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Abstract— This paper shows an application to Multicomponent
Solutions of a new, Bond-Graph based formalism for CFD prob-
lems. It is shown that, for the multivelocity model, the result-
ing independent variables are the densities and velocities of the
components and the entropy per unit volume. The state equa-
tions are derived, showing the potentials and constitutive rela-
tions needed to describe a multicomponent system.
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I. INTRODUCTION

In recent works (1][2] a theoretical development of a gen-
eral Bond Graph approach for CFD was presented. This new
methodology, which was called BG-CFD (3], is a result of the
right combination of Bond-Graph concepts with elements of nu-
merical methods. In this paper, the methodology described
above is extended to multicomponent solution systems.

A classical mixture, or solution, is a material in which the
components are not physically distinct, that is, the mixing is at
molecular level. In this case, when described using Continuum
Theory, all the components of the solutions are able to occupy
the same region of space at the same time [4] and can be as-
sumed 1o be in thermodynamic equilibrium. In a solution, each
component has its own velocity, density and internal energy.
The balance principles for the constituents resemble those for a
single component, except that the constituents are allowed to
interact with one another.

Concerning the nomenclature, bold letters will be used to
define first order tensors ( V{9, pf,‘), etc.j. Column vectors as-
sociated to nodal values will be denoted by single underscored
plain or bold type ( mi), S, V& =iV etc) while multi-
dimensional matrices will be identiﬁed—‘:y_' double underscored
plain wpe (e.g. MY, 92, etc.). Seconc order tensors will be

denoted by bold. double underscored type (e.g. ¥, I). Ein-
stein convention of summation over repeated indices is not used.

[1. INDEPENDENT VARIABLES AND
POTENTIALS

A. Internal Energy per Unit Volume

For a multicomponent solution with r zomponents, the in-
ternal =nergy per unit volume u, can be written as a function
of the entropy per unit volume $, and the component densities
P

Uy = Uy (80, P, oy p7) (1)

The following potentials are defined:
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where 8 is the temperature and ") is tha ith-species chemical

potential per unit mass. The pressure P -an be obtained from
the Euler equation [3]:

U =08, — P+ Y ot (3)

i=1

The time derivative of the irternal energy per unit volume
can be written as:

duy _~ 0% s,
Bt =2 & o )

=1
An analog description is adcped for the internal energy per
unit volume corresponding to the ith-component u.s,'):

ul? =ul(s.. o, .., o) (5)

The following potentials are ceined:
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where 7(" and y(‘j) can be regarced as ith-component contri-
butions to the temperature arnd czemical potentials. From the
Euler equation:

ul) = 705, = PY 3 ) ) )
=1

where P®) is the ith-compcrent contribution to the pressure.
Since:

U = ‘: ) (®)

the following relations are ver:

6= i,rm o = Z D
i=t =

As an example, the pote assoclated to the entropic rep-
resentation of the ith-comp ernal erergy are calculated
in Section VI for the case ¢ z mixzure of ideal gases.

P= Z PY - (9)
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X

B. Kinetic Coenergy per Unit Volume

The kinetic energy per uzit v:lime t] <an be written as a
function of the component Zzzsizizs and velocities V:

(10)

In a companion paper {%:
which the dynamics of a =
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and the mass flux of each :
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oonent solution is described
: mass) velocity of the mixture
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are modeled using diffusion

theory. The following potentizis zr2 defined:
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The time derivative of th2 xizz1i:
can be written as:

8t /[ Op" o avii
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coenergy per unit volume
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C. Total Energy per Unit Volume

The total energy per unit volume e”
energy and the kinetic coenergy:

includes the internail

ey =uy +1, (14)
The time derivative of the total energy per unit volume can
be written as:
de; O 5 oVl
Co _ g% _ O, ——1 (15
a ot & ot |
Since the internal energy and kinetic coenergy are continuous
functions of the independent variables, the potentials multiply-
ing the time derivatives of the independent variables satisfy both
constitutive and Maxwell relations [5].

if(“(i) x9) Qg% +p

I1I. BALANCE EQUATIONS

The balance equations are power equations corresponding to
each one of the terms that contributes to the time derivative
of the total energy per unit volume. For multicomponent so-
lutions, the balance equations can be derived from the mass,

momentum and energy conservation equation corresponding to
each component [4]:
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where C, £0) and ¥ are correspondingly the mass, mo-
mentum and energy interaction terms ({)er unit volume), & is
the heat power source per unit mass, G'*) is the body force, q'”
is the heat flux and T!") is the stress state for the ith- -component.

