

Universidade Federal do Rio Grande de Norto Centro de Ciércia Esalus e da Terra Deportamento de Químico Departamento de Físico Teórico e Experimental

ALTERNATIVE SYNTHESIS TECHNIQUES FOR BIMEVOX MATERIALS

C. H. Hervoches and R. Muccillo
Instituto de Pesquisas Energéticas e Nucleares
Centro de Ciênca e Tecnologia de Materiais, Av. Prof. Lineu Prestes, 2242,
Cidade Universitaria, 05508-000, São-Paulo, SP – chervoch@net.ipen.br
IPEN – CCTM

ABSTRACT

 α -Bi₄V₂O₁₁ has been synthesized by the citrate technique. The thermal evolution of the material was followed by powder X-ray diffraction (XRD) and differential thermal analysis (DTA). The synthesis of the final material is obtained via the formation of the intermediate BiVO₄ phase. Complete disappearance of BiVO₄ and completion of the reaction can only be achieved after the sample is annealed at 750°C leading to high purity Bi₄V₂O₁₁ in the orthorhombic α -phase.

Key words: oxide conductor, BIMEVOX, synthesis

INTRODUCTION

Aurivillius phases have the general formula $Bi_2O_2(A_{n-1}B_nO_{3n+1})$ and can be described as layered structures, consisting of perovskite blocks sandwiched between fluorite-like $(Bi_2O_2)^{2+}$ sheets. Amongst these materials, $Bi_2VO_{5.5}$ is a one-layer Aurivillius phase presenting two main phase transitions that can be schematized as follows:

$$\alpha \xrightarrow{450 \, \text{C}} \beta \xrightarrow{570 \, \text{C}} \gamma$$

Very high ion conductivity is observed in its high temperature γ form which is characterized by the distortion of the V-O octahedra and oxygen vacancy disorder that disappears on cooling⁽¹⁾.

It is also the parent structure of the so-called BIMEVOX materials (BI for Bismuth, ME for metal ion, V for Vanadium, and OX for oxide), where the Vanadium is partially replaced by other cations in order to stabilize the γ phase at lower temperature, but usually lead to a degradation of the ionic conductivity.

Alternative synthesis routes to the traditional solid-state reaction, particularly those inducing a reduction of the size of the particles, might be able to improve the physical properties of these materials⁽²⁾. Obtention of α and γ -Bi₄V₂O₁₁ have been reported by sol-gel⁽³⁾ and co-precipitation technique⁽⁴⁾, this last technique produces fully crystalline Bi₄V₂O₁₁ at 320°C.

Here we present the studies by X-ray diffraction (XRD) and differential thermal analysis (DTA) of $Bi_2VO_{5.5}$ prepared by the citrate (Pechini) method.