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1 Abstract. This paper shows distinctive features and some results obtained with a new numerical methodology for Compwiational

Fluid Dynamics (CFD), which is the result of the right combination of Bond Graph concepts with elements of Numencal Methods.
This methodology was used so far to model single-phase, single-component and single-phase, multicomponent dows. The main
‘characteristics of this new methodology, called BG-CFD, are summarized Some results of one-dimensional. singie-component
problems corresponding to heat conduction, convection-diffusion and compressible flows are discussed. showing that this
methodology is a foundation of a bridge between Bond Graphs and CFD.
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1. Introduction

1.1. Bond Graphs and CFD

In order to solve multidimensional problems with the aid of computer programs, it is impartant thar these models
can be implemented numerically. This task, main concem of the area of Computational Fluid Dynamics (CFD), is
performed by systematically discretizing the continua, that is, by replacing the continuous variables by a cambination of
a finite set of nodal values and interpolating functions. The result is a (generally nonlinear) algebraic zpproximation,
instead of the original differential or integro-differential problem.

The Bond-Graph formalism allows for a Systematic approach for representing and analyzing dynamic systems
(Kamopp et al, 2000). Dynamic systems belonging to different fields of knowledge, like Electrodymamics, Solid
Mechanics or Fluid Mechanics, can be described in terms of a finite number of variables and basic elemen:s

In the field of Fluid Dynamics, the potential benefits of Bond Graphs have not been yet fully exploited. The
applications made so far dealt with problem restrictions such as the neglect of inertia terms (which amounts for the
major non-linearities), very simple flow geometries or the use of the so-called "pseudo bond graphs™ Besides, the
applications to fluid dynamic systems were not oriented to a systematic spatial discretization of flow felds. typical of
CFD problems.

The first attempt to apply Bond Graphs to CFD problems appeared in (Fahrenthold & Venkaizrzman, 1996),
although the formulation was restricted to prescribed shape functions and nodalization. Besides, heat conduction (which
leads to convection-diffusion problems) was not modeled.

It is well known that the Bond Graph representation depicts in a very elegant way the conservation < energy in the
various forms in which it may appear in a given dynamic, lumped-parameter system. The definitiz: of suitable

generalized effort and flow variables, based on the system total energy, allows to obtain the state equatices i an orderly
fashion.

1.2. Motivation

In a previous work (Balifio et al., 2001) a theoretical development of a new methodology for CFD it z single-phase,
single-component flow was presented, which is a result of the right combination of Bond Graph concepts »ith elements
of numerical methods. This methodology, called BG-CFD, was successfully applied to one-dimensiozz: convection-
2001b; Balifio, 2002), it was shown that BG-CFD includes Control Volumes and Finite Differences as peicular cases
of the linearized state equations. Recently, BG-CFD was extended to single-phase, multicomponen: Z:ws (Balifio,
20033; Balifio, 2003b). The motivation of this paper is to show distinctive features and some results obraizad so far with

this methodology. The mathematical expressions shown in this paper correspond to the single-phase, sing z-component
flow problem.

2. The BG-CFD Methodology
2.1. Definition of the Independent Variables

Since BG-CFD is a power conserving approach, it is essential to have a representation of the total ezargy per unit
volume ¢, =y +1t,, where u, is the internal energy per unit volume and t = %f V'? is the kinetic coenergy per unit

volume. We choose the density p, the entropy per unit volume s and the velocity J as the indepexiant variables.
From this representation, the power balance per unit volume can be written as:
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In Eq. (1) and (2) Y is the Gibbs free energy per unit mass, K is the kinetic coenergy per unit mass, 6 is the
absolute temperature and p, is the hnear momentum per unit volume; in Eq. (2), P is the absolute pressure.

The terms that multlply the time denvanves of the independent variables can be regarded as potentials, which play
the role of constitutive relations needed to close the problem. This potentials are not independent functions, but their
mixed partial derivatives are related through the Maxwell relations of Thermodynamics (Callen, 1960).

An alternative formulation can be derived by taking p, instead of V as independent variable. In this case, the

formulation would be symmetric, in a sense that the volume integrals of the independent variabies would result in the
system mass, linear momentum and entropy. Nevertheless, we choose the velocity because it is more popular as
discretized variable and because the resulting expressions are easier to calculate.

The feasibility of presenting the total energy as a sum of product of potentials times time derivatives of independent
variables is not a trivial issue. In the field of Turbulence (Wilcox, 2000), for instance, the dynamics is formulated in
terms of time-averaged variables and fluctuations. In the field of Multiphase Flow (Drew & Passman, 1999), the
average process is more sophisticated because, besides turbulent effects within each phase, the position of the interfaces

is not known, resulting in variables such as the void fraction or the interfacial area per unit volume. A representation of
the mean total energy for these problems would be very useful.