Since there are nc distributional sources, it is postulated that
the sum of the interactions of mass, momentum and energy

vanish, 'Hat is:
NEETED FLEURD SR
The stress state can be expressed in terms of the pressure and
viscous zomponent 'V as;

IV = - pOL+ 70 (20)
Taking into account the conservation equations and Egs. (4)
and (7). the balance squations result:
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According to the balance equatizzs it :az z2 seen that it
is necessary to know, for each comp:
ing from the entropic representaticz —e inzemal energy and
from the kinetic coenergy, as well &5 122 mass and momentum
interaction terms, the heat flux, tzz Z=a: power source and the
viscous stress.

The balance equations show cz= zI :z2 aZvantages of the
BG-CFD methodology, that is, the regresentaticn of the power
structure of the system. In the balan:e squarizzs there can be
identified three type of terms: diverz . sourze and coupling
terms. The divergence terms take intc accoum: the power in-
troduced in the system through the tcuzdary -onditions. The
source terms constitute the different power scurces, external to
the system. Finally, the coupling terrs ==present power transfer
between the velocity, mass and entrozy equa“ons, these cou-
pling terms appear, with opposite 5. in pairs of balance
equations. Taking into account Ec. [IZ) it verifies that cou-
pling terms cancel out when the baia~:2 equations are added,
resulting:

aev Z{ v {(uﬁ,“*l’{')

+v.(r=(_2.v"’) = V.q9+ 06V 0 e) ()

The cancellation of the coupling :2rm=s means :hat they influ-
ence the power distribution among :z2 Z:fferec: ports but not
the total power in the system.

152 cotentials com-
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1V. DISCRETIZATION

The independent variables are discre:ized. iz zae domain vol-
ume 2, in terms of time-dependent no2z vaiues \pg), v and
341) and interpolation (shape) fun::iczs
o), and @,):

sorrespondingly ‘ng)’

8

n -

= AW =p
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(25)
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stz W, ro=sg, (27)
For any position r € Q the shape “m:i:cxs Zeve the following
properties:
"g) T
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For simplicity in Lhe treatmem Il
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one for the reference node position.
with respect to the distance from =
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restriction, it is possible to work w
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:aiy decreasing
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o =0l M §=0,.8 (29)
The diagonal matﬁce:— _(_2,(,_‘) and % are defined as:
oy - Qﬂk" / D 61n d2 (30)
a
Q, = (), = / 01 61m Q2 (31)

Q

where 8;; is the Kronecker’s delta (8;; = 1ifi =j, §;; =0
otherwise). The system mass for the ith-component and entropy
are related to the integrated variables as follows:

(4)
"P N .
m® = /p(-) =3 m
Q k=1
Ns
= /sud0=251
Q l=1

The system total energy E* is defined as the sum of the in-
ternal energy U and the kinetic coenergy T™:

(32)

(33)

E"=UE n, ..., m)
+ T (@Y, ., m", vV, ., vi) (34)
where:
E‘:/e;dn : L’=/uvdﬂ ; T‘=/t,‘,dQ (35)
Q Q Q

From Eq. (35), it can be easily shown that the system kinetic
coenergy can be expressed as the following bilinear form:

= 3 YOI MO v (36)
=l

where M) is the inertia matrix corresponding to the ith-
component:

AR {M"'"}m /p( Vo), el d (37)
We define the following potentials:
o= (aL L b /o . dQ (38)
08/ pn = =
Q
L (ﬁ%) O V ORGSR
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— Q
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(LLARA m(}#u V“‘) = Q

(41)

where 8, p_ K% 2nd Pﬂ are correspondingly nodal vec-
tors of temperature and chemical potential per unit mass. ki-
netic coenergy per unit mass and linear momentum for the ith-
component. It is important to notice that Eq. (41) defines,
in the Bond-Graph terminology, a modulated multibond trans-
former relating the nodal vectors of velocity and linear momen-
tum for the ith-compcnent, as shown in Fig. 1; in this and in
the following figures, it is drawn the causality resulting from the
Bond-Graph causality assignment procedure [7]. According to

F(:) M(i) V-:,

::V():IMTF::jI

Fig. 1. Moduiated ith-component inertial transformer. .

the power conservation across the transformer, the generalized
effort is given by:

FO =y ¥ (42)

According to Eq. (41), the nodal vector of ith-component
linear momentum can be regarded as a system volume integral of
the local values weighted by the velocity interpolation function.

