PRODUÇÃO TÉCNICO CIENTÍFICA
 DO IPEN
 DEVOLVER NO BALCÃO DE
 EMPRÉSTIMO

BG-CFD Methodology for Multicomponent Solutions. Part I: Multivelocity Model

J. L. Baliño (jibalino ©net.ipen.br)
Instituto de Pesquisas Energéticas e Nucleares,
Av. Prof. Lineu Prestes. 2242 - Cidade Universitária, São Paulo - SP - CEP 0.500-000. Brazil

Abstract

This paper shows an application to Multicomponent Solutions of a new, Bond-Graph based formalism for CFD problems. It is shown that, for the multivelocity model, the resulting independent variables are the densities and velocities of the components and the entropy per unit volume. The state aquations are derived, showing the potentials and constitutive rebations needed to describe a multicomponent system.

Keywords: Bond Graphs, Computational Fluid Dynamics,

 CED, Multicomponent Solutions.
I. INTRODUCTION

In recent works [1][2] a theoretical development of a general Bond Graph approach for CFD was presented. This new methodology, which was called BG-CFD [3], is a result of the right combination of Bond-Graph concepts with elements of numerical methods. In this paper, the methodology described above is extended to multicomponent solution systems.

A classical mixture, or solution, is a material in which the components are not physically distinct, that is, the mixing is at molecular level. In this case, when described using Continuum Theory, all the components of the solutions are able to occupy the same region of space at the same time [4] and can be assumed to be in thermodynamic equilibrium. In a solution, each component has its own velocity, density and internal energy. The balance principles for the constituents resemble those for a single component, except that the constituents are allowed to interact with one another.
Concerning the nomenclature, bold letters will be used to define first order tensors ($\boldsymbol{V}^{(i)}, \boldsymbol{p}_{v}^{(i)}$, etc.). Column vectors associated to nodal values will be denoted by single underscored plain or bold type ($m^{(i)}, \underline{S^{(i)}}, \underline{V^{(i)}}, \hat{r}_{0}^{(1)}$. etc.) while multidimensional matrices will be identified double underscored plain type ($\epsilon . g . \underline{M^{(i)}}, \Omega_{\rho}^{(i)}$, etc.). Second order tensors will be
 stein convention of summation over repeated indices is not used.

II. INDEPENDENT VARIABLES AND POTENTIALS

A. Internal Energy per Unit Volume

For a multicomponent solution with r components, the internal energy per unit volume u_{v} can be written as a function of the entropy per unit volume s_{v} and the component densities $\rho^{(1)}$:

$$
\begin{equation*}
u_{v}=u_{v}\left(s_{v}, \rho^{(1)}, \ldots, \rho^{(r)}\right) \tag{1}
\end{equation*}
$$

The following potentials are defined:

$$
\begin{equation*}
\theta=\left(\frac{\partial u_{v}}{\partial s_{v}}\right)_{\rho^{(i)}} ; \mu^{(i)}=\left(\frac{\partial u_{v}}{\partial \rho^{(i j}}\right)_{v_{v}, \rho^{(j \neq i)}} \tag{2}
\end{equation*}
$$

where θ is the temperature and $\mu^{(i)}$ is the ith-species chemical potential per unit mass. The pressure P :an be obtained from the Euler equation [5]:

$$
\begin{equation*}
u_{v}=\theta s_{v}-P+\sum_{i=1}^{\Gamma} \mu^{(i)} \rho^{(i)} \tag{3}
\end{equation*}
$$

The time derivative of the internal energy per unit volume can be written as:

$$
\begin{equation*}
\frac{\partial u_{v}}{\partial t}=\sum_{i=1}^{r} \mu^{i j} \frac{\partial \rho^{(t)}}{\partial t}-\theta \frac{\partial s_{v}}{\partial t} \tag{4}
\end{equation*}
$$

An analog description is adopted for the internal energy per unit volume corresponding to the ith-component $u_{v}^{(i)}$:

$$
\begin{equation*}
u_{v}^{(i)}=u_{\tau}^{(i)}\left(s_{r}, \rho^{(1)}, \ldots, \rho^{(r)}\right) \tag{5}
\end{equation*}
$$

The following potentials are coined:

$$
\begin{equation*}
\pi^{(i)}=\left(\frac{\partial u_{v}^{(i)}}{\partial s_{v}}\right)_{\rho(j)} \quad \therefore \mu^{(i j)}=\left(\frac{\partial u_{v}^{(i)}}{\partial \rho^{(j)}}\right)_{\ell v, \rho^{(k \neq j)}} \tag{6}
\end{equation*}
$$

where $\pi^{(i)}$ and $\mu^{(i j)}$ can be regarded as ith-component contributions to the temperature and inemical potentials. From the Euler equation:

$$
\begin{equation*}
u_{v}^{(i)}=\pi^{(i)} s_{v}-P^{(i)}-\sum_{j=1}^{r} \mu^{(i j)} \rho^{(j)} \tag{7}
\end{equation*}
$$

where $P^{(i)}$ is the ith-compcrens contribution to the pressure. Since:

$$
\begin{equation*}
u_{v}=\sum_{i=1}^{\dot{C}} u_{i}^{(!)} \tag{8}
\end{equation*}
$$

the following relations are veriest:

$$
\begin{equation*}
\theta=\sum_{i=1}^{\Gamma} \pi^{(i)} ; \mu^{(i)}=\sum_{j=i}^{\dot{C}} \mu^{(i)} ; P=\sum_{i=1}^{\Gamma} P^{(i)} \tag{9}
\end{equation*}
$$

As an example, the porter: $\mathrm{a}=\mathrm{ssoc}$ anted $i=$ the entropic representation of the ith-compcrer.: :vernal energy are calculated in Section VI for the case $c: \equiv$ -

B. Kinetic Coenergy per L-nit Volume

The kinetic energy per $u:=:=0$ me t_{v}^{*} san be written as a function of the component $\dot{=}=-\dot{E}:=5$ and velocities $V^{(i)}$:

$$
\begin{equation*}
t_{v}^{*}=\sum_{i=1}^{-} \frac{1}{2} \rho V^{(i) 2} \tag{10}
\end{equation*}
$$

