

INFLUÊNCIA DA ADIÇÃO DE TaC NA CINÉTICA DE SINTERIZAÇÃO E MICROESTRUTRURA DE COMPÓSITOS À BASE DE Si₃N₄

A.C.S.Coutinho, J.C.Bressiani, A.H.A.Bressiani IPEN – Instituto de Pesquisas Energéticas e Nucleares Av. Prof. Lineu Prestes, 2242 – Cidade Universitária São Paulo – SP - CEP. 05508-000

RESUMO

Cerâmicas à base de Si₃N₄ tem sido estudadas exaustivamente para aplicações estruturais e como ferramentas de corte. As excelentes propriedades mecânicas deste material são determinadas principalmente por suas características microestruturais e composição da fase presente nos contornos de grãos. A necessidade de melhoria na confiabilidade destes materiais para utilização em condições severas de uso levou ao desenvolvimento de compósitos particulados à base de Si₃N₄. A adição de uma segunda fase pode alterar os mecânismos de sinterização e promover alterações microestruturais. Neste trabalho a influência da adição de partículas de TaC durante a sinterização e a microestrutura resultante foram estudadas. Observou-se que a presença de partículas de TaC (até 20%vol.) possuem pouca influência na cinética de sinterização, produzindo compósitos com alta densidade (>95%DT) e microestrutura homogênea; as partículas de TaC permanecem nos contornos de grãos.

Palavras-chave: Si₃N₄, Sinterização, Compósito,

INTRODUÇÃO

Cerâmicas covalentes são materiais que apresentam excelentes propriedades termo-mecânicas sendo de grande interesse para fins tecnológicos. Dentre as cerâmicas covalentes mais comuns, destacam-se o BN (nitreto de boro), o SiC e seus politipos e o Si₃N₄, bastante estudado para aplicações estruturais ou como ferramentas de corte⁽¹⁻⁶⁾.

A busca por materiais cerâmicos à base de Si₃N₄ que apresentem alta dureza associada a alta tenacidade à fratura é o objetivo da maioria das pesquisas⁽⁷⁻⁹⁾. A introdução de uma segunda fase às cerâmicas à base de Si₃N₄ se mostrou promissora para a obtenção de materiais com melhores propriedades para aplicações estruturais⁽¹⁰⁾. Entretanto, a obtenção de compósitos à base de Si₃N₄ ainda é uma tarefa bastante complexa e dependendo da segunda fase adicionada, a obtenção de cerâmicas com alta densidade e boas propriedades termo-mecânicas requer a utilização de processos de sinterização com aplicação de alta pressão

associado com alta temperatura em atmosfera controlada, tornando o processamento difícil e com custos elevados. O principal sistema compósitos à base de Si_3N_4 é o que utiliza o SiC como segunda fase, na forma de micro- ou nano-partícula, fibras ou plaquetas⁽³⁻¹⁰⁾.

O processo de sinterização do Si_3N_4 é bastante complexo. Devido à natureza covalente das ligações químicas entre os átomos de Si e N, o coeficiente de auto difusão é baixo, sendo necessário o uso de aditivos de sinterização que formem um líquido durante a sinterização⁽¹¹⁾. Os aditivos mais comuns são os óxidos metálicos e de terras raras, tais como Al₂O₃, Y₂O₃, Ce₂O₃ ou La₂O₃⁽¹²⁾.

Os aditivos de sinterização reagem com a sílica presente na superfície do pó de Si₃N₄ e formam um líquido que auxilia no rearranjo das partículas no primeiro estágio da sinterização. Com o aumento da temperatura, inicia-se o processo de solução da fase α -Si₃N₄ no líquido e quando o líquido se torna supersaturado inicia-se a reprecipitação da fase β -Si₃N₄⁽¹³⁾.

A presença de partículas de segunda fase provoca alterações na cinética de sinterização do Si_3N_4 : podem dificultar o rearranjo das partículas e o transporte de massa ou reagirem quimicamente com os constituintes do sistema⁽⁷⁾.

Neste trabalho, a cinética de sinterização, as fases presentes, após a sinterização, e a microestrutura do compósito Si_3N_4/TaC , obtido pela rota tradicional de processamento de pós, são estudadas.