It can be easily shown that the system ith-component linear
momentum can be obtained as:

-)_/’ 0 4 = ZP

According to Egs. (38) to (40), the nodai vectors 8, ﬂ and
K% can be regarded as system volume averages of the corre-
sponding local values, weighted by the interpolation functions.
The time derivative of the system total energy can be written

) me Y

as:
B =oT S+Z [( ) 4_K(-))
J

It can also be shown that the volume integrals of the left side
terms of Eqgs. (21) to (23) can be calculated as:

(43)

(44)

‘ i a ) [ (l‘\r (3
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The Maxwell relations corresponding tc =z system tctal en-
ergy arise from the equality of the mixed czrtial derivatives of
the system total ener§y expressed as a fun<:isn of the indepen-
dent variables S, (" and V. These variables are regarded
as the state variables for the BG-CFD metzzdology:

80 opl "

—_— ! (48
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The constitutive relations, Eqs. (38) to (< .. and the \Maxwell
relations, Eqgs. (48) to (50) define, in the B:.2-Graph terminol-
ogy, a muitibond IC-field associated to the svstem total energy,
as shown in Flg 2. This field has r inertia. zorts (the velocity
ports) and 7 — 1 capacitive ports (the entr=py port and the r
mass ports). The generalized effort variables zssceiated to these

ports are Vm, 8 and (p(‘) + KU ) while <z generalized flow
variables are correspondingly ﬁ , § and 'Y
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Fig. 2. System IC-field representing energy storage.

For the sake of ccnvenience, we also define the following di-
agonal matrices, whose elements are the components of the cor-
responding vectors <t nodal potentials:

g= {e},n =6y §in (51)
6= (i) =9 6 @
o= {x0), =KD s (58

V. SYSTEM STATE EQUATIONS

The system state equations are obtained by systematically
volume integrating -~e balance equations corresponding to each
port of the IC-field representing the total system energy. The
expressions for the system state equations are:

20 _ (T () () (i)

m " =y + My, + Moy + m(é) (54)

() _ i)t ()(3) (i) (i)

v = O (FPY - FQ - F
-Fp - FQ - FE) (53)
_S:.s"(ir)+SQF—S"_p-s-_$'2+&—S'_u—SCK+_5"_F (56)

The different ter=s in the system state equations (54) to (56)
arise from integratiz=s over the domain volume Q or the domain
boundary I'. Their Zz{nitions are:
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Although the complete Bond Graph is not shown here. it can
be said that the state equations (54) and (56) are represented,
in the Bond-Graph terminology, by multibond 0-junctions, in
which correspondingly the ith-component mass rate nccal vec-
tors and the entropy rate nodal vector are added (see Figs. 3
and 4). Eq. (35) is represented, in the Bond-Graph terminol-
ogy, by a multibond 1-junction, in which the forces are added
(see Fig. 5). A muitibond O-junction is also used tc represent
Egs. (71) and (72).

The convective (upwind) nature of the fluid equaticns is han-
dled through the definition of density and entropy weight func-
tions, namely wf,i) and w,, which are introduced to satisfy the
power interchanged by the system through the boundary con-
ditions, as well as to share the importance of different power



Fig.3. O-junction representing ths balance equation at the ith-component
mass port,

Sp+8,+S,
:Q:J [——18
VY

Sy +Sax
Fig. 4. O-junction representing the balance equation at the entropy port.

terms among neighboring nodes. In the discretization proce-
dure, all the terms of the ith-component mass balance equation
and entropy balance equation were multiplied correspondingly
by w,(,') and w,; although this procedure has the advantage that
the steady-state balance equations are satisfied locally for the
different nodes, other discretization strategies are possible and
should be investigated. This concept was successfully applied to
convection-diffusion problems [8](3]. It is very interesting to no-
tice that, according to this Bond-Graph methodclogy, no weight
functions result for the velocity state equations.

As in [1], all kind of boundary conditions can be handled
consistently through the terms representing surface integrals
(e (r)( 9, F(P)(') nd ig:) and can be represented (in the
Bond-Graph terminology) either as generalized modulated ef-
fort sources at the inertial ports or modulated flow sources at

{1y ) U]
F}" +F{ +F}

FMO +Fy Fu
Se— 1 Y

V(u

Fig. 5. l-junction representing the balance equation at the ith-component
velocity port.

