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Abstract. In this work, a model based on single particle plus pairing residual interaction 

was used to study the low-lying excited states of the 193 Ir nucleus. 

In this model, the deformation parameters in equilibrium were obtained by minimizing 

the total energy calculated by the Strutinsky prescription; the macroscopic contribution to 

the potential was taken from the Liquid Droplet Model, with the shell and paring corrections 

used as as microscopic contributions. The nuclear shape was described using the Cassinian 

ovoids as base figures; the single particle energy spectra and wave functions for protons and 

neutrons were calculated in a deformed Woods-Saxon potential, where the parameters for 

neutrons were obtained from the literature and the parameters for protons were adjusted in 
order to describe the main sequence of angular momentum and parity of the bandheads, as 

well as the proton binding energy of t93 Ir. The residual pairing interaction was calculated 

using the BCS prescription with Lipkin-Nogami approximation. 

The results obtained for the first three bandheads (the 3/2+ ground state, the 1/2 + 

 excited state at E 73keV and the the 11/2 - isomeric state at E 80keV) showed a very 

good agreement, but the model so far greatly overestimated the energy of the next bandhead, 

a 7/2 —  at E,--z-; 299keV. 
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1 Introduction 

This work is a theoretical support for the experimental analysis of the excited states 
in 1 J3 Ir populated by the (3 —  decay of 193 0s [i[. 

The low-lying states in J 93 Ir have been thoroughly studied and, although this 
nucleus is usually described as triaxially-deformed [2, 3, 4, 51, it has also been 
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recently described as a prolate rotor [6]. Most of these theoretical studies describe 
rather well the binding energies of the 3/2+ ground state and the 1/2+ excited 
state at 73keV, but fail to describe the negative-parity bandheads; in this regard, 
the best effort to this date seems to be the one by Drissi [7], where a variation of 
the Interaction Boson-Fermion Model (IBFM) describes to some degree the 11/2 —
isomeric state at 80keV and has the next bandhead, a 7/2 —  state, quite shifted from 
its original 299keV excitation energy, but still below 1MeV. 

In this work, the low-lying states of 193 Ir were evaluated using a single-particle 
model in an axially-deformed potential, with pairing interaction corrections ap-
plied. The deformation parameters in equilibrium were obtained by minimizing the 
total energy calculated by the macroscopic-microscopic method [8]. The single par-
ticle energy spectra and wave functions for protons and neutrons were calculated in 
a deformed Woods-Saxon potential [9], with the potential parameters for neutrons 
obtained from the literature [10] and the parameters for protons adjusted in order to 
describe the main sequence of angular momentum and parity of the bandhcads, as 
well as the proton binding energy. The residual pairing interaction was calculated 
using the BCS prescription with the Lipkin-Nogami approximation [11]. 

2 The Nuclear Model 

2.1 Nuclear Deformation 

The nuclear deformation was calculated using the macroscopic-microscopic method. 
Within this method, the total energy is given by 

Etot(E, a) = Emacr(E, a) + Emicr(E, a) (1) 

where e and â are the deformation parameters. 
The macroscopic term is given by the liquid drop model. The microscopic 

portion can be divided into two components: the contribution associated with 
the shell correction energy and the pairing contribution. In order to obtain the 
equilibrium deformation the total energy is minimized with respect to the deforma-
tion parameters. The Cassini ovaloid shape parametrization was used, taking into 
consideration the terms associated with the quadrupole (e) and hexadecapole (a4 ) 

moments. 

2.2 Single Particle Energies 

The single particle states were calculated using the Woods-Saxon (W-S) potential. 
To determine the W-S potential twelve constants should be given, six for neutrons 
and six for protons: 

Vo  depth of the central potential; 
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a so  diffuseness parameter of the spin-orbit part;  

R o  radius parameter;  

r o 	radius parameter of the spin-orbit potential;  

a diffuseness nuclear parameter;  

A strength of spin-orbit interaction.  