PROCEDIMENTO EXPERIMENTAL

Para a obtenção de compósitos à base de Si₃N₄ foi utilizada a rota tradicional de processamento de pós. α -Si₃N₄ (M11 – H.C. Starck, com 92,7% de α -Si3N4), Al₂O₃ (A16/SG – Alcoa) e Y₂O₃ (Aldrich Chemical – USA) foram utilizados como matérias primas para obtenção do compósito Si₃N₄/TaC com adição de 5, 10 e 20% vol. de TaC (H.C.Starck) como segunda fase.

Primeiramente foi preparada uma composição base (CB), constituída de 90% em massa de α -Si₃N₄, 6% em massa de Y₂O₃ e 4% em massa de Al₂O₃. Esta composição foi moída em moinho de alta energia, por 4 horas, rotação de 300 rpm, com esferas, haste e vaso de Si₃N₄ e meio líquido para moagem álcool isopropílico. A suspensão obtida foi seca em rotoevaporador e o pó desaglomerado em malha ASTM 80. Os compósitos foram obtidos utilizando a mesma rota de preparação. À CB foram adicionados diferentes quantidades de TaC e após a desaglomeração, os pós foram compactadas por prensagem uniaxial (50MPa) e isostática à frio (200MPa). A densidade à verde dos compósitos foi determinada pelo método geométrico.

O estudo de cinética de sinterização foi realizado na amostra contendo 20%vol.TaC, compactada com diâmetro de 7mm e sinterizadas em dilatômetro (NETZSCH modelo DIL 402 E/7) a 1750°C por 1h, com taxa de aquecimento e resfriamento de 20 e 30° C/min, respectivamente. Foram utilizados tubo e haste de contato de grafite e fluxo de N₂.

Tratamentos térmicos em diferentes temperaturas, 1500° C/1h, 1600° C/1h, 1700° C/1h, 1750° C/1h, 1800° C/1h e 1750° C/1h + 1850° C/1h foram realizados em forno de resistência de grafite (Thermal Technologies, Santa Barbara, USA). As temperaturas dos patamares intermediários, nos tratamentos térmicos das amostras com 20% TaC, foram determinadas levando-se em consideração as temperaturas dos picos observados durante a sinterização assistida por dilatômetro. Todos os tratamentos foram realizados com cama protetora, CB, e pressão de N₂ (~5atm).

As medidas de densidade aparente foram realizadas pelo método de Archimedes, utilizando balança analítica, de acordo com a equação:

$$\rho = \frac{Ms}{Mu - Mi} \rho_{H_2 O}$$

Foram realizadas várias medidas de densidade em todas as amostras e o desvio padrão é menor que 0,01%.

As fases presentes foram determinadas por difração de raios X, nas amostras sinterizadas em forno de resistência de grafite e cortadas longitudinalmente, para obter resultados significativos do interior da amostra. Foram utilizados dois equipamentos para obtenção dos espectros de raios X: marca Bruker-AXS modelo D8 Advance e Rigaku, modelo DMAX 2000.

Para a análise microestrutural, por microscopia eletrônica de varredura (Philips, modelo XL 30), a superfície das amostras foi polida em suspensão de diamante até 1 μ m e atacada por plasma 2 CF₄:1O₂, em diferentes tempos, devido à diferença de composição e densidade dos compósitos.

RESULTADOS E DISCUSSÃO

Com os dados obtidos durante a sinterização assistida por dilatômetro foram traçadas curvas de retração linear e taxa de retração linear em função da temperatura. A Figura 1 apresenta a curva de retração linear em função da temperatura do compósito 20%vol.TaC e da CB.

Figura 1 - Retração linear em função da temperatura de compósitos à base de Si_3N_4 : CB e CB+TaC

O comportamento observado, quanto à retração linear do compósito, é semelhante ao observado para a composição base. O início da retração ocorre aproximadamente na mesma temperatura e durante o patamar a 1750°C/1h, há retração.

A curva de taxa de retração linear, em função da temperatura, foi construída a partir da derivada da curva de retração linear. Comparando a curva de taxa de retração linear da CB com a curva do compósito, pode-se observar que a presença de partículas de TaC não interferem significativamente no processo de solução-reprecipitação. A única alteração observada na sinterização do compósito, devido à presença de partícula de segunda fase foi em relação à temperatura em que ocorre a solução-reprecipitação (Figura 2). Para a CB a solução-reprecipitação ocorre em ~1600°C, enquanto que para o compósito ocorre em ~1570°C.