In a companion paper $10 . \therefore: s=z=s e n t e d$ an approximation in which the dynamics of a ma:-: $:=$ moment solution is described in terms of the average (cense: $=\Sigma$ mass) velocity of the mixture and the mass flux of each somesent relative to the average velocity; these relative mass $三=u$ es are modeled using diffusion theory. The following pot er: $:=\leqslant=0$ defined:

$$
\begin{align*}
& \kappa^{(i)}=\left(\frac{\partial t_{i}^{*}}{\partial \rho^{(i)}} \therefore:=V^{(k)}=\frac{1}{2} V^{(i) 2}\right. \tag{11}\\
& p_{v}^{(i)}=\left(\frac{\partial t_{i}^{*}}{\partial V^{(i)}} \therefore V^{k=1)}=\rho^{(i)} V^{(i)}\right. \tag{12}
\end{align*}
$$

The time derivative of $i x=2=:$: coenergy per unit volume can be written as:

$$
\begin{equation*}
\frac{\partial t_{v}^{*}}{\partial t}=\sum_{i=1}^{r}\left(\kappa^{(i)} \frac{\partial \rho^{i}}{\partial t}-p_{v}^{(i)} \cdot \frac{\partial V^{(i)}}{\partial t}\right) \tag{13}
\end{equation*}
$$

C．Total Energy per Unit Volume

The total energy per unit volume e^{*} includes the internal energy and the kinetic coenergy：

$$
\begin{equation*}
e_{v}^{*}=u_{v}+t_{v}^{*} \tag{14}
\end{equation*}
$$

The time derivarive of the total energy per unit volume can be written as：

$$
\begin{equation*}
\frac{\partial e_{v}^{*}}{\partial t}=\theta \frac{\partial s_{v}}{\partial t}-\sum_{i=1}^{r}\left[\left(\mu^{(i)}+\kappa^{(i)}\right) \frac{\partial \rho^{(i)}}{\partial t}+p_{v}^{(i)} \cdot \frac{\partial V^{(i)}}{\partial t}\right] \tag{15}
\end{equation*}
$$

Since the internal energy and kinetic coenergy are continuous functions of the independent variables，the potentials multiply－ ing the time derivatives of the independent variables satisfy both constitutive and Maxwell relations［5］．

III．BALANCE EQUATIONS

The balance equations are power equations corresponding to each one of the terms that contributes to the time derivative of the cotal energy per unit volume．For multicomponent so－ lutions，the balance equations can be derived from the mass， momentum and energy conservation equation corresponding to each component［4］：

$$
\begin{gather*}
\frac{\partial \rho^{(i)}}{\partial t}=-\nabla \cdot\left(\rho^{(i)} V^{(i)}\right)+C^{(i)} \tag{16}\\
\rho^{(i)} \frac{\partial V^{(i)}}{\partial t}=-\rho^{(i)} V^{(i)} \cdot \nabla V^{(i)}+\nabla \cdot \mathbf{T}^{(i)} \\
+\rho^{(i)} G^{(i)}+f^{(i)}-C^{(i)} V^{(i)} \tag{17}\\
\frac{\partial u_{v}^{(i)}}{\partial t}=-\nabla \cdot\left(u_{v}^{(i)} V^{(i)}\right)-f^{(i)} \cdot V^{(i)}+C^{(i)} \frac{1}{2} V^{(i) 2} \\
+\mathbf{T}^{(i)}: \nabla V^{(i)}+\rho^{(i)} \Phi^{(i)}-\nabla \cdot q^{(i)}+\epsilon^{(i)} \tag{18}
\end{gather*}
$$

where $C^{(i)}, f^{(i)}$ and $\epsilon^{(i)}$ are correspondingly the mass，mo－ mentum and energy interaction terms（per unit volume），$\Phi^{(i)}$ is the heat power source per unit mass， $\boldsymbol{G}^{(i)}$ is the body force， $\boldsymbol{q}^{(i)}$ is the heat flux and $\underline{T}^{(i)}$ is the stress state for the ith－component．

Since there are no distributional sources，it is postulated that the sum of the interactions of mass，momentum and energy vanish，that is：

$$
\begin{equation*}
\sum_{i=1}^{r} C^{(i)}=0 ; \quad \sum_{i=1}^{r} f^{(i)}=0 ; \quad \sum_{i=1}^{r} \epsilon^{(i)}=0 \tag{19}
\end{equation*}
$$

The stress state can be expressed in terms of the pressure and viscous somponent $\underline{\tau}^{(i)}$ as：

$$
\begin{equation*}
\bar{T}^{(i)}=-P^{(i)} \underline{\underline{I}}+T^{(i)} \tag{20}
\end{equation*}
$$

Taking into accour the conservation equations and Eqs．（4） and（7）：：he balance equations result：

$$
\begin{align*}
& \left(\mu^{(i)}+\kappa^{(i)}\right) \frac{\partial \rho^{(i)}}{\partial t}=-\nabla \cdot\left[\rho^{(i)}\left(\mu^{(i)}+\kappa^{(i)}\right) V^{(i)}\right] \\
& -C^{(i)}\left(\mu^{(i)}+\kappa^{(i)}\right)-\rho^{(i)} V^{(i)} \cdot \nabla \mu^{(i)}+\rho^{(i)} V^{(i)} \cdot \nabla \kappa^{(i)} \tag{21}\\
& \boldsymbol{p}_{v}^{(i)} \cdot \frac{\partial V^{(i)}}{\partial t}=\nabla \cdot\left(\underline{\underline{\tau^{(i)}}} \cdot V^{(i)}\right)-\rho^{(i)} V^{(i)} \cdot \nabla \kappa^{(i)} \\
& -V^{(i)} \cdot \nabla P^{(i)}+f^{(i)} \cdot V^{(i)} \\
& -\underline{\underline{\tau^{(i)}}}: \nabla V^{(i)}-2 C^{(i)} \kappa^{(i)}+\rho^{(i)} G^{(i)} \cdot V^{(i)} \tag{22}\\
& \theta \frac{\partial s_{v}}{\partial t}=\sum_{i=i}^{\tau}-\nabla \cdot q^{(i)}+\left(\pi^{(i)} s_{v}-\mu^{(i)} \rho^{(i)}\right. \\
& \left.\left.+\sum_{j=1}^{\tau} \mu^{i, j)} \rho^{(j)}\right) V^{(i)}\right]+V^{(i)} \cdot \nabla P^{(i)} \\
& -f^{(i)} \cdot V^{(i)} \div \underline{\tau}^{(i)}: \nabla V^{(i)}+2 C^{(i)} \kappa^{(i)} \\
& \left.-C^{(i)}\left(\mu^{(i)}-\kappa^{(i)}\right)-\rho^{(i)} \boldsymbol{V}^{(i)} \cdot \nabla \mu^{(i)}+\rho^{(i)} \Phi^{(i)}\right\} \tag{23}
\end{align*}
$$