2.2. Balance Equations

The balance equations are power equations (per unit volume) corresponding to each one of the terms that
contributes to the time derivative of the total energy per unit volume, Eq. (1). The balance equations can be obtained

starting from the conservation equations (mass, mechanical energy, thermal energy) (Whitaker, 1977) and the
constitutive relations, resulting:
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where ¢ isthe heat flux, @ is the heat source per unit mass and r is the viscous stress tensor.

One of the key issues in modeling fluid dynamic systems with inertial, viscous, compressible and thermal effects is
the right understanding of the ransformation of the different forms of energy (mechanical, thermal) and the generation
of irreversibility. The balance equations show one of the advantages of this methodology, that is, the representation of
the power structure of the system. In the balance equations there can be identified three type of terms: divergence,
source and coupling terms. The divergence terms take into account the power introduced in the system through the
boundary conditions. The source terms constitute the different power sources, external to the system. Finally, the
coupling terms represent power wansfer between the velocity, mass and emropy equations; these coupling terms appear,
with opposite signs, in pairs of balance equations. Taking into account Eq. (1) it verifies that coupling terms cancel out
when the balance equations are added, resuiting:

8; =V, + P+ px)V]+ V.(z.V)—-V.q+pG.V+pcD (6)

The cancellation of the coupling terms means that they influence the distribution among the power terms of Eq. (1) but
not the total power in the system.

2.3. Discretization of the Flow Fields

In order to formulate the discrete model of the fluid continuum in the domain {2 , it is necessary to specify the
description of the flow fields corresponding to the independent veriables. In BG-CFD this is done, in the same fashion
as in Finite Elements, in terms of a finite set of nodal values and interpolation functions. With this only restriction, we
are free to choose different types of grids. Assuming 7, density nodes, 71, entropy nodes and #,, velocity nodes, we
have:
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wherer 1s Tz ToSTIL 2.5, and ¥ are time-dependent nodal vectors, while 0, P and @, are the corresponding

position-deneiem =2z vectors of interpolation or shape functions. Based on this definition, we define the nodal
vectors of =i = I zTopy S as:

m=Q,: . =05 ; Q,=(@,), =[ o, 8nd2 Q,=(.), ={ 0.8,d0 ®
where Q, =2 Q. = 2 >rrespondingly diagonal volume matrices associated to the densxty and entropy per unit volume.
The syster- —zs3 m z=< =nropy S are related to these nodal vectors as follows:
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2.4. System Fower Balance

Since == =x&zi vecuxs of mass and entropy are proportional to the nodal vectors of discretized variables, it is
possible to w-=2 =2 sy total energy £ as:
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where U - 7 =2 -rrespondingly the system internal energy and system kinetic coenergy. The kinetic coenergy
can be wrizz :s : = ™=z~ form, involving the inertia matrix M , as:
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Analoz m=.7 12 =2 power per unit volume, Eq. (1), the system power can be expressed as:
E=(¥-i 3-8 3+p' ¥V (12)

where ¥ . £ . 8 =: p are carrespondingly nodal vectors of Gibbs free energy per unit mass, kinetic coenergy per
unit mass. 2752 :z—oeraure and linear momentum, defined as:
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Accoriz::: 2. -, the nodal vector of linear momentum can be regarded as a svstem volume integral of the
local values == == =~ =2 velocity interpolation function. It can be easily shown that the system linear momentum
can be obtzm =z =3
p=] p‘.:;=§p. (15)
The INE el in Eq. (12) define, as in the continuous case, constitutive relations corresponding to the
discrete or lzzzel Tz problem; these potentials also satisfy the Maxwell relations.
[t can =:: e := .=z Zzt the volume integrals of the left side terms of Eq. (3) to (5) can be calculated as:
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The different terms in the system state equations (17) to (19) arise from integrations over the domain volume {2 or
the domain boundary I” . Their definitions are:
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In Eq. (20) to (26) diagonal matrices are defined, whose elements are the components of the nodal vectors ¥ , K
and O :
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In Eq. (20) to (24), w, and w, are nodal vectors of weight functions corresponding to density and entropy per unit

volume; these weight functions are introduced to satisfy the power interchanged by the system through the boundaries,
as well as to share the importance of the power terms, appearing in the balance equations, among neighboring nodes. In
the discretization procedure, each component of the right side terms of the mass balance equation and entropy balance
equation were multiplied correspondingly by w or and wy, before integrating in volume; although this procedure has

the advantage that the steady-state balance equations are satisfied locally for the different nodes, other strategies are
possible and should be investigated. It will be shown later how these weight functions can be used to handle the
upwind nature of the fluid equations. It is interesting to notice that no weight functions are needed for the velocity state
equations,

It is clear that the resulting state equations, which are non-linear, are obtained foliowing a different approach than in
other numerical methods. Although they are used nodal values and interpolation and weight functions, which could
resemble what is done in the Finite Element Method, the state equations are not obtained from a minimization of any
functional. The state equations are not obtained either from any scheme like the ones used in Finite Differences. Finally,
the state variables do not correspond to the integrated variables in a control volume, except for the particular case of
uniform (unity) interpolation functions.