Figura 2 – Taxa de retração linear e densidade relativa em função da temperatura de compósitos à base de Si_3N_4 : CB e CB+TaC

O efeito da adição de diferentes proporções de TaC foi estudada por sinterização normal. Amostras com 5, 10 e 20% em volume de TaC foram sinterizadas a 1750°C e 1800°C, por 1 hora, em forno de resistência de grafite. As densidades dos compósitos obtidas (Tabela 1) apresentam uma pequena diminuição com o aumento da quantidade de TaC adicionada, mas mesmo com adições de 20% em volume, a densidade obtida é elevada. A perda de massa observada é praticamente constante e provavelmente se deve a volatilização dos aditivos óxidos de sinterização.

		SINTERIZAÇÃO					
			1750°C/1h		1800°C/1h		
Amostra	Dt (g/cm³)	%Dt	Perda de massa (%)	%Dt	Perda de massa (%)		
CB	3.30	97	2.1	98	3.0		
CB+5%vTaC	3,83	96	3,2	98	4,4		
CB+10%vTaC	4.36	96	1.7	97	2.7		
CB+20%vTaC	5.42	94	1.9	97	2.9		

Tabela 1 – Densidade relativa dos compósitos Si $_3N_4$ /TaC sinterizados em forno de resistência de grafite.

A análise por difração de raios X (Figura 1, 2 e 3) indica que após a sinterização do compósito, as fases presentes são β -Si₃N₄, TaC e fases devido a cristalização dos aditivos de sinterização. A presença de fases cristalinas devido a cristalização do líquido ocorreu nos compósitos com 5, 10 e 20%vol. TaC. A formação destas fases, do sistema Y-SiAION, é prevista pelos diagramas de

equilíbrio do sistema Si₃N₄-Y₂O₃-Al₂O₃. A fase Y₁₀Al₂Si₃O₁₈N₄ foi descoberta em 1975 por R.J.Wills, após a sinterização de nitreto de silício com adição de alumina e ítria como aditivos⁽¹²⁾. A formação da fase Y₂Si₃N₆, identificada anteriormente por Ekström et al⁽¹³⁾, está relacionada com a presença de pequenas quantidades de carbono. O carbono reduz o oxigênio, e em atmosfera rica em nitrogênio favorece a formação de compostos no sistema Si-Y. Essa fase cristaliza-se em temperatura de aproximadamente 1400°C. A quantidade de carbono livre no pó TaC, segundo o fabricante, é aproximadamente 0,25%. Esse carbono deve reagir com o oxigênio, provocando a formação de Y₂Si₃N₆.

A hipótese proposta para a boa densificação deste compósito está relacionada a formação da fase $Y_2Si_3N_6$. O carbono reage com o oxigênio do líquido para formar a fase $Y_2Si_3N_6$ e modifica a razão $Y_2O_3/Al_2O_3^{(14)}$. Com a mudança desta razão, a molhabilidade se altera⁽¹⁴⁾ e pode modificar o processo de solução-reprecipitação, em comparação com a CB.

Um aspecto importante a ser considerado refere-se a diferença de intensidade observada entre os picos das fases TaC e β -Si₃N₄, conseqüência da diferença de raio iônico entre os átomos Si, N, C e Ta⁽¹⁵⁾.

Figura 1 – Difratograma do compósito com 5% vol. TaC, sinterizado a 1750°C/1h e 1800°C/1h

Figura 2 – Difratogramas do compósito com 10% vol. TaC, sinterizados a 1750°C/1h e a 1800°C/1h

Figura 3 – Difratogramas dos compósitos com 20%vol de TaC, sinterizados a 1750°C/1h e 1800°C/1h

Foram realizados vários tratamentos térmicos, na faixa de temperatura de 1400°C a 1850°C, nas amostras com 20% em volume de TaC, com objetivo de analisar os fenômenos que ocorrem durante a sinterização deste compósito. A densidade do compósito apresenta comportamento semelhante ao da CB (Tabela 2). Observa-se que após o tratamento a 1400°C/1h a densidade do compósito é superior à densidade da CB, entretanto a densidade do compósito após o tratamento a 1500°C/1h é inferior à da CB. Essa diferença permanece praticamente constante em todos os tratamentos até 1800°C/1h. Esta diferença deve estar associada à dificuldade mecânica que as partículas de TaC impõe ao processo de solução-reprecipitação no compósito. A densidade do compósito após o tratamento a

1800°C/1h é muito semelhante à densidade observada na CB após o mesmo tratamento.