According to the balance equat：z＝：：： a ：seen that it is necessary to know，for each compこニここ：．：こe＝otentials com－ ing from the entropic representatic $=:$ ：ie internal energy and from the kinetic coenergy，as well as $: \therefore=$ mass and momentum interaction terms，the heat flux，t亡ミ $こ き a: ~ p o w e r ~ s o u r c e ~ a n d ~ t h e ~$ viscous stress．

The balance equations show $C \boxed{\Sigma} \div \therefore \therefore$ árantages of the BG－CFD methodology，that is，the sesresenta：icn of the power structure of the system．In the baiar：e equations there can be identified three type of terms：divergeミ：s．scur：e and coupling terms．The divergence terms take $:-\pi \sim$ accourr the power in－ troduced in the system through the b －vadary conditions．The source terms constitute the different power sciures，external to the system．Finally，the coupling terms＝epresent power transfer between the velocity，mass and entrow equarions；these cou－ pling terms appear，with opposite sen in pairs of balance equations．Taking into account Ec．：氵i it rerifies that cou－ pling terms cancel out when the taiaz：e equations are added， resulting：

$$
\begin{array}{r}
\frac{\partial e_{v}^{:}}{\partial t}=\sum_{i=1}^{r}\left\{-\nabla \cdot\left[\left(u_{v}^{(i)} \div P^{(i)}-\rho^{i)} \kappa^{(i)}, V^{(i)}\right]\right.\right. \\
\left.+\nabla \cdot\left(\underline{\underline{\tau^{(i)}}} V^{(i)}\right)-\nabla \cdot q^{(i)}+\rho^{(i)} G^{(i)} V^{(i)}-\rho^{(1)} \Phi^{(i)}\right\} \tag{24}
\end{array}
$$

The cancellation of the coupling $:=\pi$ means tinat they influ－ ence the power distribution among ise inerex：ports but not the total power in the system．

IV．DISCREIIZATION

The independent variables are discre：zed．ir ine domain vol－ ume Ω ，in terms of time－dependent $=0-\dot{=}$ vaiuss $\left(\rho_{k}^{(i)}, V_{m}^{(i)}\right.$ and $s_{v l}$ ）and interpolation（shape）func：ivzs＝0rrepondingly $\varphi_{\rho k}^{(i)}$, $\varphi_{V m}^{(i)}$ and $\left.\varphi_{s l}\right)$ ：

$$
\begin{align*}
& \mathbf{V}^{(i)}(r, t)=\sum_{m=1}^{n_{V}^{(i)}} V_{m}^{(i)}(t) \psi_{i}^{(i)} r=\underline{V^{-}} \tag{25}
\end{align*}
$$

 properties：

$$
\begin{equation*}
\left.\sum_{k=1}^{n_{\rho}^{(i)}} \varphi_{\rho k}^{(i)}(\boldsymbol{r})=1 ; \sum_{m=1}^{n_{V}^{(i)}} \varphi_{V m}^{(i)}(\boldsymbol{r})=1: \sum_{i=1}^{r-} ; r_{i}\right)=1 \tag{28}
\end{equation*}
$$

 we also require for the interpolatic：$-\cdots: 2:=:=$ ave the value one for the reference node position．$\therefore=ニ ン=こ: c よ:$ eiy decreasing

 different for each component；this $\vdots:=:-5-\ldots$ instance，in boundary layer problems．
 namely mass and velocity for the $\because:-:: ニ こ こ=:=:$ and entropy． The mass and entropy vectors are $5: 0 \div \vdots=:$ ：zegrating the
 shape functions：

$$
\begin{equation*}
\underline{m^{(i)}}=\underline{\Omega_{\rho}^{(i)}} \cdot \underline{\rho^{(i)}} ; \underline{S}=\underline{\Omega_{s}} \cdot \underline{s_{v}} \tag{29}
\end{equation*}
$$

The diagonal marrices $\Omega_{\rho}^{(i)}$ and Ω_{0} are defined as:

$$
\begin{align*}
\underline{\Omega_{\rho}^{(i)}} & =\left\{\Omega_{\rho}^{(i)}\right\}_{k n} \tag{30}
\end{align*}=\int_{\Omega} \varphi_{\rho k}^{(i)} \delta_{k n} d \Omega,
$$

where $\delta_{i j}$ is the Kronecier's delta ($\delta_{i j}=1$ if $i=j, \delta_{i j}=0$ otherwise). The system mass for the ith-component and entropy are related to the integrated variables as follows:

$$
\begin{align*}
m^{(i)} & =\int_{\Omega} \rho^{(i)} d \Omega=\sum_{k=1}^{n_{\rho}^{(i)}} m_{k}^{(i)} \tag{32}\\
S & =\int_{\Omega} s_{v} d \Omega=\sum_{l=1}^{n_{\Omega}} S_{l} \tag{33}
\end{align*}
$$

The system total energy E^{*} is defined as the sum of the internal energy U and the kinetic coenergy T^{*} :

$$
\begin{gather*}
E^{\bullet}=U\left(\underline{S}, m^{(1)}, \ldots, \underline{m^{(r)}}\right) \\
+T^{*}\left(m^{(1)}, \cdots, m^{(r)}, V^{(1)}, \cdots, V^{(r)}\right) \tag{34}
\end{gather*}
$$

where:

$$
\begin{equation*}
E^{*}=\int_{\Omega} e_{v}^{*} d \Omega ; U=\int_{\Omega} u_{v} d \Omega ; T^{*}=\int_{\Omega} t_{v}^{*} d \Omega \tag{35}
\end{equation*}
$$

From Eq. (35), it can be easily shown that the system kinetic coenergy can be expressed as the following bilinear form:

$$
\begin{equation*}
T^{*}=\sum_{i=1}^{r} \frac{1}{2} \underline{V^{(i)^{T}}} \cdot \underline{M}^{(i)} \cdot \underline{V}^{(i)} \tag{36}
\end{equation*}
$$

where $\underline{M}^{(i)}$ is the inertia matrix corresponding to the ithcomponent:

$$
\begin{equation*}
\underline{M^{(i)}}=\left\{M^{(i)}\right\}_{m n}=\int_{\Omega} \rho^{(i)} \varphi_{V m}^{(i)} \varphi_{V n}^{(i)} d \Omega \tag{37}
\end{equation*}
$$

