiers.  

2. Numerical Integration Formulas  

Well established integration formulas are presented below without derivation, being the reader  

advised to reference numerical methods text books such as the one by Carnahan (1969) for details.  

Another method based on a Fourier transform property which can be used to integrate time  

dependent functions is also presented. The general problem statement is described as follows.  

Given a time dependent continuous function a(t) we wish to calculate its integral v(t) point wise  
for v(0)=v0  for:  

v(t) _ ^ a(t)dt  

For digitized signals, the vector a; (i=1,2...N) obtained from accelerometers, which is the case  

being studied, the function is random and continuous, representing the oscillatory vibration at the  

measured point. This peculiar characteristic of the function being integrated presents some special  

challenge to the problem.  
It is presented below the integration rules for the four numerical methods. In these formulas,  

i=1,2....N, where N is the total number of sampled points and . At is the time interval between two  
sampled points and equal to the inverse of the sampling frequency.  

a) The Trapezoidal Rule (or the Euler Method) is calculated by:  

v;+, = v ;  + 0.5 *At (a;+ 1  + ai)  (2)  

b)The Runge-Kutta fourth order method with Kutta's coefficients is:  

vi+, = vi + ot(a i+i  + 4*a; + a ;. í )13 	 (3)  

( 1 )  



One should notice that in this case where the function to be integrated is time dependent only, 
this formula reduces to Simpson's rule. Although this formula is included, its results are not 
presented since it presents similar results compared to Trapezoidal rule. 

c) The Open Integration Formula with order of the interpolating polynomial equal to 3: 

= v;  + At(55*a; — 59*a;_; + 37*ai_2 — 9*a;_3)/24 	 (4) 

d)The Closed Integration Formula with order of the interpolating polynomial equal to 3: 

v;+1 = v; + At(9*a; +1  + 19*a; — 5*a; _ ;  +42)/24 	 " 	 (5) 

It is important to notice that the methods presented above require the specification of the 
velocity initial condition v a  which in the case of integrating deterministic functions it can be well 
defined. However, in the case of random functions, the initial condition is not well defined making 
the integration ill posed. 

3. Integration using a Fourier Transform property. 

Given the definition of the Fourier Transform of a time dependent function a(t) as : 

A(w) = J a(t)e-'`"dt 
	

(6) 

where w is the frequency domain and j is the imaginary unit number, we wish to calculate v(t) 

from A(w). One can demonstrate by integrating Eq. (6) by parts, after substituting a(t)=dv/dt that 
the following equation is true: 

A(w) = jwV(w) = Tc-1- 12e-Jwi dt  
dt 

(7) 

In other words, to calculate v(t) from the Fourier transform A(w) of a(t), the following steps will 
produce the desired result: 

a) Calculate the Fourier transform of a (t), generating A (w). 
b) Calculate the velocity in the frequency domain V(w) using the first part of Eq. (7). 
c) Calculate the inverse Fourier transform of V(w) to obtain v(t). 

Two additional conditions must be satisfied in order to use this scheme which are: 
d) The signals should be zero mean or centered. To accomplish this one need to subtract the 

mean value of the signal. 
e) When applying Equation 7, a singular condition is reached when dividing A (w) by w at w=0. 

This can be avoided by using the L'Hopital theorem, since A(0) and w are both null. 

4. Integrating random functions. 

In order to compare the performance of the different integration methods presented above, we 
studied the integration of two classes of signals : 

a) Analog waveforms inputs originated in a high precision function generator 
b) Real acceleration signals acquired from a rotating machinery fault simulator 
In both cases, the signals were integrated using both a electronic integrator amplifier and the 

numerical integration methods and the results compared., 



In the first case, in order to get analog waveforms, a HP 33120A high precision, calibrated 
function generator was used. The generated function was then input to two B&K Nexus 2692 A OIl 
charge amplifier with integration function included to generate in one of them the acceleration 
signal already filtered and amplified and in the second one the same signal which is integrated. The 
two outputs, one representing the acceleration and the other the velocity signals are then fed to a 
National Instruments DAQ AI-16E-4 card which digitalize them and send to a computer with 
LABVIEW data acquisition software. MATLAB was used afterwards to implement and run the 
algorithms with the numerical methods present above. The Figure 1 shows the block diagram of this 
setup. The Figure 2 is the photo of the setup. 
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Figure 1. Block Diagram of the Experimental Setup 

Figure 2. Picture of the Experimental Setup 

Two types of waveforms were generated: sinusoidal and square waveforms with different 
amplitudes and frequencies. The amplitude range was defined in such a manner to have the best 
signal/noise ratio. To simulate a real condition, the initial time for sampling was not automatically 
triggered being therefore the velocity initial condition unknown introducing a randomness in a 
originally deterministic function. 
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A important result and perhaps the most important conclusion of this paper is that it was 
impossible to adjust a initial condition to be used in the classical stepwise type numerical 
integration schemes. The use of improper initial condition introduces offset values which generates 
unacceptable errors. In view of this, Trapezoidal, Runge-Kutta, Open and closed integration 
formulas were discarded. The Fourier Transform method being a batch type method since it 
processes the entire data set independently does not require a initial condition. This method proved 
to be applicable in this condition. 

