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This work presents a monitoring algorithm using the Group Method for Data Handling 
(GMDH) that creates algebraic models for system characterization. The monitoring system 
was applied to the IEA-R1 experimental reactor at IPEN, Brazil. The IEA-R1 is a 5 MW 
pool-type research reactor that uses light water as coolant and moderator, and graphite as 
reflector. The GMDH provides a general framework for characterizing the relationship 
among a set of state variables of a process and is used for generating estimates of critical 
variables in an optimal data-driven model form. The monitoring system developed in this 
work was used to predict the IEA-R1 reactor hall dose rate in three different ways, using 
nuclear power, rod position and temperature variables combined two-by-two. The results 
obtained using the GMDH models agreed very well with the dose rate measurements, 
showing errors bounded in 5 percent. The error is minimum when the dose rate prediction is 
made using reactor power and temperature. 

Introduction 

During the last two decades, model-based fault diagnostics methods have received increasing 
attention in both research and application. This approach is based on the concept of analytical 
redundancy as opposed to physical redundancy (hardware or parallel), which uses 
measurements from redundant sensors for fault diagnostics purposes. Analytical redundancy 
makes use of the prediction of signals generated by the mathematical model of the system 
being considered. These predictions are compared with the actual measurements from system 
sensors. The comparison is made using the residual quantities, which provide the difference 
between the measured signals and signals generated by the mathematical model. 

In this work the models will be obtained by applying the Group Method of Data Handling 
(GMDH), which uses data generated for different normal conditions. These data are 
referenced as "fault-free database". The GMDH is based on sequential learning networks, 
which are networks of mathematical functions that characterize complex, nonlinear 
relationships in a compact and rapidly executable form. Such networks subdivide a problem 
into manageable sub-problems and then automatically apply advanced mapping techniques to 
solve each of these simple problems. 

For the current application, data are acquired from the IEA-R1 reactor Data Acquisition 
System (SAD). The monitoring function is independent of the Instrumentation and Control 
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panels indications installed in the Reactor Control Room. The SAD consists of a signal 
conditioning and processing module and a PC-based human-machine interface software. A 
total of 57 operational variables are monitored by the SAD. The monitoring system developed 
in this work was used to predict the IEA-R1 reactor hall dose rate, based on three process 
variables: nuclear power, rod position and temperature. The details of model prediction and 
reactor measurement techniques will be presented in the next sections. 

GMDH Models and Rational Function Approximation for State Prediction 

The Group Method of Data Handling (GMDH) is an algebraic method for predicting system 
states, controller and actuator functions [2]. The GMDH constructs a model of a desired 
output as a function of a set of related inputs from a subsystem, by a successive polynomial 
approximation. The general relationship has the form shown in Equation (1) where {xi, 
x2,...,xm} is a vector of input variables and y is the variable to be predicted. This formulation 
can be extended to the prediction of multiple outputs {yi, y2, ... , ynl. [1] 

m m 	m m m 
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(1) 

Figure 1 shows a typical node of a GMDH modeling layer with the basic quadratic predictor. 
The model parameters such as {A,B,C,D,E,F1, are estimated from a least-squares fit using N 
observations of the input and output variables. 

Figure 1. A node of the GMDH model structure. This node uses a second 
order polynomial transfer function. 

Figure 2 illustrates that the predicted values of Y are propagated successively to higher layers 
of the algorithm, with the approximation of Ypred improving at successive stages. At each 
stage of the approximation, Ypred is formed from pairs of input signals (to that layer), and 



new values of the predicted variable are propagated pairwise to the next layer. The iteration is 
continued until the mean-squared error between the predicted and the measured values of the 
output variable attains a desired value. 

Figure 2. Self-organizing GMDH model structure with m-inputs and K-layers. 

Parsimony in model fitting is achieved by comparing the fractional prediction errors from one 
generation to the next, and by terminating the algorithm when the error is a minimum or when 
the errors from successive approximation stages is less than a preset limit. 

The following procedure is used for a given set of n observations of the m independent 
variables (xi, x2, , xm) and their associated matrix of dependent values {yi, y2, ... , y„} (a 
multiple input single output system). 

i) Subdivide the data into two distinct subsets. One for training and other for testing 
(Figure 3). 

ii) For each pair of input variables x, and xi and the associated output y of the training set, 
compute the regression polynomial that best fits the dependent observations y in the 
training set. 

iii) For each regression, evaluate the polynomial for all n observations. Store these n new 
observations into a new matrix Z. The other columns of Z are computed in a similar 



X 

Training 
Observations 

Checking 
Observations 

Y2 

ynt 

 

XI I 	X12 	 XI m 

X2I 	X22 	 X2m 

Xnt,1 	XI nt,2 	 Xpt,In 

  

Xn1 	Xn2 	 Xnm 

      

manner. These variables can be interpreted as new improved variables that have better 
predictability than those of the original generation xi, x2, ... , xm. 

