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Abstract—This paper shows an application to Multicomponent  
Solutions of a new, Bond-Graph based formalism for CFD prob-
lems. It is shown that, for the multivelocity model, the result-
ing independent variables are the densities and velocities of the  

components and the entropy per unit volume. The state equa-
tions are derived, showing the potentials and constitutive rela-
tions needed to describe a multicomponent system.  
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I. INTRODUCTION 

In recent works [1](2] a theoretical development of a gen-
eral Bond Graph approach for CFD was presented. This new  
methodology, which was called BG -CFD [3], is a result of the  
right combination of Bond-Graph concepts with elements of nu-
merical methods. In this paper, the methodology described  
above is extended to multicomponent solution systems.  

A classical mixture, or solution, is a material in which the  
components are not physically distinct, that is, the mixing is at  
molecular level. In this case, when described using Continuum  
Theory, all the components of the solutions are able to occupy  
the same region of space at the same time [4] and can be as-
sumed to be in thermodynamic equilibrium. In a solution, each  
component has its own velocity, density and internal energy.  
The balance principles for the constituents resemble those for a  
single component, except that the constituents are allowed to  
interact with one another.  

Concerning the nomenclature, bold letters will be used to  
define first order tensors (V (i) , p!' ) , etc.). Column vectors as-
sociated to nodal values will be denoted by single underscored 

 plain or bold type ( 771P ) ,  S(') , V(i) , etc.) while multi-
dimensional matrices will be identified . double underscored 

 plain type (e.g. M ( ' ) , c2' ) , etc.). Second order tensors will be  

denoted by bold, double underscored type (e.g. r (i) , I). Ein- 
stein convention of summation over repeated indices is not used.  

The time derivative of the internal energy per unit volume  

can be written as:  

— 	µ( ) aát) 9  ãt 	(4)  
i=1  

An analog description is adopted for the internal energy per  
unit volume corresponding to the ith-component u;' ) :  

u;,`)  = uc' ) (s r . p ll) , ..., P (r) )  
The following potentials are defined:  

_ âu;2 	 ate')  (^) 	 u(ii) _ 	 ( ) a — 	 — 	̂) 	
6  

PU) 

where r (i)  and A(ii )  can be regarded as ith-component contri-
butions to the temperature and chemical potentials. From the 
Euler equation: 

4L( ' )  =  7,0) so —  P(,) _ ::  L  
j=1  

where P( ')  is the ith-component contribution to the pressure. 
Since: 

u^. =Eu;.')  
the following relations are verified: 

r 	 - 

(i) 	J 	 ) 6 =^ r i  µ( = 
 

i=1  

As an example, the potentials associated tc the entropic rep-
resentation of the ith-compcn_n::nvernal energy are calculated 
in Section VI for the case o: a ^^x:ure of ideal gases. 

B. Kinetic Coenergy per Unit Volume  

The kinetic energy per 	.. met , can be written as a  
function of the component decides and velocities V ( ' ) : 

(5 )  

(7)  

II. INDEPENDENT VARIABLES AND  
POTENTIALS   = 	

,( ^ )2 tv ^^^` ^  (10)  

A. Internal Energy per Unit Volume 

For a multicomponent solution with r components, the in-
ternal energy per unit volume u„ can be written as a function  
of the entropy per unit volume s„ and the component densities  
p( ' ) :  

	

uv = uv(so, P(1)  ..., P'' ) ) 
	

(1)  
The following potentials are defined:  

9 = (
° ) 	; !.L 	= f 	̀  ,I 	 (2) asv  P(> 	 ap" i .,,, v l3*ti  

where 0 is the temperature and µ 1i)  is the ith-species chemical  
potential per unit mass. The pressure P :an be obtained from  
the Euier equation [5]:  

In a companion paper [é. : s presented an approximation in  

which the dynamics of a rn___oonent solution is described 
in terms of the average (center r:: mass) velocity of the mixture 
and the mass flux of each =rent relative to the average 
velocity; these relative mass = -;xes are modeled using diffusion 
theory. The following poten:'.a_s are defined:  

( ' ) = C at; 
 ap( ' . 

P; 	
at, 	

= p ''  V ('1 	(12) 
(917(''V '=, 1  

The time derivative of the ne:i: coenergy per unit volume  
can be written as:  



C. Total Energy per Unit Volume  

The total energy per unit volume e' includes the internal  
energy and the kinetic coenergy:  

e;,=u„+t 	 (14)  
The time derivative of the total energy per unit volume can  

be written as:  

at =g
ag 

- z- ¡¡^(`)  ^(`)` ad') + Pv') a' • 5)1 

i=11 	
J 	 ^ 

Since the internai energy and kinetic coenergy are continuous  

functions of the independent variables, the potentials multiply-
ing the time derivatives of the independent variables satisfy both  

constitutive and Maxwell relations [5].  

