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ABSTRACT 

The analysis of a thermal stratification experiment was proposed as a XVII ENFIR Special Theme. In this 

experiment, cold water at 28 ºC is injected in the circuit which is filled with hot water at 221 ºC at 2.14 x 10
6
 Pa. 

CFD simulations were performed. Stratification and mixing were captured by the model. Results are presented 

in order to provide material for comparisons with the results of other simulations by different groups and also 

comparison with the experimental data.   

1. INTRODUCTION 

 

A CFD model was develop in order to attend the task proposed by Rezende et al. [1] as a 

Special Theme in XVII ENFIR.  

The model was developed using ANSYS-CFX
®

 [2] considering as many numerical tips as 

possible [3,4,5,6,7]. The following characteristics are in the numerical model: 

Domain: The domain was constructed using the information provided by the special theme 

group. Figures 1, 2 and 3 show the complete domain (symmetry), complete domain and a 

detail of the tube inside the steam generator vessel, respectively. 

 

Figure 1 – Geometrical model (Symmetry) 

 

Figure 2 – Geometrical model 
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Figure 3 – Detail of the tube inside the steam generator vessel (injection nozzle) 

 

Mesh: Several meshes were tested. A very refined mesh was chosen, however due to the time 

of the simulations we decided for a more simplified mesh with 414264 elements. Figures 4 to 

10 illustrate the mesh.  

 

 

Figure 4 – Mesh (Symmetry region) 
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Figure 5 – Mesh (complete geometry) 

 

 

Figure 6 – Mesh (Inlet detail 1) 
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Figure 7 – Mesh (Inlet detail 2) 

 

Figure 8 – Mesh (Inlet detail 3) 
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Figure 9 – Detail of the tube mesh inside the steam generator vessel (injection nozzle) 

 

 

Figure 10 – Detail of the tube mesh 

 

Boundary, initial and set up conditions: The following boundary and initial conditions were 

used; 

• Inter mass flow rate – 1.12 kg/s; 
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• Outlet pressure – 2.14 x 10
6  

Pa(abs); 

• Cold water injection temperature – 28 ºC and 

• Initial system temperature – 221 ºC. 

The standard κ ε−  approach and the turbulent buoyancy effects were considered in this 

model. The time step was set as 0.025 s for a simulation time of 300 s. Redlich-Kwong 

thermodynamics properties were used. Single precision, 10
-4

, were used as the solver 

precision and the convergence criterion, correspondingly. Simulation took, approximately, 

three and a half days in a Xeon dual processor E5520 family, 2.26GHz, with 48 gigabytes of 

memory.  Advection and transient scheme were calculated with second order terms and 

second order backward Euler terms, respectively.  

2. RESULTS 

Results are presented in terms of wall temperature, internal temperature and vertical probe 

temperatures for the stations I, II and III. Figures 11 to 19 illustrate it. Contour of temperature 

for 2 s, 25 s, 28.5 s, 50 s and 1000 s are presented in figures 20 to 24 using the same 

temperature scale which lower limit is 28 ºC and upper limit is 221 ºC. Figure 25 shows the 

velocity field for 28.5 s of simulation. Figure 26 presents a velocity field detail in the region 

of the tube inside the steam generator vessel (injection nozzle) using the same velocity scale 

presented in figure 25. 

 

 

 

Figure 11 – Wall temperature – Station I  
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Figure 12 – Wall temperature – Station II  

 

 

Figure 13 – Wall temperature – Station III  
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Figure 14 – Internal temperature – Station I  

 

 

Figure 15 – Internal temperature – Station II 
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 Figure 16 – Internal temperature – Station III 

 

 

Figure 17 – Vertical probe temperature – Station I 
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Figure 18 – Vertical probe temperature – Station II 

 

 

Figure 19 – Vertical probe temperature – Station III 
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Figure 20 – Temperature contour – 2 s 

 

 

Figure 21 – Temperature contour – 25 s 

 

 

 

 

 

Figure 22 – Temperature contour – 28.5 s 

 

 

 

Figure 23 – Temperature contour – 50 s 

 



INAC 2011, Belo Horizonte, MG, Brazil. 

 

 

 

 

Figure 24 – Temperature contour – 100 s 

 

 

 

Figure 25 – velocity field in the region of 

the tube inside the steam generator vessel 

(injection nozzle) - 28.5 s 

  

 

Figure 26 – velocity field detail in the region of the tube inside the steam generator vessel 

(injection nozzle) - 28.5 s 
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3. CONCLUSIONS 

This CFD model, although with a simplified mesh, was able to simulate the stratification 

phenomenon. A more complex mesh was developed, however it was not used for the 

simulations due to the computational time. Results are presented in terms of wall 

temperature, internal temperature, vertical probe temperature, temperature contours and 

velocity fields. 
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