iv) Screening out the least effective variables: For each column of Z matrix, the 
algorithm computes the root-mean-square value (also called the regularity criterion) rj 
over the test data set and is given by 

nt 

Ev_Z 
2 	i=1  = 

nt 
Eyi2 

i=1 

v) Order the columns of Z according to increasing ri, and then pick those columns of Z 
satisfying ri < R (where R is some prescribed value chosen by the user) to replace the 
original columns of X. 

vi) Testing for optimality: The above process is repeated and new generations are 
obtained until the method starts overfitting the data set. One can plot the smallest of 
the ri's computed in each generation and compare it with the smallest rj's of the 
previous generation. The process should stop when the ri's of the most recent 
generation start to have an increasing trend (Figure 4). 

Figure 3. Input to the GMDH algorithm. The data is split into two sets. The first is 
used to fit the GMDH model and the second is used to evaluate the polynomial to avoid 
model overfitting. 
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Figure 4. GMDH Training stopping criterion. 

The set of polynomial functions is normally sufficient in finding some of the relationships of 
interest. For cases where the relationship is of the form of a rational function approximation, 
the polynomial regression equation is not adequate. The complete set of terms used by the 
GMDH in this work has the following form. There are eleven different terms used in this 
model. 

11,(x, ,x2 Mx; ,4 ) , (x,x2 ) ,(-1 
,_1 ),( 12, 12),( 	1 	1 „ xi x2 , 
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Once all quadratic regression polynomials are stored in the computer, it is possible to 
compute the prediction Si of the dependent variable y from these regressions. An algorithm 
was developed to select different combinations of basic functions showed in equation 3. The 
selected combination of functions is then used by the GMDH regression equation in a 
systematic manner. All possible combinations of terms are tested, such as one by one, two by 
two, three by three, etc. A binary number generator was used to make this selection 
automatically. For the case of a maximum of k candidate terms, this binary number goes 
from 1 to 2k-1. 

x 1 	x2  ),( XI + X2  Xi + X2 / 

9 	 ), ksin(x1),sin(x2),cos(x1),cos(x2)) 
+ x2 xi + x2 	xi 	x2 
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For each possible combination of the basic functions, the GMDH algorithm estimates the 
value of the dependent variable. Then an overall residual value between the data points and 
the predicted value of the best regression equation found by the GMDH is computed. 

IEA-Rl Experimental Reactor 

The monitoring system was applied to the IEA-Rl experimental reactor at IPEN, Brazil. 
Figure 5 shows, schematically, the IEA-Rl reactor primary and secondary circuits and the 
sensors. For the development of the monitoring algorithm using the Group Method for Data 
Handling (GMDH), data is being collected from the IEA-Rl reactor's SAD (Data Acquisition 
System). The IEA-Rl Data Acquisition System (SAD) [3] has the main objective of 
monitoring and registering the main reactor operational parameters. The monitoring function 
is independent of the Instrumentation and Control panels indications installed in the Reactor 
Control Room. The SAD is composed by a signal conditioning and processing module and a 
PC-based man-machine interface software. 

The SAD signals are compared with level alarm setting points and when these levels are 
violated an indication of occurrence is produced. A total of 57 operational variables are 
monitored by the SAD, including temperature, flow, level, pressure, radiation, nuclear power 
and rod position variables. The variables monitored by the SAD are listed in Table 1. The 
SAD allows to record data bases containing the time history of all monitored process 
variables. This database will be used to perform plant condition monitoring and sensor 
monitoring for fault detection. Figure 6 shows the IEA-R1 SAD. 

Table 1. SAD Variables 

Variables Tags Description 
Z 1 to Z4 control and safety rod positions 
N1 to N8 period and % nuclear power 
Fl to F3 flow rates 

DP core pressure drop 
C 1 to C2 pool water conductivity 

Ll decay tank water level 
R1 to R9 area dose rates 

R10 to R14 ventilation system dose rates 
T1 to T24 temperatures 

All variables are acquired at every 1-minute, during one cycle operation, from start up to shut 
down. The IEA-Rl reactor full cycle is one-week long, starting on Monday and ending on 
Thursday. During the full cycle operating there are non-stationary periods of time: the start-
up, moving control rod positions and the shutdown period. Only the steady-state reactor 
operation period was considered to build the model. Each variable has 1500 samples and 
shows roughly one cycle operation, from start up to shut down. 
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Figure 5 - Schematic Diagram of the IEA-Rl Reactor. 
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Figure 6. Acquisition Data System. 

Development of a Mathematical Model of the IEA-Rl Experimental Reactor 

The GMDH method finds a mathematical expression which maps a given dependent variable 
y to a set of independent variables {xi, x2, ... , xkl . The user qualitatively defines which 
independent variables are physically related to the dependent variable y. This definition can 
come from the knowledge of a system engineer, from theoretical simulations, or even from 
mathematical tools such as correlation coefficients. 