III. BALANCE EQUATIONS  

The balance equations are power equations corresponding to  
each one of the terms that contributes to the time derivative  

of the total energy per unit volume. For multicomponent so-
lutions, the balance equations can be derived from the mass,  
momentum and energy conservation equation corresponding to  

each component [4]:  

ap(1̂  = —v. (p(i)  V(i) ) +C(i)  

= —p(') V(i).vV(i) + v. T(i) 
at  

+p(`)  G(')  +  f 	C (`)  V(i)  

at _ -v. (uv')  v( ` ) ) - f ('). V ( ' )  + c“) 2 vi)2  

+T(i)  : VV( ` )  + p( `)  V° — V.q° )  + E( ') 	(18)  
where C( ') , f ( ` )  and E( ')  are correspondingly the mass, mo-

mentum and energy interaction terms (per unit volume), 1) (i)  is  
the heat power source per unit mass, G (i)  is the body force, q ( ' )  
is the heat flux and T(i)  is the stress state for the ith-component.  

Since there are no distributional sources, it is postulated that  
the sum of the interactions of mass, momentum and energy  
vanish, that is:  

r E  co) = 0 , E f ( ')  = 0 ; E E 0) = o 	(19)  
i=1 	i=1 	i=1.  

The stress state can be expressed in terms of the pressure and  
viscous component r  i)  as:  

T( ` )  = —P ( ' )  I + r (i) 	 (20)  
Taking into accent the conservation equations and Eqs. (4)  

and (7), the balance equations result:  
( k 	 at (i) 1  k( ') ) 

a
t») _ -v [p(i) (11(i) -ffi, c (i)) v ol  

J  

-c( ') (p .o )  - K(`)) - p( ' )  V( ' ) .V c10  + p( ' )  V ( ' ) .Vic ( ` ) 	(21)  

P;`)• av(' = v .  (r(i)  . v ( ') ) — p ( `)  V ( ') .VK ( ')et  

—VW .C7p ( ' )  + f ( ' ) .V ( ` )  

— r(i) . 7V(i) — 2C( ')  K ( ' )  + p( ' )  G°) . V i) 	(22)  

asv 	jr r 	q(i)  ± a 	= L  -v. 1 	7r  

E 
p '.i)  p(i) 1 v(i) ] ± V( ' ) .vP( ' )  

i=1 	J  

-f ( i )  V (`) 	 VV( ' )  + 2C( ' )  K ( ' ) 

 —G'( ` )  (µ(') —  K ( ' ) )  —  p(`)  V(`).vµ(') +p(')  (D (') 
 

According to the balance equal:ins :::an :e seen that it  
is necessary to know, for each com?onen:.:he potentials com-
ing from the entropic representation :.::he internal energy and  
from the kinetic coenergy, as well as :he mass and momentum  
interaction terms, the heat flux, :ne bas: power source and the  
viscous stress.  

The balance equations show —One c::he advantages of the  
BG-CFD methodology, that is, the rep:  sentation of the power  
structure of the system. In the baia=:e equatiors there can be  
identified three type of terms: diverge=:e. sou-.e and coupling  
terms. The divergence terms take in:c account the power in-
troduced in the system through the boundary =editions. The  
source terms constitute the different power sauces, external to  
the system. Finally, the coupling to ms represent power transfer  
between the velocity, mass and entrc y equations; these cou-
pling terms appear, with opposite signs. in pairs of balance  
equations. Taking into account Ec. : _5) it verifies that cou-
pling terms cancel out when the baian:e equations are added,  
resulting:  

+v. (r̂ i) . V ( ') ) — v.q ( ')  + p( ` )  G`'  . ^^"  —p - ' )  

aev  — 	¡ 
at 	

—v i —v.  [(ui,')  + P”' — 
i=1 ` 

 

v(01 
 

The cancellation of the coupling ter-_-.5   means that they influ-
ence the power distribution among the mere` ports but not  

the total power in the system.  