We define the following potentials:

$$
\begin{align*}
& \underline{\theta}=\left(\frac{\partial L^{-}}{\partial \underline{S}}\right)_{\underline{m}^{(i)}}=\underline{\underline{\Omega_{s}}}-\left[\int_{\Omega} \theta \underline{\varphi}_{s} d \Omega\right] \tag{38}\\
& \underline{\mu}^{(i)}=\left(\frac{\partial U}{\partial \underline{m}^{(i)}}\right)_{\Sigma m^{(j \neq i)}}=\underline{\Omega_{\rho}^{(i)-1}} \cdot\left[\int_{\Omega} \mu^{(i)} \varphi_{\rho}^{(i)} d \Omega\right] \tag{39}\\
& \underline{K}^{(i)}=\left(\frac{\partial T^{*}}{\partial m^{(i)}}\right)_{m^{(j \neq 1 ;} ;} \underline{V^{(k)}}=\underline{\Omega_{\rho}^{(i)}}{ }^{-1} \cdot\left[\int_{\Omega} \kappa^{(i)} \underline{\varphi}_{\rho}^{(i)} d \Omega\right] \tag{40}\\
& \underline{\boldsymbol{p}^{(i)}}=\left(\frac{\partial T^{*}}{\partial V^{(i)}}\right)_{\underline{m^{(1) i}}} \underline{V^{(k \neq i)}}=\underline{M}^{(i)} \cdot V^{(i)}=\int_{\Omega} p_{v}^{(i)} \underline{\varphi}_{V}^{(i)} d \Omega \tag{41}
\end{align*}
$$

where $\underline{\theta}, \underline{\mu^{(i)}}, \underline{K^{(i)}} \neq n \dot{q} \underline{p}^{(i)}$ are correspondingly nodal vectors of temperature and chemical potential per unit mass. kinetic coenergy per unit mass and linear momentum for the ithcomponent. It is important to notice that Eq. (41) defines, in the Bond-Graph terminology, a modulated multibond transformer relating the nodal vectors of velocity and linear momentum for the ith-component, as shown in Fig. 1; in this and in the following figures, it is drawn the causality resulting from the Bond-Graph causality assignment procedure [7]. According to

Fig. 1. Modulated ith-component inertial tranaformer.
'm
the power conservation across the transformer, the generaized effort is given by:

$$
\begin{equation*}
\underline{E}^{(i)}=M^{(i)} \cdot \dot{V}^{(i)} \tag{42}
\end{equation*}
$$

According to Eq. (41), the nodal vector of ith-component linear momentum can be regarded as a system volume integral of the local values weighted by the velocity inserpolation function. It can be easily shown that the system ith-component linear momentum can be obtained as:

$$
\begin{equation*}
p^{(i)}=\int_{\Omega} p_{v}^{(i)} d \Omega=\sum_{m=1}^{n_{v}^{(i)}} p_{m}^{\prime(i)} \tag{43}
\end{equation*}
$$

According to Eqs. (38) to (40), the nodai vectors $\underline{\theta}, \underline{\mu^{(i)}}$ and $K^{(i)}$ can be regarded as system volume averages of the corresponding local values, weighted by the interpolation functions. The time derivative of the system total energy can be written as:

$$
\begin{equation*}
\dot{E}^{*}=\underline{\theta}^{T} \cdot \underline{\dot{S}}+\sum_{i=1}^{r}\left[\left(\underline{\mu}^{(i)}+\underline{K^{(i)}}\right)^{T} \cdot \underline{\dot{m}^{(i)}}-\underline{p}^{(i)^{T}} \cdot \underline{\dot{V}^{(i)}}\right] \tag{44}
\end{equation*}
$$

It can also be shown that the volume integrais of the left side terms of Eqs. (21) to (23) can be calculated as:

$$
\begin{gather*}
\int_{\Omega}\left(\mu^{(i)}+\kappa^{(i)}\right) \frac{\partial \rho^{(i)}}{\partial t} d \Omega=\left(\underline{\mu^{(i)}}+\underline{K^{(i)}}\right)^{T} \cdot \underline{\dot{m}^{(i)}} \tag{45}\\
\int_{\Omega} p_{v}^{(i)} \cdot \frac{\partial V^{(i)}}{\partial t} d \Omega=\underline{p^{(i)}} \cdot \underline{\dot{V}^{(i)}} \tag{46}\\
\int_{\Omega} \theta \frac{\partial s_{v}}{\partial t} d \Omega=\underline{\theta}^{T} \cdot \underline{\dot{S}} \tag{47}
\end{gather*}
$$

The Maxwell relations corresponding to \therefore system total energy arise from the equality of the mixed $\overline{=\text { Erial derivatives of }}$ the system total energy expressed as a func:ion of the independent variables $\underline{S}, \underline{m}^{(i)}$ and $\underline{V^{(i)}}$. These vá:iables are regarded as the state variables for the BG-CFD met:-

$$
\begin{gather*}
\left(\frac{\partial \underline{\theta}}{\partial \underline{m^{(i)}}}\right)_{\underline{S}, m^{(j \neq i)}}=\left(\frac{\partial \underline{\mu^{(i)}}}{\partial \underline{S}}\right)_{\underline{m^{i j)}}}^{T} \tag{48}\\
\left(\frac{\partial \underline{\Theta}}{\partial \underline{\underline{V}^{(i)}}}\right)_{\underline{\underline{S}, m^{(j)}}}=\left(\frac{\partial \underline{p}^{(i)}}{\partial \underline{S}}\right)_{\underline{m^{(i)}}}^{T} \underline{V}^{T i)}=\underline{\underline{0}} \tag{49}\\
\left(\frac{\partial \underline{\mathbf{p}^{(i)}}}{\partial \underline{m^{(j)}}}\right)_{\underline{V}^{(i)}}=\left(\frac{\partial \underline{K^{(j)}}}{\partial \underline{V^{(i)}}}\right. \tag{0}
\end{gather*}
$$

The constitutive relations, Eqs. (38) to $(\because \ldots$. and the Maxwell relations, Eqs. (48) to (50) define, in the B $-:-$-Graph terminology, a multibond $I C$-field associated to the $s:=$ stem total energy, as shown in Fig. 2. This field has r inertia. yorts (the veiocity ports) and $r-1$ capacitive ports (the ent $=5 y$ port and the r mass ports). The generalized effort variables associated to these ports are $\underline{\dot{V}^{(i)}}, \underline{\theta}$ and $\left(\underline{\mu^{(i)}}+\underline{K^{(i)}}\right)$, while \vdots e generalized flow variables are correspondingly $\underline{p^{(i)}}, \underline{\dot{S}}$ and $\underline{m}^{(i)}$.

Fig. 2. Sybtem $I C$-field representing energy storage.