A perda de massa do compósito e da composição base é bastante semelhante e aumenta com o aumento da temperatura de sinterização.

	Composição				
.	СВ		20%vol TaC		
Tratamento Termico	Dt (%Dt)	Perda de massa (%)	Dt (%Dt)	Perda de massa (%)	
1400°C/1h	68	0,4	70	0,7	
1500°C/1h	84	1,8	82	0,9	
1600°C/1h	92	2,0	90	1,0	
1700°C/1h	97	1,3	94	1,6	
1750°C/1h	97	2,1	94	1,9	
1800°C/1h	98	3,0	97	2,9	
1750°C/1h+1850°C/1h	98	6,3	99	3,8	

Tabela 2 – Densidade relativas obtidas após tratamentos térmicos em várias temperaturas

Não houve interação entre o TaC com os aditivos de sinterização ou com o Si_3N_4 (Figura 4 (a)), ou seja, o TaC é inerte quimicamente. Após o tratamento a 1500°C, observam-se picos das fases $\alpha \in \beta$ -Si₃N₄ e com o aumento da temperatura, a fase α -Si₃N₄ se transforma em β -Si₃N₄ e só a fase β -Si₃N₄ e TaC estão presentes nas amostras tratadas termicamente em temperaturas mais elevadas. Após os tratamentos térmicos a 1500°C/1h e a 1600°C/1h, a fase Y₂Si₂O₇ foi identificada (Figura 4). Esta fase é prevista pelo diagrama quaternário Si₃N₄-SiO₂-Y₂O₃-YN (Figura 5) e pelo binário Y₂O₃-SiO₂ (Figura 6). A fase Y₂Si₂O₇ deve se formar em temperatura acima de 1500°C, de acordo com o diagrama binário Y₂O₃-SiO₂, por reação no estado sólido⁽¹⁶⁾.

Figura 5 – Isotermas a 1550°C do sistema Si₃N₄-SiO₂-Y₂O₃-YN⁽¹⁶⁾

A análise microestrutural dos compósitos foi realizada por microscopia eletrônica de varredura na superfície polida e atacada por plasma $2CF_4:1O_2$. As microestruturas da composição base e dos compósitos são apresentadas nas Figura 7, 10, 11 e 12.

A microestrutura observada por microscopia eletrônica de varredura é típica de cerâmicas à base de Si₃N₄: grãos alongados de β -Si₃N₄, dispersos em uma fase formada pelos aditivos de sinterização. Nos compósitos pode-se observar a presença de grãos alongados de β -Si₃N₄, semelhantes aos grãos observados na composição base, e partículas de TaC nos contornos de grãos. A presença de TaC faz com que os grãos de β -Si₃N₄ sejam menores que os observados na composição base.

Figura 6 – Diagrama binário do sistema Y₂O₃-SiO₂ ⁽¹⁷⁾

Observa-se que a distribuição dos grãos de TaC se apresenta homogênea (Figura 8 a 12), indicando que houve boa molhabilidade do líquido nas partículas durante a sinterização. Em algumas regiões dos compósitos com adições de 10 e 20% vol. é possível observar que as partículas de segunda fase bloqueiam o crescimento dos grãos de β -Si₃N₄ (indicadas nas Figura 9 e 12). Alguns grãos de β -Si₃N₄ apresentam a estrutura do tipo "core-rim", resultantes da nucleação heterogênea. O crescimento de grãos β -Si₃N₄ também é obstruído por outros grãos de β -Si₃N₄. Nas micrografias pode-se observar a obstrução esférica dos grãos de β -Si₃N₄ (Figura 7).

Figura 7 - Microscopia eletrônica de varredura da CB, sinterizada a 1750°C/1h. A região em destaque indica a estrutura do tipo "core-rim".

Figura 8 - Microscopia eletrônica de varredura da amostra 5%TaC sinterizada a 1800°C/1h

Figura 9 – Microscopia eletrônica de varredura das amostras: (a) CB+10%TaC sinterizada a 1750°C/1h; (b) 10%TaC sinterizada a 1800°C/1h. A região em destaque indica que a presença de partículas de TaC dificultam o crescimento de grãos.