IV. DISCRETIZATION  

The independent variables are dis_re: zed. in :he domain vol- 
ume S2, in terms of time-dependent nod • values (14) , V(„)  and k  
s„i) and interpolation (shape) fun.:ions :o res ondingly cppk, 

 cPvn, and cPet)c  
npl)  

P( `)  (r, t) = E P(k')  (t) r;<• 	̂ Q')  
k=1  

n(t)  
V( ' )  (r, t) = E v(,;,) (t)  ^ t ^  

h: 	r  = ^^ 	_(i) 
m= 1  

Sy  (r, t) = E srol ( t) 	r =  
1=1  

For any position r E S2, the shape 	::: rns ha e. the following  
properties:  

n (; )  

E iPpk (r) = 1 i  

n( ' )  

E ()' 	—  cPVmr ( ) —  E - .r) _ 1 (28)  
k=1 	 m=1  

For simplicity in the treatment __ .:_ _: ü- • conditions,  
we also require for the interpolation = o:::: ns :: nave the value  
one for the reference node position. _::::c-_:ally decreasing  
with respect to the distance from t :, :e even n: de and be zero  
for the rest of the nodes. Since :n s is : ::.-: iscretization  
restriction, it is possible to work w:: _ a .::.: _ :: grids. Notice  
that it is possible a priori to have ï...=ri nd: s:h:ation in the  

nodalization, this is. the number :: nv: )  can be  
different for each component; this is .___:::an:.::r instance, in  
boundary layer problems.  

Nodal vectors are defined as 3::: 1:aph s:ate variables,  
namely mass and velocity for the :: :=nine:: and entropy.  
The mass and entropy vectors are : ï:a_eh Zr integrating the  
corresponding nodal independent vana_ _ e_ in :he support of the  
shape functions:  

(15)  

at  
(,)  °V' ) 
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(17)  

az  4i )  

— P(i) p (i)  

(23)  

(24)  

(25)  

(26)  

(27)  



F( ')  M (' )  

 

The diagonal matrices S2;' )  and f2, are defined as:  

no) _ < f2;') } = f ÇO ,k) 5kn dl  
kn  

S2, = {S2,}zn = f pel bin dSZ 	 (31)  

where S;, is the Kronecker's delta (S;, = 1 if i = j, S;, =  0 
otherwise). The system mass for the ith-component and entropy 
are related to the integrated variables as follows: 

m ( ')  = f p( ')  dSl = E mk') 	(32)  
k=1  

S = f s„ dc2 = E Si 	 (33)  
I=1  

The system total energy E' is defined as the sum of the in-
ternal energy U and the kinetic coenergy T*:  

E' = U(S m (1)  ..., m(T) )  

	

+ T'(m (1) ....,  m(') , V(1)  ..., V(r) ) 	( 34)  

where:  

E* = f e;, df2 ; U = f u„ dS2 ; T •  = f t;, dS2 	(35)  

Q 	 í? 	 t2 

From Eq. (35), it can be easily shown that the system kinetic  
coenergy can be expressed as the following bilinear form:  

T' _ 	
2 

voT . M(`) . V( ' ) 	 (36)  
^ t 

 

where A4( ' )  is the inertia matrix corresponding to the ith-
component:  

M( ` )  = {  M(i)  } 	= f p ( ' )  (p(i)cp(vn dÇZ 	(37)  
mn  

We define the following potentials: 

(_ 1•  f Bcp s dSZ (33) aJ m¡i) 
S2,  

(39)  

K(')  _ 	 1
m^

1 	
= SZ() 	k(+) (i) dS2 	(40

— 
( 6-1-- - a^%t̂ ' ) /  (x,l ^%(k) =--- Lf ^— 	(40) 

	

p (') _ (F,7) 
ar 
	

= M( ')  . V( ' )  = f P^^ )  Pv) dó2 
  , 	(k# i ) _ m 7i. V 	 ^ 

(41)  

where A, 	K('' and 	are correspondingly nodal vec- 
tors of temperature and chemical potential per unit mass, ki-
netic coenergy per unit mass and linear momentum for the ith-
component. It is important to notice that Eq. (41) defines.  

in the Bond-Graph terminology, a modulated multibond trans-
former relating the nodal vectors of velocity and linear momen-
tum for the ith-component, as shown in Fig. 1; in this and in  

the following figures, it is drawn the causality resulting from the  

Bond-Graph causality assignment procedure [71. According to 

y  MTF 	y  
V(') 	 pi,  

Fig. 1. Modulated ith:component inertial transformer.  

the power conservation across the transformer, the generalized  
effort is given by:  

F (')   = M(')  • V( `)  

