

Avaliação do método de análise sem padrão por WDXRF e EDXRF em pó de alumínio utilizado no combustível nuclear tipo MTR

Marcos A. Scapin Instituto de Pesquisas Energéticas e Nucleares IPEN – CNEN/SP

Combustivel MTR (Material Testing Reactor)

-> Revestimento inferior – Al (ASTM 6061)

Elemento	Especificado (ppm)				
Li	<0,03	Técnicas Analíticas			
В	<0,10				
С	<2000	•Volumétrica/gravimétrica			
Si	<9500	•Espectrometria de absorção atômica (AAS)			
Со	<10				
Mn	<500	•Espectrometria de emissão de plasma indutivamente acoplado (ICP)			
Fe	<9500				
Cu	<500				
Zn	<1000				
Cd	<10	Procedimentos destrutivos			
Outros	<1500				
Al _{total}	>99 %				

Elemento	Especificado (ppm)					
Li	<0,03	Elucroscância do Rajos V				
В	<0,10	Fluorescencia de Kalos X				
С	<2000	Vantagons:				
Si	<9500					
Со	<10	•Análise multielementar; •Não destrutivo				
Mn	<500	Desuantagonsi				
Fe	<9500	Desvantagens:				
Cu	<500	 Baixa sensibilidade (elementos Z<22) Interferências de matriz (efeite interelementes) 				
Zn	<1000	interereneitas de matriz (eleito interelementos)				
Cd	<10					
Outros	<1500					
Al _{total}	>99 %					

Controle de pó de Al

Fluorescência de Raios X

Metodologias propostas para correção

- Adição e diluição de padrão;
- Métodos baseados no espalhamento da radiação;
- Sistema de calibração com padrões certificados de composição similar as amostras;
- •Métodos matemáticos;
- Coeficiente de influência;
- Parâmetros fundamentais ;
- ➤Calibração multivariada;
- ➢Rede neurais.

Materiais e Métodos

Cerca de 1g de amostra;
Cerca de 1,5 g de H₃BO₃;
Pressão 100 MPa

Pó de Al

Pastilha prensada

MCR – MBH Analytical Ltda.

Espectrômetro Rigaku RIX 3000 - WDXRF

MCR – MBH Analytical Ltda. (Mg, Si, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sn e Pb)

MCR – Alta pureza (99,99 %) (C à U)

Curva de sensibilidade instrumental

Espectrômetro Shimadzu 720 - EDXRF

MCR – MBH Analytical Ltda. (Mg, Si, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sn e Pb)

MCR – Alta pureza (99,99 %) (F à U)

Método de Algoritmo:

Distribuição espectral primária – fonte;
Coeficiente de absorção – (fotoelétrico e de massa)
Rendimento de fluorescência

Método de Parâmetros Fundamentais

$$I_{j} = I_{Pi} + I_{Si}$$
onde;
$$I_{i} = \text{intensidade teórica;}$$

$$I_{Pi} = \frac{K(\lambda_{i})}{\operatorname{sen\psi}_{2}} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{i}(\lambda)}{\lambda} I_{0}(\lambda) d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{K(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda_{j})}{\lambda} I_{0}(\lambda) Y d\lambda$$

$$I_{Si} = \frac{C(\lambda_{i})}{2\operatorname{sen\psi}_{2}} \sum_{j} \int_{\lambda \min}^{\lambda_{e}^{i}} \frac{Q_{j}(\lambda)Q(\lambda)}{\lambda} I_{0}(\lambda) Y d\lambda$$

SCAPIN, M. A. Aplicação da Difração e Fluorescência de Raios X (WDXRF): Ensaios em Argilominerais. Dissertação (Mestrado) - Instituto de Pesquisas Energéticas e Nucleares, São Paulo, 2003

Método de Parâmetros Fundamentais

Réplicas de dez medidas com o MRC Al/Mg 511 X GO 5 H2 – MBH Analytical Ltda.

Teste do critério de Chauvonet $|X_i-X| > k_n^* s$

Limite de determinação (LDM)
$$LDM = 2 * \sqrt{\frac{\sum_{i=1}^{N} (C_i - C)^2}{N-1}}$$

Precisão (U)
$$U = \pm t_{n-1\left(\frac{\alpha}{2}\right)} * \frac{s}{\sqrt{n}}$$

Erro relativo percentual (ER%)

$$ER\% = \frac{\bar{x}_{lab} - x_v}{x_v} * 100$$

Teste Z-score (Z)
$$Z = \frac{\bar{x}_{lab} - x_v}{\sqrt{\sigma_{lab}^2 + \sigma_v^2}}$$

DPR %

ER %

Z-score

	LOTE 24	LOTE 25	LOTE 25	LOTE 26	LOTE 27	LOTE 27
data	10/03/2009	12/06/2009	20/08/2009	24/09/2009	12/03/2010	24/05/2010
Al	99,84	99,82	99,83	99,86	99,79	99,82
Si	0.06	0.07	0.06	0.06	0.06	0.07
Fe	0,06	0,06	0,06	0,05	0,05	0,06
Ga	0,013	0,012	0,012	0,013	0,05	0,06
Zn	0,008	0,008	0,008	0,008	0,009	0,01
Ni	0,007	0,008	0,007	0,007	0,007	0,008
S	0,002	0,006	0,006	0,006	0,006	0,005
Mn	0,005	0,006	0,005	0,006	<0,005	<0,005
Cu	<0,005	<0,005	<0,005	<0,005	<0,005	0,005
Zr	0,002	0,002	0,002	<0,002	<0,002	<0,002
Co	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Cd	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Test Statistics t Statistic DF Prob>|t| B 1,0017530243751 6 0.35513602162717062 C 1,0019170547068 6 0.35506295171643776 D 1,0017882858088 6 0.35512031285003975 E 1,0016825860828 6 0.35516740316418238 F 1,0021282580759 6 0.35496888550293504 G 1,0024900890874 6 0.35480777866180102 Null Hypothesis: Mean = 0 Alternative Hypothesis: Mean > 0B: At the 0.05 level, the population mean is NOT significantly different with the test mean (0) C: At the 0.05 level, the population mean is NOT significantly different with the test mean (0) D: At the 0.05 level, the population mean is NOT significantly different with the test mean (0) E: At the 0.05 level, the population mean is NOT significantly different with the test mean (0) F: At the 0.05 level, the population mean is NOT significantly different with the test mean (0) G: At the 0.05 level, the population mean is NOT significantly different with the test mean (0)

4O método FP, tanto para o WDXRF quanto para o EDXRF, apresenta precisão, exatidão e limite de quantificação concordantes com o método de curva de calibração, demonstrando que é eficiente e eficaz para a determinação de Al_{total} e de impurezas em amostras de pó de alumínio, com a vantagem de não estar limitado apenas aos elementos certificados nos MRC.

OBRIGADO

Marcos Antonio Scapin

Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP) Av. Professor Lineu Prestes, 2242 05508-000 São Paulo, SP, Brasil Phone: 55 11 3133 – 9352 Fax: 55 11 3133 - 9249 E-mail: mascapin@ipen.br