The mathematical relationships generated by the GMDH are used for predicting the output 
value of each loop component. This predicted value (also called the analytical measurement) 
is compared to actual measurements. 

In this work, the GMDH method was used to construct a model to predict the radiation dose 
rate, using control rod position, reactor power and temperature values. The radiation dose 
rate was predicted in three different ways, using control rod position and reactor power, rod 
position and temperature, and temperature and nuclear power. The IPEN experimental 



reactor's SAD monitors 14 nuclear radiation variables. The radiation dose rate variable 
predicted in this work is the dose rate at the core support bridge, right side. The nuclear dose 
rate is predicted based on the safety rod 1 position, the % load (automatic mode) and pool 
water temperature above the core. 

This work used data collected from August 2000 to September 2000, being 4 weeks in 
August, and two weeks in September. The GMDH model was built using August 07 loop 
data. The start-up data is not considered to build the model. 

The first step is to collect data from the system for normal operating conditions. The August 
07 loop data was stored in a matrix. Each column represents a system variable and each row 
represents an observation. For better efficiency in the development of GMDH models, these 
data should be normalized. 

For each chosen set of basic functions, the GMDH algorithm is processed. The main task of 
the GMDH algorithm is to find the model that best maps the input/output set for given basic 
functions. After finding the best model, a residual value is computed between the predicted 
value and the target value. Table 2 shows the terms used in each model. Table 2 also shows 
the number of layers used to build the model. 

Table 2. Terms used in each model to predict dose rate (equation 3). 
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of 
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After obtaining the mathematical relationship among a set of loop variables, the model can be 
used for generating an analytical redundant measurement. This redundant measurement is the 
prediction of the GMDH model. The algorithm splits the input data into two sets of data. The 
first set is used to find the best model, while the second monitors for model over fitting. 

These models were used to predict the IEA-R1 reactor's radiation dose rate. The GMDH 
method was applied to the experimental data from the week operation cycle starting in 
September 11, predicting reactor dose rate during the steady-state operation period. At every 
minute of data acquisition, the GMDH model calculates the predicted dose rate, using nuclear 
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power, rod position and temperature at this time. Figure 7 shows the error between IEA-Rl 
measured radiation dose rate, and predicted dose rate using GMDH model. The dose rate 
prediction using rod position and nuclear power resulted in an error bounded in 6 percent; the 
dose rate prediction using rod position and temperature resulted in an error bounded in 2 
percent, and the dose rate prediction using temperature and nuclear power resulted in an error 
bounded in 0.15 percent. 

Figure 7 - Error between GMDH model prediction and measured dose, using the three 
combinations of input data: rod position and nuclear power, rod position and temperature, and 
temperature and nuclear power. 

Conclusions and Future Work 

In this work the IPEN IEAR1 reactor dose rate was predicted using nuclear power, rod 
position and temperature variables. The prediction was made using the Group Method for 
Data Handling (GMDH) that creates algebraic models for system characterization. For the 
development of the monitoring algorithm, data is being collected from the IEA-Rl reactor's 
SAD (Data Acquisition System). The model was built using data from August 07 reactor full 
cycle operation. 

The monitoring algorithm was then tested for the operation cycle starting in September 1 1 th, 
showing errors less than 6 percent between measured and predicted values. This can 
demonstrate that the methodology is adequate for dose rate predictions. The errors between 
measured and predicted values were different when using different variables to predict the 



dose rate. The best results were achieved when the dose rate prediction is made using reactor 
power and temperature. Looks like it is better not to use rod position. 

This work is a first step towards a Monitoring and Fault Detection System for the IPEN 
nuclear reactor IEAR1. This work started at the Nuclear Engineering Department at the 
University of Tennessee, where a Single and Multiple Fault Detection System was developed 
for an Experimental Control Water Loop using GMDH model [1] [4]. All of these redundant 
measurements can help operators' decisions regarding initiation of necessary control actions, 
improving the reliability of the operation system. 

References 

[1] Ferreira, P. B., " Incipient Fault Detection and Isolation of Sensors and Field Devices", 
Ph. D. Dissertation, University of Tennessee, August 1999. 

[2] Farlow, S. J., Self-organizing Methods in Modeling: GMDH-type Algorithms, New 
York: M. Dekker, 1984. 

[3] Tanomaru, N., Hiromoto, Y., IEA-Rl Reactor's Acquisition Data System - Installation 
and Operation Manual, SP, (1995). 

[4] Upadhyaya, B. R., Gonçalves, I. M. P., Detection and Isolation of Multiple Faults in 
Nuclear Plant Systems, 2000 ANS American Nuclear Society Annual Meeting, San 
Diego, California, June 4-8, 2000. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