According to Eq. (41), the nodal vector of ith-component  
linear momentum can be regarded as a system volume integral of  
the local values weighted by the velocity interpolation function.  
It can be easily shown that the system ith-component linear  
momentum can be obtained as:  

„(‘)  
P(t)  = f Pv ' )  dci =  E Pm} 	(43)  

According to Eqs. (38) to (40), the nodal vectors e,  µ(') and  
EL can be regarded as system volume averages of the corre- 
sponding local values, weighted by the interpolation functions.  
The time derivative of the system total energy can be written  
as: 

E' =eT.S+E [(AmK(.) m.(') — p( ') . V 	(44)  

It can also be shown that the volume integrals of the left side  
terms of Eqs. (21) to (23) can be calculated as:  

(µ (') + ^c(')) 
aP(+) 

 di2 = ( (') + K'' \, T  . m( ') 
ãt 	̂—  

(
J  pvi ) aV dó2 _  p(i)T  V ' 

• at  
sz 

fe ^ dS2= BT.S  
o  

The Maxwell relations corresponding to :e system total en-
ergy arise from the equality of the mixed partial derivatives of  
the system total energy expressed as a fun:::on of the indepen-
dent variables S, m(')  and V( ' ) . These variables are regarded  
as the state variables for the BG-CFD methodology:  

ae 	_ al pi)  
am(+)

p^ca = (aS  

aV̂ i)) 	_ 	 _ ° 	(49)  
â8  1 

s, 	m(i) 	 V  Ca  as ) m 

^ T  

(

op(i) (ax(,) 
a„1çi)) ()  ayo)  

The constitutive relations, Eqs. (38) to (4:.. and the Maxwell  

relations, Eqs. (48) to (50) define, in the Bond-Graph terminol-
ogy, a multibond IC-field associated to the system total energy, 
as shown in Fig. 2. This field has r inertia: ports (the velocity 
ports) and r _ 1 capacitive ports (the entropy port and the r  
mass ports). The generalized effort variables associated to these 

•ports are V ( ^ )  B and p 	, 	(µ(') + K( ' ) )  while :he generalized flow  

variables are correspondingly p( ' ) , S and  

(29) 

(30)  

(;) _ ( au  \ = S2
P(i) -1 

^ 
f (i) (i) dS2 

^ (i) J 	 {l 'pP 
—  n 

t^i 

(42)  

m=1  

(45)  

(46)  

(47)  

(48)  

/ m̂ J)  

(^0) 



Fig. 2. System IC-field representing energy storage.  

F(Di)  = f z.v ) dcl 	 (65)  
n
¡  

Fc)  = - 
J  C

( ')  V( ' )  (p (vi)  an 	(66)  

V(i, 	r 	
O 	 n 

F̂c)  = fpN  G(' )  4)  dSl 	(67) 
n 

Ste= 6-1.
{ _ j w,  E [

q(N) + (.r(i) s„ _ µ(ti) p (+) 
 ;=t 

±E ,.,(ii) 	 JI 
(tiff) 	p(i) 1 v (s) ] . ndr) 	(68) 

	

For the sake of convenience, we also define the following di- 	 i=t 	 11 

	

agonal matrices, whose elements are the components of the cor- 	 r  
responding vectors of nodal potentials: 	 1 	 (ti) 	(') 	(`) (i) 

e = {e} in  = e( 6i„ 	 (51) 	 o 	'=t  

µ ^ )  = {µ(i)  } = µk')  bk„ 	 (52) 	 +E µ (tiff) p(i)) v(s)J dn} 
	

(69) 

	

kn 	 i=1 	J 

	

K„̀)  _ {K(s) }  = Kk` )  ôkn 	(53) 
kn 	 fwe.(É p) 4?( ' )  1 dig 	(70) 

V. SYSTEM STATE EQUATIONS 	 n 	t 

	

The system state equations are obtained by systematically 	 r  ( ; ) 	r  (;) 	r  (;) 
volume integrating tie balance equations corresponding to each = Sp ; KD = Sp i 	=  SC 	(71) 

	

port of the IC-field representing the total system energy. The 	 i=i 	r 	'=1 	r 	;=t 

	

expressions for the system state equations are: 	 _ E ,S j') ; Sox = E S^)^ 	 (72) 

Tit =  ruin (i) +7:4F +m;̂ )  +»t(̂ )  + m ( ' ) 	(54) 

_ .ti( ' )_1 . F (r)(i)  - F( ')  -  F(P)  