Figura 10 – Microscopia eletrônica de varredura das amostras: (a) CB+20%TaC sinterizada a 1750°C/1h; (b) 20%TaC sinterizada a 1800°C/1h

CONCLUSÕES

As partículas de TaC não interfere significativamente no processo de sinterização. A alteração observada foi na temperatura em que ocorre a máxima taxa de retração devido a solução-reprecipitação do compósito. Durante os

tratamentos térmicos, o TaC é uma fase inerte, permitindo a obtenção de microestruturas homogêneas com adições de até 20%vol. TaC. A boa densidade obtida neste compósito pode estar associada à formação da fase $Y_2Si_3N_6$.

REFERÊNCIAS BIBLIOGRÁFICAS

1. H. Yamamoto, K. Akiyama, Y. Murakami; J. Euro. Ceram. Soc., 26, 6 (2006) 1059.

2. M. Mitomo, In M. Mitomo, "Silicon Nitride-1, Ceramics Research and Development in Japan, Elsevier Applied Science, 1989.

3. H.D. Kim, Y.J. Park, B. P. Han, M.W.Park, W.T. Bae, Y.W.Kim, H.T.Lin, P.F.Becher, Scripta Materialia, 54, 4 (2006) 615.

4. R.G.Duan, G.Roebben, J.Vleugels, O.Van de Biest, Scripta Materialia, 53, 6 (2005) 669.

5.Vučković, S. Bošković, B. Matović, M. Vlajic, V. Krstic, Ceram. Inter., 32, 3 (2006) 303.

6.Z. Tatli, D.P.Thompson, Mater. Lett. 59, 14-15 (2005) 1897.

7.M.J. Hoffmann, G. Petzow, Pure & Appl. Chem., 66, 9 (1994) 1807.

8.Y. Tajima, Mat. Res. Soc. Symp., Proc. 287, (1993) 189.

9.J. Song, D.O'Sullivan, R. Flynn, S. Hampshire, Key Eng. Mat., 86-87, 263-270, 1993 in "Engineered Materials", Eds. S. Hampshire, M. Buggy, and A.J. Carr., Trans. Tech. Publications, Switzerland.

10.J-F.Yang, T.Ohji, T.Sekino, C-L.Li, K.Niihara, J.Euro.Ceram.Soc., 21, 12 (2001) 2179.

11.M. Mitomo, In M. Mitomo, "Silicon Nitride-1, Ceramics Research and Development in Japan, Elsevier Applied Science, 1989.

12. R.J. Wills, J.Am.Ceram.Soc., 64, C96-C97, 1981.

13. T.C.Ekström, K.J.D.MacKenzie, M.J.Ryan, I.W.M.Brown, G.V. White; J. Mater. Chem., 7, 505-509, 1997.

14. J. Chen, P.Wei, Q.Mei, Y.Huang, J.Euro. Ceram.Soc., 20, 2685-2689, 2000

15. B.D.Cullity, "Elements of X ray diffraction", Ed. Addison Wesley, 1978.

16. Tien, T.Y., "Use of phase diagram in the study of silicon nitride ceramics", 127-156, IN "Phase diagrams in Advanced Ceramics", Ed. by Allen M. Alper, Academic Press, 1995.

17. "Phase Equilibria Diagrams" Demo CD–ROM Database – Version 3.0, "The American Ceramic Society".

INFLUENCE OF TaC ADDITION ON SINTERING KINETICS AND MICROSTRUCTURE OF Si₃N₄ BASED COMPOSITES

 Si_3N_4 based ceramics have been widely studied for structural application and as cutting tools. Room temperature properties of Si_3N_4 ceramics are mainly determined by microstructure characteristics, aspect ratio and grain size of β - Si_3N_4 and high-temperature strength is controlled particularly by the characteristics of grain boundary phase. The need for further improvement in the mechanical reliability of Si_3N_4 has led to the development of particulate Si_3N_4 based ceramics composites. The addition of a reinforcing phase may change the sintering behavior of Si_3N_4 and its microstructure. In the present study the influence of particulate TaC during sintering and microstructure of Si_3N_4 composites were investigated by dilatometry, XRD and SEM. The presence of TaC particles has small influence on

sintering kinetics. In comparison with monolithic Si_3N_4 ceramics, composites produce homogeneous microstructure, with TaC particles at grain boundary.

Key-words: silicon nitride, sintering, particulate composite