Several parameter sets have been proposed for the Woods-Saxon potential,  

usually determined by a global fit to various ground state nuclear properties of  

(3-stable nuclei in a mass number range.  
The Woods-Saxon potential consists of the central part V Cent , the spin-orbit  

part Vso  and the Coulomb potential Vcout  for protons:  

VWS (r'Z' E'a) = ^^c ent(r,z,E,a)+Uso(r,z> E,a)+VCout (rs 2 > EsCSC) 	(2) 

where (r, z) are cylindrical coordinates.  
The central part is defined in order to describe the density distribution function  

VccnC(r, z,  e ,  
Vo  

(3)  dist(r,z .e,.'s)  

1+ e  

where dist is equal to the distance of a given point to the nuclear surface.  

The depth of the central potential is parameterized by:  

V0  = Vo [1 ± 0.063(N — Z)/(N + Z)] 	 (4)  

with positive signal for protons and negative for neutrons. 
The spin-orbit term is defined by 

L 

Vso(r,z , E,(3c) = A( 2Mc
) OV(r,z, E,á)• (43 xP)  (5)  

where M is the nucleonic mass, the vector operator 6 stands for the Pauli matrices  
and p is the linear operator.  

The Coulomb potential is assumed to be that corresponding to the nuclear  

charge (Z — 1)e, uniformly distributed inside the nucleus. For the Hamiltonian  

diagonalization, the eigenfunctions of an harmonic oscillator with axial symmetry  

in the cylindrical coordinates were used as a base.  

The pairing energy was evaluated as in the commonly used prescription of the  

BCS approach. The hamiltonian operator in the BCS model contains two parts: the  

first corresponding to the single particle states and the second corresponding to the  
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pairing interaction. If he particle term is diagonal, the BCS operator can be written  

in the formalism of the second quantization as  

H = Asp + Hpnir = Len, `a¿ai + atai  I  - i Gji  

Finally, the system of equations of this model is 

nu 	nu ^ 	 ^ 	L 
E^ = 	E nt  + ^  1 	

ELIi — ^ v 	Av  
/// 	 z ! 	G  

i 	 i \ 	JlEf2i -Tv)z +^ /  

where: 

c Energy of single particle states; 

-v Number of quasi-particles; 

Jt Chemical potential; and 

G Pairing constant. 

3 Results  

The values of the deformation parameters that minimize the total energy are a = 
0.1102 and a 4  _ —0.0404; the representation of the total energy dependence with 
these parameters is shown in Fig. 1.  

(6)  

(7)  

Figure 1 Dependence of the total energy with the deformation parameters.  
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Table 1 Parameters of the Woods-Saxon potential  

Vo 	ro 	a 	ro-sc, 	a5o 	A  
(MeV) 	(fm) 	(fm) 	(fm) 	(fm) 

Universal Parameters [12] 49.6 1.275 0.70 1.32 0.70 36.0  
Present Work 54.612 1.18992 0.70 1.27498 0.932 36.899  

The parameters of the W-S potential for neutrons were obtained from ref.  

[10], and the parameters for protons were adjusted in order to describe the main 
sequence of angular momentum and parity of the three lowest-lying single particle 
states, as well as their binding energy; from these states it was then possible to 
calculate the quasi-particle states using the LINDEN code [111. The values obtained 
were compared to the parameters suggested by Cwiok et al. [12], called Universal  

Parameters (see Table 1. In Figure 2, the present single particle states calculation is 
compared to the experimental results from [1] and to the results obtained using the 
Universal Parameters.  

400 -  
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9 200  
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1/2+ 1/2+  
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Figure 2 Comparison of the experimental bandhcads of 193 1r to the calculations  

performed using the present set of parameters and to the calculations  

using the Universal Parameters from Cwiok [12].  

4 Conclusions  

Our calculations reproduced very well the ground state and the two lowest-lying  

states in t 93 lr, while the Universal Parameters couldn't even reproduce the ground  

state. The 11/2 —  state at 8OkeV, which has presented some problems in other  
theoretical explanations of this nucleus, in particular, was perfectly reproduced,  

showing that it can indeed be explained in terms of an axially-symmetric potential.  
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The next step in this work should be to try to reproduce the next two bandheads 
in 193 Ir, a 7/2 —  state at 299keV and a 3/2+ state at 460keV, both of which were not 
included in the present analysis and presented serious trouble in othcr calculations 
found in the literature [2, 3, 4, 5, 6, 7]. 
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