-F(`)  - F((i )  - FD) ) 	 (55) 

.S=S +SçF - Sp+SD+Sr - SU - SÇK+.SF (56) 

The different terms in the system state equations (54) to (56)  
arise from integrations over the domain volume Si or the domain  
boundary r. Their _efinitions are:  

mw 	--Êy) . J^ wP' )  p ( ` )  (µ (') - K ( ' ) ) V.  r̂ dri 
— 	J  

r  

rnwF =  E.(40 .  !, I p ( ' )  µ(`) - K ( ` ) ` ( ' )  

	

V.OwP` )  d52 (58) 	 ) = 	1 	(^) 	(+) 	(+) 
— Lio 	

( ^ ( 	J 	 S^ 6 -  . ^  fw.  p V .Vµ dS2  
¡

n 
rrt U )  E , 	V ) vµ (') df2 l 	(59) 	S K e-1 

 fw c( ̀ ) (µ(') + K ( ` ) ) dS2 
n 

m(cK  = E::,' • i  f  w (pi)  C( ` )  (µ(') + K ( ')  )  an 	(60)  
Ln

¡  
mK)  = E_';. J w (,,` )  p ( ' )  V" '.7K ( ' )  di2 	(61)  

_n  

F`' ') = f (r̂ i)  .ri  ) ;, (ú)  dr 	 (62)  
r  _'  f p ( ` )  7K ( " _̂) dS2 	 (63)  

n  

FP' = f (OP( ' )  -1 ( ‘ ) )  (.4 )  an 	(64)  
n 

where:  

SD )  = e -1 . f w, (OV ( `)  • T (i))  62  

[_ f . 2 c (07)S( ' ) 6 -1 	 (`) ^. (`) dSZ ^ ^  

n 
Although the complete Bond Graph is not shown here. it can 

be said that the state equations (54) and (56) are represented, 
in the Bond-Graph terminology, by multibond 0-junctions, in 
which correspondingly the ith-component mass rate nodal vec-
tors and the entropy rate nodal vector are added (see Figs. 3  

and 4). Eq. (55) is represented, in the Bond-Graph terminol-
ogy, by a multibond 1-junction, in which the forces are added  
(see Fig. 5). A multibond 0-junction is also used to represent  
Eqs. ( 71) and (72).  

The convective (upwind) nature of the fluid equations is han-
dled through the definition of density and entropy weight func-
tions, namely w (; )  and w e , which are introduced to satisfy the  
power interchanged by the system through the boundary con-
ditions, as well as to share the importance of different power  

S(') = e-t.  [1w.   (oP(') - f(')) ^ _  
n  

EM  = (µ( .
)  K( ') )  -t  

o  

(73)  

(74)  

(75)  

(76)  

(77)  

(78)  
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Fig. 3. 0-junction representing the balance equation at the ith-component  
mass port.  

SF + SD +Sc  

O  

/ 	I 0 /    Sf  

the capacitive ports. as shown in Figs. 3 to L. 
The discretized representation of the power coupling appear-

ing in the balance equations per unit volume is performed  
through the coupling matrices, which relate generalized vari-
ables whose product gives rise to power terms appearing in more  
than one port. Depending on the variables being related, these  
matrices define, in the Bond-Graph terminology, power conserv-
ing two-port elements (modulated transformers or modulated  
gyrators), as shown in Figs. 6 to 8.  

F(1) + Pi)  + Fcr1 	be) 
 

— —  — =sow  

I 	\MTF I 	 yul 	SP)  Sp +S^  

Fig. 6. Power coupling between the ith-component velocity and entropy  
porte.  

M lt) 
A 	̂̂  

y  MGY1= ,  
^ S^r^ 	 ^0^ m^cn  

e  

µ l4  + Kco  

Fig. 4. 0-junction representing the balance equation at the entropy port. 	Fig. 7. Power coupling between the ith-component entropy and mass  
ports.  

terms among neighboring nodes. In the discretization proce-
dure, all the terms of the ith-component mass balance equation  
and entropy balance equation were multiplied correspondingly  
by wP`)  and w,; although this procedure has the advantage that  
the steady-state balance equations are satisfied locally for the  
different nodes, other discretization strategies are possible and  
should be investigated. This concept was successfully applied to  
convection-diffusion problems [81[91. It is very interesting to no-
tice that, according to this Bond-Graph methodology, no weight  
functions result for the velocity state equations.  