To illustrate this part of the study, two figures were included. Figure 3 shows the integrated 
velocity signals for both the analog electronic technique as well as for the Fourier Transform 
method. The simulated acceleration signal is sinusoidal with 101-11 frequency sampled at 200Hz. 
The comparison is shown in the time domain as well as in the frequency domain. From figure 3, one 
can notice that both the waveform and the spectrum agree well with a deviation of about 10% in 
ampl itudes. 

The several cases studied revealed that the sampling rate is a important parameter to set the 
deviation between the two methods. In figure 4, the same 10Hz sinusoidal signal and a 10Hz square 
waveform are analyzed for different sampling rates and the percentage deviation of the spectrum 
amplitude at the 10Hz peak is presented. Starting from sampling frequencies near twice the Nyquist 
frequency where the deviation is large (90%) one can notice that the deviation drops exponentially 
with increasing sampling frequency to values around 10% at around 200Hz. The results of figure 4 
lead us to the following: 

a) The obtain acceptable precision in the integrated function amplitude in both the time as 
well as the frequency domain, a sampling frequency of about 10 times de Nyquist 
frequency is needed. 

b) To obtain a acceptable precision in the frequency values the same criteria used for 
avoiding aliasing is sufficient, i.e. the sampling frequency should be greater than 2 times 
the Nyquist frequency (Shannon theorem). 

Figure 3. Comparison between electronic integration and numerical integration. 
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Figure 4. Deviation at the peak spectrum amplitude between numerical and electronic 
integration as function of sampling frequency. 

5. Integration of a actual vibration signal. 

To further extend the validation on the use of the Fourier Transform integration method for 
random signals, we acquired acceleration signals from a rotating machinery fault simulator (Spectra 
Quest MFSv2.0). This simulator has a electric motor which speed is controlled by a frequency 
inverter. The rotation is transferred to a shaft through a flexible coupling. The shaft is assembled on 
two rolling bearing closed case with a movable rotor in between. This experimental setup allows for 
the controlled simulations of unbalanced rotors, misalignments, defective bearings, soft base and 
resonance conditions. The simulator is instrumented with eight ICP type accelerometers allowing 
for additional instrumentation as necessary. A range of different speed up to 10000 rpm is possible. 

The results for a particular case of a unbalanced shaft is shown in this paper. Two B&K 7701A-
100 charge type accelerometer were installed on the bearings casing to measure the vibration. The 
motor is set to run at 600 rpm (10Hz). The signals from the accelerometers are conditioned by two 
B&K Nexus charge amplifiers being one of them set to integrate the acceleration signal to velocity. 
The data is acquired using LABVIEW and the processing is done afterwards with MATLAB. The 
experimental setup can be seen in the picture of the Figure 2 and in block diagram of the Figure 1. 
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Figure 5. Comparison between electronic and numerical integration of a actual 
acceleration signal 

In the right hand side of Figure 5 it is shown the velocity waveforms obtained both by electronic 
integration (red line) as well as by numerical integration (blue line) of the acceleration produced by 
a unbalanced rotor. It is well known that in this type of fault the acceleration and the velocity show 
a sinusoidal behavior with the same frequency as the rotation speed, i.e. 10 Hz in this particular 
case. Both wave forms agreed well as far as shape goes with a deviation of about 10% at the 
extreme points of the sine. At the right hand side of Figure 5 the power spectrum density of both 
signals are plotted. Again, at the 10 Hz frequency the agreement is quite good with around 10% 
deviation. The only noticeable difference shows up at very low frequencies near DC components. 
The low frequency gain in integration problems is well known because of the division by the 
frequency which for small values greatly amplifies any noise which is present. In this case, the 
B&K amplifier has already filtered out this noise with a high pass filter at around 1 Hz. 

6. Conclusions 

a) The most important conclusion obtained in .this paper is that classical stepwise integration 
formulas like the Trapezoidal, Runge Kutta and other schemes fail to integrate random 
signals where the initial condition is not known and that the Fourier Transform integration 
methods produced correct integration in this situation provided the random signal is 
centered. 	 • 

b) In using the Fourier Transform method for integrating zero mean random signals, the 
sampling rate of the original signal play the foremost important part. The results obtained 
indicate that the sampling rate to reach acceptable precision in frequency determination is 
the same as the Shannon theorem indicates, i.e. greater than 2 times the Nyquist frequency. 
However, to reach good precision in the amplitude calculation, a sampling frequency of 
about 10 times the Nyquist frequency is required. 



• 
• 

c) The low frequency gain present in all signal integration problems is unavoidable and a 
external pos processing filter is necessary to remove high amplitudes near the DC 
components. 

d) The Fourier Transform Integration Method proved to be a robust and efficient integration 
scheme and our future works will be dedicated to improve the range of the validations as 
well as to implement in a computer routine and in firmware processed via hardware. 
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