For the sake of convenience, we also define the following diagonal matrices, wirose elements are the components of the corresponding vectors ci nodal potentials:

$$
\begin{gather*}
\underline{\underline{\Theta}}=\{\Theta\}_{l n}=\Theta_{l} \delta_{l n} \tag{51}\\
\underline{\underline{\mu^{(i)}}}=\left\{\mu^{(i)}\right\}_{k n}=\mu_{k}^{(i)} \delta_{k n} \tag{52}\\
\underline{\underline{K^{(i)}}}=\left\{K^{(i)}\right\}_{k n}=K_{k}^{(i)} \delta_{k n} \tag{53}
\end{gather*}
$$

V. SYSTEM STATE EQUATIONS

The system state equations are obtained by systematically volume integrating :ie balance equations corresponding to each port of the $I C$-fiel \dot{c} zepresenting the total system energy. The expressions for the system state equations are:

$$
\begin{align*}
& \dot{m}^{(i)}=\underline{\dot{m}_{\dot{H}}^{(i)}}+\underline{\dot{m}_{W F}^{(i)}}+\underline{\dot{m}_{Y}^{(i)}}+\underline{\dot{m}_{C K}^{(i)}}+\underline{\dot{m}_{K}^{(i)}} \tag{54}\\
& \underline{V}^{(i)}=\underline{M}^{(i)-1} \cdot\left(\underline{F}_{T}^{(\Gamma)(i)}-\underline{F}_{K}^{(i)}-\underline{F_{P}^{(i)}}\right. \\
& \left.-\underline{F_{D}^{(i)}}-\underline{F_{C}^{(i)}} \div \underline{F_{C}^{(i)}}\right) \tag{55}\\
& \underline{\dot{s}}=\underline{\dot{S}_{Q}^{(\Gamma)}}+\underline{\dot{S}_{Q F}}-\underline{\dot{S}_{P}}+\underline{\dot{S}_{D}}+\underline{\dot{S}_{C}}-\underline{\dot{S}_{U}}-\underline{\dot{S}_{C K}}+\underline{\dot{S}_{F}} \tag{56}
\end{align*}
$$

The different ter $=\mathrm{s}$ in the system state equations (54) to (56) arise from integratic:s over the domain volume Ω or the domain boundary Γ. Their

$$
\begin{align*}
& \left.\underline{\dot{m}_{W}^{(\Gamma)(i)}}=-\underline{\underline{E_{M}^{(i)}}} \int_{-} \int_{\rho}^{(i)} \rho^{(i)}\left(\mu^{(i)}-\kappa^{(i)}\right) V^{(i)} \cdot \check{\mathrm{n}} \mathrm{~d} \Gamma\right] \tag{57}\\
& \underline{\dot{m}_{W F}^{(i)}}=\underline{E_{M}^{(i)}}\left[\int_{\Omega} \rho^{(i)}\left(\mu^{(i)}-\kappa^{(i)}\right) V^{(i)} \cdot \underline{\nabla w_{\rho}^{(i)}} d \Omega\right] \tag{58}\\
& \underline{\dot{m}_{U}^{(i)}}=\underline{E \cdot: \cdot} \cdot\left[\int_{\Omega} \underline{w_{\rho}^{(i)}} \rho^{(i)} V^{(i)} \cdot \nabla \mu^{(i)} d \Omega\right] \tag{59}\\
& \underline{\dot{m}_{C K}^{(i)}}=\underline{E_{\because}}\left[\int_{\Omega} \underline{w_{\rho}^{(i)}} C^{(i)}\left(\mu^{(i)}+\kappa^{(i)}\right) d \Omega\right] \tag{60}\\
& \underline{\dot{m}_{K}^{(i)}}=E \because\left[\int_{\Omega} w_{\rho}^{(i)} \rho^{(i)} V^{(i)} \cdot \nabla \kappa^{(i)} d \Omega\right] \tag{61}\\
& \underline{\boldsymbol{F}^{\left(\sigma^{\prime \prime}\right)}}=\int_{\Gamma}\left(\underline{\underline{\boldsymbol{\tau}^{(i)}}} \cdot \check{\mathrm{n}}\right) \underline{\hat{\gamma}_{V}^{(i)}} d \Gamma \tag{62}\\
& \underline{F_{K}^{(j)}}=\int_{\Omega} \rho^{(i)} \nabla \kappa^{(i)} \underline{\hat{H}_{V}^{(i)}} d \Omega \tag{63}\\
& \underline{F_{P}^{(j)}}=\int_{\Omega}\left(\nabla P^{(i)}-f^{(i)}\right) \underline{\rho_{V}^{(i)}} d \Omega \tag{64}
\end{align*}
$$

$$
\begin{align*}
& \underline{F}_{D}^{(i)}=\int_{\Omega} \tau^{(i)} \cdot \nabla \varphi_{V}^{(i)} d \Omega \tag{65}\\
& \underline{F_{C}^{(i)}}=-\int_{\Omega} C^{(i)} \underline{V}^{(i)} \underline{\varphi_{V}^{(i)}} d \Omega \tag{66}\\
& \underline{F_{G}^{(i)}}=\int_{\Omega} \rho^{(i)} G^{(i)} \underline{\varphi_{V}^{(i)}} d \Omega \tag{67}\\
& \underline{\dot{S}_{Q}^{(\Gamma)}}=\underline{\theta}^{-1} \cdot\left\{-\int_{\Gamma} \frac{w_{d}}{} \sum_{i=1}^{r}\left[q^{(i)}+\left(\pi^{(i)} s_{v}-\mu^{(i)} \rho^{(i)}\right.\right.\right. \\
& \left.\left.\left.+\sum_{j=1}^{r} \mu^{(i j)} \rho^{(j)}\right) V^{(i)}\right] \cdot \check{n} \mathrm{~d} \Gamma\right\} \tag{68}\\
& \dot{\underline{S}}_{Q F}=\underline{\underline{\theta}}^{-1} \cdot\left\{\int _ { \Omega } \frac { \nabla w _ { s } } { } \cdot \sum _ { i = 1 } ^ { r } \left[q^{(i)}+\left(\pi^{(i)} s_{v}-\mu^{(i)} \rho^{(i)}\right.\right.\right. \\
& \left.\left.\left.+\sum_{j=1}^{r} \mu^{(i j)} \rho^{(j)}\right) V^{(i)}\right] d \Omega\right\} \tag{69}\\
& \dot{S}_{E}=\underline{\underline{\theta}}^{-1} \cdot\left[\int_{\Omega} \underline{w}_{g}\left(\sum_{i=1}^{r} \rho^{(i)} \Phi^{(i)}\right) d \Omega\right] \tag{70}\\
& \underline{\dot{S}_{P}}=\sum_{i=1}^{r} \underline{\dot{S}_{P}^{(i)}} ; \underline{\dot{S}_{D}}=\sum_{i=1}^{r} \underline{\dot{S}_{D}^{(i)}} ; \underline{\dot{S}_{C}}=\sum_{i=1}^{r} \underline{\dot{S}_{C}^{(i)}} \tag{71}\\
& \underline{\dot{S}_{U}}=\sum_{i=1}^{r} \underline{\dot{S}_{U}^{(i)}} ; \underline{\dot{S}_{C K}}=\sum_{i=1}^{r} \underline{\dot{S}_{C K}^{(i)}} \tag{72}
\end{align*}
$$