As in [1], all kind of boundary conditions can be handled  
consistently through the terms representing surface integrals  

(ti2yyll`1 FT)(') and Ste) and can be represented (in the  
Bond-Graph terminology) either as generalized modulated ef- 
fort sources at the inertial ports or modulated flow sources at  

Fig. 5. 1-junction representing the balance equation at the ith-component  
velocity port.  

µo; + KU)  

I 	̂ MTF 	 
yo1 	 a 

Fig. 8. 	Power coupling between the ith-component velocity 

ports.  

It can be shown that the relationships corresponding 
6 to 8 are:  

FIPI ^ F (D') —FD)  =.^IS t̀l  . A 

and mass  

to Figs. 

(79)  

(80)  

(81)  

(82)  

(83)  

(84)  

P̀ 1  — SDl — •§(i)= 111S`^ . T • V( ` )  

S¿,) — SC̀X = .Lfs. ^^ (') —  Kr 
1) 

t'n•U` 1  +r'n lcx  = .11r)s 	. 6  

FK)  =M^ f1t•.(µ̂ '' -K̂ ''\  

.;mK) = .l1ul^
T , v ( ' )  

where the rectangular matrices M4.¡'. ;n (j1 )  rows, n, columns),  

M (i)s  (n, rows, np` )  columns) and .\1 ^ r't • (4)  rows,  
columns) are defined as:  

m! 	et 

	

=  1 	F. ( P( ` )  — Í(`) _ c co  VI ` ) )  vn. 
+Lt. 77:p( i)  u.' , ( df) 
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{ "`MS } lk 	6i p,(,» +Kk')  J 
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 v(i) Cµ(i)  
sz 

+C ( ' )  ((.c ( ' )  + k ( ' ) ), w, l  wPk dS2 

{ vry 
}mk 

= ,tk;)  + 
 KC' J 

P( '' rk( ` )  1 vim dS2 	(87) 

f1  

Since the coupling matrices relate nodal vectors which may  
have different sizes, they are rectangular and may be not in-
versible, setting a restriction in the allowable caltsalities. For  
instance, from Fig. 8 and Eqs. (79) and (80) it can be seen that  
the input variables to the ports of the modulated transformer  
must be e and V(i) , while the output variables result corre-
spondingly the nodal forces and the nodal entropy rates for the  
ith-component.  

Finally, initial conditions are needed for the nodal vectors  
of state variables. If initial conditions are given as continuous  
functions, these nodal vectors are determined in such a way  
that the ith-component total mass and momentum, as well as  
the total entropy, is kept constant after the discretization.  

VI. MIXTURE OF IDEAL GASES  

As an application example, the potentials defined in Section  
are calculated for a multicomponent solution (mixture) of ideal  
gases. The entropic representation of the internal energy for an  
ideal gas is [51:  

_  
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where R is a universal constant, 00 are the temperature at a  

reference state, p (0` ) , u;;?:, and s (vã are correspondingly the den-
sity, internal energy per unit volume and entropy per unit vol-
ume for the ith-component at the reference state. M (i)  is the  
ith-component molar mass and c,' )  is the ith-component spe-
cific eat at constant volume (function of temperature only).  

Eqs. ('1S) and (89) are a representation of Eq. (F¡ in paramet-
ric form. being the parameter the temperature 0. From this  
representation, the potentials result:  
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where the total pressure results: 

From Eqs. (90) and (92), it can be seen that the contributions 
to the total temperature and pressure from the ith-component  
are weighted-by. the product of the molar-density and the specific  
heat.  

VII. CONCLUSIONS  

In this paper, the BG-CFD methodology was extended to  
Multicomponent Solutions. The multivelocity model were pre-
sented, leaving the presentation of the diffusion model for a  
separate contribution [61.  

Based on the total energy per unit volume, the BG-CFD 
methodology allowed to define a set of independent variables,  
potentials and constitutive relations needed to describe a mul-
ticomponent system.  

The state equations were obtained by systematically integrat-
ing a set of power balance equations. These balance equations,  
obtained from Continuum Theory, take into account all phys-
ical effects (convection, heat transfer. compressibility, inertia,  
reaction, etc.) encountered in multicomponent solutions. The  
resulting Bond Graph represents the power structure of the sys-
tem, showing energy storage, power interchange through the  

boundary conditions, power sources and power couplings be-
tween the different ports.  

The author believes that the BG-CFD methodology is the  
foundation of a bridge between Bond Graphs and Computa-
tional Fluid Dynamics. It is hoped that the findings of this pa-
per encourage other researchers to use this formalism in more  
specific problems.  
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