M(')S

columns) are defined as:

the capacitive ports. as shown in Figs. 3 1o 3.

The discretized representation of the power coupling appear-
ing in the balance equations per unit volume is performed
through the coupling matrices, which relate generalized vari-
ables whose product gives rise to power terms appearing in more
than one port. Depending on the variables being related, these
matrices define, in the Bond-Graph terminology, power conserv-
ing two-port elements (modulated transformers or modulated
gyrators), as shown in Figs. 6 to 8.

F(l) +F(D +F(l) M(‘)
Izzﬁw MTF I::

S(l) +S(f) +S(f)

Fig. 6. Power coupling between the ith-component velocity and entropy
ports.

Fig. 7. Power coupling between the ith-component entropy and mass
ports.
FU) MS{?V p'(l: +KL
=\ MTF |::&
V()
Fig. 8. Power coupling between 1he ith-component velocity and mass
ports.

It can be shown that the relationships corresponding to Figs.
6 to 8 are:

FO-FY - F9 - vl 0 (79)
55 -85 - U = \zgg.T. v (80)
$¢ - S8k = MBs (u - KY) (81)
i +ml = M8 (82)

P =m (o0 - kO (83)
m = M, " v (84)

L
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Since the coupling matrices relate ncdal vectors which may
have different sizes, they are rectangular and may be not ib-
versible, setting a restriction in the allowable causalities. For
instance, from Fig. 8 and Eqs. (79) and (80) it can be seen that
the input variables to the ports of the modulated transformer
must be © and V(‘), while the output variables result corre-
spondingly the nodal forces and the nodal entropy rates for the
ith-component.

Finally, initial conditions are needed for the nodal vectors
of state variables. If initial conditions are given as continuous
functions, these nodal vectors are determined in such a way
that the ith-component total mass and momentum, as well as
the total entropy, is kept constant after the discretization.

VI. MIXTURE OF IDEAL GASES

As an application example, the potentials defined in Section
are calculated for a multicomponent solution (mixture) of ideal

gases. The entropic representation of the internal energy for an
ideal gas is [5}:

() . (i) (6
M_p 0, P / 0 (g g
Uy = ===U,q + —— .’ (6" d8 88)
© T T M Jg, < ) (
L IPNC) B (i) 8 () g o) ®
= P, P s’ (0) o 20 £ (09
* ; Lg) 0T MO /ao N VO WO

(89)
where R is a universal constant, 8o are the temperature at a
reference state, pg‘), uffg and sffg are ccrrespondingly the den-
sity, internal energy per unit volume an< entropy per unit vol-
ume “or the ith-component at the reference state, M) is the
ith-ccmponent molar mass and cf,‘) is tze ith-component spe-
.2at at constant volume (functicn =i temperature only).
i%%) and (89) are a representation - Eq. (%) in paramet-
ric fcrm. being the parameter the temgparature 8. From this
representation, the potentials result:
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r p(J) .
—_—
<' MG ™ )
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where the total pressure results:

From Eqs. (90) and (92), it can be seen that the contributions
to the total temperature and pressure from the ith-component

are weighted-by the product of the motar-density and the specific
heat.

VII. CONCLUSIONS

In this paper, the BG-CFD methodology was extended to
Multicomponent Solutions. The multivelocity model were pre-
sented, leaving the presentation of the diffusion model for a
separate contribution [6].

Based on the total energy per unit volume, the BG-CFD
methodology allowed (o define a set of independent variables,

potentials and constitutive relations needed to describe a mul-
ticomponent system.

The state equations were obtained by systematically integrat-
ing a set of power balance equations. These balance equations,
obtained from Continuum Theory, take into account all phys-
ical effects (convection, heat transfer. compressibility, inertia,
reaction, etc.) encountered in multicomponent solutions. The
resulting Bond Graph represents the power structure of the sys-
tem, showing energy storage, power interchange through the
boundary conditions, power sources and power couplings be-
tween the different ports.

The author believes that the BG-CFD methodology is the
foundation of a bridge between Bond Graphs and Computa-
tional Fluid Dynamies. It is hoped that the findings of this pa-
per encourage other researchers tc use this formalism in more
specific problems.
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