where:

$$
\begin{align*}
& \underline{\underline{E_{M}^{(i)}}}=\left(\underline{\underline{\mu^{(i)}}}+\underline{\underline{K^{(i)}}}\right)^{-1} \tag{73}\\
& \dot{S}_{P}^{(i)}=\underline{\underline{\theta}}^{-1} \cdot\left[\int_{\Omega} \underline{w}_{s}\left(\nabla P^{(i)}-f^{(i)}\right) \cdot V^{(i)} d \Omega\right] \tag{74}\\
& \underline{\dot{S}_{D}^{(i)}}=\underline{\underline{\theta}}^{-1} \cdot\left[\int_{\Omega} \underline{w_{s}}\left(\nabla V^{(i)}: \underline{\underline{\tau^{(i)}}}\right) d \Omega\right] \tag{75}\\
& \underline{\dot{S}_{C}^{(i)}}=\underline{\underline{\theta}}^{-1} \cdot\left[-\int_{\Omega} \underline{w}_{s} 2 C^{(i)} \kappa^{(i)} d \Omega\right] \tag{76}\\
& \underline{\dot{S}_{U}^{(i)}}=\underline{\underline{\theta}}^{-1} \cdot\left[\int_{\Omega} \underline{w}_{s} \rho^{(i)} V^{(i)} \cdot \nabla \mu^{(i)} d \Omega\right] \tag{77}\\
& \underline{\dot{S}_{C K}^{(i)}}=\underline{\underline{\theta}}^{-1} \cdot\left[\int_{\Omega} \underline{w}_{s} C^{(i)}\left(\mu^{(i)}+\kappa^{(i)}\right) d \Omega\right] \tag{78}
\end{align*}
$$

Although the complete Bond Graph is not shown here. it can be said that the state equations (54) and (56) are represented, in the Bond-Graph terminology, by multibond 0 -juntions, in which correspondingly the ith-component mass rate nodal vectors and the entropy rate nodal vector are added (see Figs. 3 and 4). Eq. (55) is represented, in the Bond-Graph terminology by a multibond 1 -junction, in which the forces are added (see Fig. 5). A multibond 0 -junction is also used to represent Eqs. (71) and (72).
The convective (upwind) nature of the fluid equations is handled through the definition of density and entropy weight functions, namely $w_{\rho}^{(i)}$ and w_{0}, which are introduced to satisfy the power interchanged by the system through the bouncary conditions, as well as to share the importance of different power

Fig. 3. 0 -junction representing ths balance equation at the ith-component mass port.

Fig. 4. $0_{\text {junction }}$ representing the balance equation at the entropy port.
terms among neighboring nodes. In the discretization procedure, all the terms of the ith-component mass balance equation and entropy balance equation were multiplied correspondingly by $w_{\rho}^{(i)}$ and w_{s}; although this procedure has the advantage that the steady-state balance equations are satisfied locally for the different nodes, other discretization strategies are possible and should be investigated. This concept was successfully applied to convection-diffusion problems [8][9]. It is very interesting to notice that, according to this Bond-Graph methocology, no weight functions result for the velocity state equations.

As in [1], all kind of boundary conditions can be handled consistently through the terms representing surface integrals ($\dot{m}_{W}^{(\Gamma)(i)} . F_{T}^{(\Gamma)(i)}$ and $\dot{S}_{Q}^{(\Gamma)}$) and san be represented (in the Bond-Graph terminology) either as generalized modulated effort sources at the inertial ports or modulated flow sources at

Fig. 5. 1-junction representing the balance equation at the ith-component velocity port.
the capacitive ports. as shown in Figs. 3 to \bar{z}
The discretized representation of the power coupling appearing in the baiance equations per unit volume is performed through the coupling matrices, which relate generalized variables whose product gives rise to power terms appearing in more than one port. Depending on the variables being related, these matrices define, in the Bond-Graph terminology, power conserving two-port elements (modulated transformers or modulated gyrators), as shown in Figs. 6 to 8.

Fig. 6. Power coupling between the ith-component velocity and entropy ports.

Fig. 7. Power coupling between the ith-componeat entropy and mass ports.

Fig. 8. Power coupling between the ith-component velocity and mass ports.

It can be shown that the relationsnips corresponding to Figs. 6 to 8 are:

$$
\begin{align*}
& \underline{\boldsymbol{F}_{P}^{(i)}} \div \boldsymbol{F}_{D}^{(i)}-\boldsymbol{F}_{C}^{(i)}=\underline{W_{S V}^{(i)}} \cdot \underline{\theta} \tag{79}\\
& \underline{\dot{S}_{P}^{(i)}}-\underline{\dot{S}_{D}^{(i)}}-\underline{\dot{S}_{C}^{(i)}}=\underline{\underline{M_{S V}^{(i)}}}{ }^{T} \cdot V^{(i)} \tag{80}\\
& \underline{\dot{S}_{U}^{(i)}}-\underline{\dot{S}_{C K}^{(i)}}=\underline{\underline{M S}}{ }^{(i)} \cdot\left(\underline{\mu^{(i)}}-\underline{K^{(i)}}\right) \tag{81}\\
& {\dot{\dot{m}_{U}^{(i)}}}_{\underline{\dot{m}_{C K}}}^{(i)}=\underline{\underline{M_{U / S}^{(i)}}}{ }^{\top} \cdot \underline{\underline{\theta}} \tag{82}\\
& \left.\underline{F}_{K}^{(i)}=M_{\underline{(i)}}^{\left(\underline{\mu^{(i)}}\right.}-\underline{K}^{(i)}\right) \tag{83}\\
& \dot{m}_{K}^{(i)}=\underline{\underline{M V}}{ }^{(i)}{ }^{T} \cdot \underline{V^{(1)}} \tag{84}
\end{align*}
$$

where the rectangular matrices $M_{s i l}^{(i)}$ in $n_{i}^{(i)}$ rows, n_{s} columns), $M_{M S}^{(i)}\left(n\right.$, rows, $n_{\rho}^{(i)}$ columns) and M, M, $n_{V}^{(i)}$ rows, $n_{\rho}^{(i)}$ columns) are defined as:

$$
\begin{align*}
& \left\{\underline{\underline{M_{S V}^{(i)}}}\right\}_{m l}=\frac{1}{\Theta_{l}} \int_{\Omega}\left[\left(\nabla P^{(i)}-f^{(i)}-C^{(i)} V^{(i)}\right) \nu_{V m}^{(i)}\right. \\
& +\underline{\underline{\tau^{(i)}}} \cdot \nabla \varphi_{V m!}^{(i)} u_{\bullet l} d \Omega \tag{85}
\end{align*}
$$

$$
\begin{align*}
& \left\{\underline{\left.\underline{M_{M S}^{(i)}}\right\}_{l k}=}=\frac{1}{\Theta_{l}} \frac{1}{\mu_{k}^{(i)}+K_{k}^{(i)}} \int_{\Omega} \rho^{(i)} V^{(i)} \cdot \nabla \mu^{(i)}\right. \\
& \left.\quad+C^{(i)}\left(\mu^{(i)}+\kappa^{(i)}\right)\right] w_{s l} w_{\rho k}^{(i)} d \Omega
\end{aligned} \quad \begin{aligned}
& \left\{\underline{M_{M V}^{(i)}}\right\}_{m k}=\frac{1}{\mu_{k}^{(i)}+K_{k}^{(i)}} \int_{\Omega} \rho^{(i)} \nabla \kappa^{(i)} \hat{\psi}_{V m}^{(i)} d \Omega \tag{86}
\end{align*}
$$

Since the coupling matrices relate ncdal vectors which may have different sizes, they are rectangular and may be not inversible, setting a restriction in the allowable causalities. For instance, from Fig. 8 and Eqs. (79) and (80) it can be seen that the input variables to the ports of the modulated transformer must be $\underline{\Theta}$ and $V^{(i)}$, while the output variables result correspondingly the nodal forces and the nodal entropy rates for the ith-component.
Finally, initial conditions are needed for the nodal vectors of state variables. If initial conditions are given as continuous functions, these nodal vectors are determined in such a way that the ith-component total mass and momentum, as well as the total entropy, is kept constant after the discretization.

VI. MIXTURE OF IDEAL GASES

As an application example, the potentials defined in Section are calculated for a multicomponent solution (mixture) of ideal gases. The entropic representation of the internal energy for an ideal gas is [5]:

$$
\begin{gather*}
u_{v}^{(i)}=\frac{\rho^{(i)}}{\rho_{0}^{(i)}} u_{v 0}^{(i)}+\frac{\rho^{(i)}}{M^{(i)}} \int_{\theta_{0}}^{\theta} c_{i}^{(i)}\left(\theta^{\prime}\right) d \theta^{\prime} \tag{88}\\
s_{v}=\sum_{i=1}^{r}\left[\frac{\rho^{(i)}}{\rho_{0}^{(i)}} s_{v 0}^{(i)}+\frac{\rho^{(i)}}{M^{(i)}} \int_{\theta_{0}}^{\theta} \frac{c_{v}^{(i)}\left(\theta^{\prime}\right)}{\theta^{\prime}} d \theta^{\prime}-\frac{\rho^{(i)}}{M^{(i)}} R \ln \left(\frac{\rho_{0}^{(i)}}{\rho^{(i)}}\right)\right] \tag{89}
\end{gather*}
$$

where R is a universal constant, θ_{0} are the temperature at a reference state, $\rho_{0}^{(i)}, u_{v 0}^{(i)}$ and $s_{v 0}^{(i)}$ are ccrespondingly the density, internal energy per unit volume anc entropy per unit volume For the ith-component at the reference state, $M^{(i)}$ is the ith-component molar mass and $c_{v}^{(i)}$ is tie ith-component specifis teat at constant volume (function $i=$ temperature only). Eqs. $区 8$) and (89) are a representation $=\therefore$ Eq. ($\bar{j} ;$ in parametric icm. being the parameter the temperature θ. From this representation, the potentials result:

$$
\begin{equation*}
\pi^{(i)}=\theta \frac{\frac{\rho^{(i)}}{M^{(i)}} c_{v}^{(i)}}{\left(\sum_{j=1}^{r} \frac{\rho^{(j)}}{M^{(j)}} c^{\prime j}\right)} \tag{90}
\end{equation*}
$$

$$
\begin{gather*}
\mu^{(i j)}=\left(\frac{u_{v 0}^{(i)}}{\rho_{0}^{(i)}}-\frac{1}{M^{(i)}} \int_{\theta_{0}}^{\theta} c_{v}^{(i)}\left(\theta^{\prime}\right) d \theta^{\prime}\right) \delta_{i j}-\pi^{(i)}\left[\frac{s_{v 0}^{(j)}}{\rho_{0}^{(j)}}\right. \\
\left.-\frac{1}{. I^{(j)}} \int_{\theta_{0}}^{\theta} \frac{c_{v}^{(j)}\left(\theta^{\prime}\right)}{\theta^{\prime}} d \theta^{\prime}+\frac{R}{M^{(j)}} \ln \left(\frac{\rho^{j}}{\rho^{2}}\right)-\frac{R}{M^{(j)}}\right] \tag{91}\\
P^{(i)}=P \frac{\frac{\rho^{(i)}}{M^{(i)}} c_{i}^{(i j}}{\left(\sum_{j=1}^{r} \frac{\rho^{(j)}}{M^{(j)}} c_{i}^{\prime 2}\right)} \tag{92}
\end{gather*}
$$

$$
P=\left(\sum_{i=1}^{r} \frac{\rho^{(i)}}{M^{(i)}}\right) R \theta
$$

From Eqs. (90) and (92), it can be seen that the contributions to the total temperature and pressure from the ith-component are weighted by the product of the moiar density and the specific heat.

VII. CONCLUSIONS

In this paper, the BG-CFD methodology was extended to Multicomponent Solutions. The multivelocity model were presented, leaving the presentation of the diffusion model for a separate contribution [6].

Based on the total energy per unit volume, the BG-CFD methodology allowed to define a sel of independent variables, potentials and constitutive relations needed to describe a multicomponent system.

The state equations were obtained by systematically integrating a set of power balance equations. These balance equations, obtained from Continuum Theory, take into account all physical effects (convection, heat transfer. compressibility, inertia, reaction, etc.) encountered in multicomponent solutions. The resulting Bond Graph represents the power structure of the system, showing energy storage, power interchange through the boundary conditions, power sources and power couplings between the different ports.

The author believes that the BG-CFD methodology is the foundation of a bridge between Bond Graphs and Computational Fluid Dynamics. It is hoped that the findings of this paper encourage other researchers to use this formalism in more specific problems.

ACKNOWLEDGMENTS

The author wishes to thank Conselio Nacional de Desenvolvimento Científico e Tecnologico (C.VPc. Brazil) for the financial support as Visiting Researcher at PEN.

Referexces

[1] Baliño, J. L., Larreteguy, A. E. \& Gandcifo. E. F., A General Bond Graph Approach for Computational Fluid Dynamics. Fart : Theory, Internotional Conference on Bond Graph Hodeling oric Simitiation (ICBGM 2001), The Society for Computer Simulaticn, pp. 41-45. ISBN 1-56555-221-0. 2001.
(2) Baliño, J. L., Larreteguy, A. E. \& Gandcifo. E. F., A General Bond Graph Approach for Computational Fluid Dyammes. submitted to Mathematics and Computers in Simulation.
(3) Gandolfo, E. F., Larreteguy, A. E. \& Balizo. J. L., Bond.Graph Modeling of 1-D Compressihle Flows, submitted to Seconc IEEE Internationai Conference on Syatems, Man and Cyberbetica (SMC02). Tuniais. October 6-9, 2002.
(4) Drew, D. A. \& Pasaman, S. L.. Theory of lfaticomponent Fluids, SpringerVeriag, New York, Inc., 1SBN 0.387-983s0-5. 1999.
(5) Callon, K. B., Thermodynamics, John Wiley \& Sans, inc.. ISBN 0-471-13036. 2, 1960 .
[6] Baliño, J. L., BG.CFD Methodology for Multicomponent Solutions. Part II: Diffusion Model, oubrnitted to this Conterence.
[7) Karnopp, D. C., Margolis, D. L. \& Rosenoerg, R. C., Syotem Dynamics. Modeling and Simulation of Mechatronic 5 ;atem. $3 d$ Ed.. Wiley interacience, 1SBN 0-471-33301-8, 2000.
(8) Gandolfo. E. F., Larreteguy, A. E. \& Baitico. j. L., A General Bond Graph Approach for Computational Fluid Dyamats. Para ll: Applicationa, frternational Conference on Bond Graph Modearoparic Simuiation (ICBGM 2001), The Society for Computer Simulation. pp. -
[9] Gandolfo, E. F., Larreteguy, A. E. \& Batiāc. J. L., Bond Graph Modal ing of Fluid Convection-Diffusion Problems, submitted to Mothemazics and Computere in Simulation.
where the total pressure results:

2003 Western MultiConference
 January 19-23, 2003
 Marriott OrlandoAirport Orlando, Florida

Conference Symposia:

- Bond Graph Modeling and Simulation
- Collaborative Technologies Symposium
- Communication Networks and Distributed Systems Modeling and Simulation
- Health Sciences Simulation
- Fossil Simllation and Training
- Simulation and Multimedia in Engineering Education
- Simulation Technology for Nuclear Power Plants and Systems

Errata
Changes and corrections submitted after the CD-ROM deadline can bs found on the SCS reb site at http://ww.w.scs.org/confernc/wme/wmc 03/text/errata.html

Methonology
BG-CFD Methodology for Multicomponent Solutions. Part I:
Multivelocity Model
BG-CFD Methodology for Multicomponent Solutions. Part II: Diffusion
Model
One Model for One Frequency Range : Comparison of Bond Graph
Based Simplification Methods
Physically-plausible Models for Identification 59

Bond Graphs for 1-Dimensional Duct Flows Using Nonlinear Finite Lumps

Switching Cell As A Converter Core Representation For Analysis

A First Approach of Distributed Parameters Systems Sizing Using Bond
Graphs

Fallet Detection

Bond Graph: a suitable tool for component faults diagnosis
Derivation of Constraint Relations from Bond Graph Models for Fault
Detection and Isolation

Model-Based Reasoning about Fault Propagation
Calsality
An Energy-Based Approach to Parameterizing Parasitic Elements for Eliminating Derivative Causality

Bicausality-based Procedures for Transfer and Transmission Matrix
Determination of Single Source Single Load Linear Systems

Eifatrical Systens

Sizing of an Electric Power Steering System on dynamic and energetic criteria

Transmission Line And Bond Graphs
J. L. Baliño
J. L. Baliño
G. Gandanegara
X. Roboam
B. Sareni
G. Dauphin-Tanguy

Peter J. Gawthrop
Donald Margolis

Kaiçar Ammous Bruno Allard Hervé Morel Anis Ammous

Abdechafik Derkaoui Éric Bideaux Serge Scavarda
A. Naamane
K. Sia
B. Ould Bouamama
A. K. Samantaray
M. Staroswiecki
G. Dauphin-Tanguy

Stefan Feyock

Geoff Rideout Jeffrey L. Stein
W. Marquis-Favre
X. Xia
S. Scavarda
O. Mechin
W. Marquis-Favre
S. Scavarda
P. Ferbach

Herve Morel
Kaiçar Ammous
Bruno Allard
Hatem Garab
Dominique Bergogne
Philippe Auriol

IPEN/CNEN-SP
BIBLIOTECA
"TEREZINE ARANTES FERRAZ"

Formulário de envio de trabalhos produzidos pelos pesquisadores do IPEN para inclusão na Produção Técnico Científica

AUTOR(ES) DO TRABALHO:
Baliñ̈, J.

LOTAÇÃO: CENT
RAMAL: $9285 / 262$
TIPO DE REGISTRO:
art. / periód.:
cap. de livro
\square

Publ. IPEN
Art. conf
\square
resumo
outros \square
(folheto, relatório, etc...)

TITULO DO TRABALHO:
BG-CFD methodology for multicomponent Pant I: multivelocity model

APRESENTADO EM: (informar os dados completos - no caso de artigos de conf., informar o título da conferência, local, data, organizador, etc..) 2003 Western multilouference-5an 19-23, 2003.

PALAVRAS CHAVES PARA IDENTIFICAR O TRABALHO:
Pond Graphs, Compatacional Fluid Dymamios CFD, multicomponent solutions.

ASSINATURA:

DATA:08/12/2003