The state equations are different from the ones obtained with other popular numerical methods. The main
characteristic of this methodology is the conservation of different power flows in the system, while the system mass,
linear momentum and entropy can be calculated as the sum of the corresponding nodal values.

2.6. Boundary and Initial Conditions

All kind of boundary conditions are handled consistently through the terms representing surface integrals ( mg,r ),
S_'é_rFi and FT(r )'). Initial conditions can be defined by readily specifying the nodal values of the states variabies as:
m@=0=m, ; S¢=0)=5, ; V=0)=V, (28)

Alternatively, if spatial functions for density, velocity and entropy per unit volume are specified for the initial time,
the nodal values must be determined in order to conserve the systemn mass, linear momentum and entropy, resulting:
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2.7. Coupling Matrices

The coupling terms appearing in the balance equations shown in Section 2.2, when integrated in volume, give raise
to power terms that can be expressed as the product of different pairs of nodal vectors. Since these power terms are



conserved, there must be a relationship between the nodal vector involved. The representatice of these relationships is
performed through the coupling matriccs.

It can be shown that the coupling terms appearing in the velocity and mass state ecuations st the followmg
relationships:
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where A, is a rectangular matrix (n p TOWS and n, columns). For the coupling terms appearmg in the entropy and

p¥xd| (30)

mass state equations, the relationships are:
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where M, is a rectangular matrix (n, rows and n, columns). Finally, for the coupling terms appearing in the

velocity and entropy state equations, the relationships are:
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where M _ isarectangular matrix (7, rows and n_ columns).
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Since the coupling matrices are not inversible, they set restrictions on the allowable inpur nodal vectors. It can be
scen in Eq. (30) to (32) that the nodal vectors of mass rate and entropy rate arc output variables.

3. System Bond Graph

Although no mention was made so far in the presentation of BG-CFD, the methodology was developed based on
the Bond Graph theory. The power structure of the system can be depicted very elegantly in tie Bond Graph shown in
Fig. 1; through this figure, various concepts and drawing conventions can be introduced.

In the Bond Graph shown in Fig. 1, there can be identified different elements with ports cconected by bonds, which
are drawn as arrows. In each bond we have a pair of generalized effort and flow variabias. The bond orientation
indicates the direction of power flow when the inner product of these variables is positive. In addition, the effort
variable is represented to the side of the bond inclined stroke.

Sf
hy + ity
Fy
—\MTF —_\10/— MGY—
My my
m\¥+K  §,

F,Sr)+& F K _@—
S, N1 =—AMTF —I C/ s Sy

L4 P S 7185 +S0e +8

Fp+Fp

\MTF

Sp+Sp
Figure 1. System Bond Graph for a single-component, single-phase flow.

The representation of the system total energy E " as an exact differential of the state variz=.2s m. S and ¥ define

an energy-storing element known as multibond /C-field (drawn as IC ); this field has a ineniz port and 1wo capacitive
ports, representing the system power flows due correspondingly to velocity, mass and entropy r2:es. as seen in Eq. (12).



The effort variables are ¥, ¥ + K and @ , while the corresponding flow variables are p, 71, and § ; zxcording to the

graph, the power flows in the field when the product of any pair of variables is positive.

A modulated multibond transformer (drawn as MTF ) is connected to the inertial port of ta /C-field. A
transformer is a power conserving element characterized by a relation between the flow variables at both sides (in this
case p and V j such as shown in Eq. (14), in which the inertia mauix M (dependent on the mass nodal vector) is the

transformer modulus. Since power is conserved through a transformer, the relationship between the caresponding
effort variables is K =M" .F . Notice that the inertia matrix is always inversible.

A common flow, or multibond 1-junction.(drawn as 1) is used to represent the velocity state equation. =g. (19). Ina
1-junction, the flow (in this case V) is the same for all bonds, and the corresponding effort (in this case. te different
forces) are algebraically added.

A common effort, or multibond 0-junction (drawn as 0), connected to the capacitive (entropy) port ci the /C-field,
is used to represent the entropy state equation, Eq. (18). In a O-junction, the effort (in this case @) is the same for all
bonds, and the corresponding flows (in this case, the different entropy rates) are algebraically added.

Ancther multibond O-junction (drawn as 0), connected to the capacitive (mass) port of the JC-fieid. is used to
represent the mass state equation, Eq. (17); ¥ + K is the same for all bonds, and the corresponding mass rates are
algebraically added.

Modulated sources are used to represent the terms coming from boundary conditions (integrals over the system
boundary I' ), as well as other source terms. There exist effort and flow sources: in each case, either the affort or flow
is a given function, independent of the power supplied or absorbed. In the velocity state equation. z modulated
multibond effort source (drawn as S, ) is used to represent the forces F,(r ) + F; . In the entropy and mass state

equations, modulated flow sources (drawn as § f) are used to represent correspondingly the exwopy rates
Sé” +S8gr +$, and the mass rates T.(Lri*'_'i'_"’i'

The power couplings between the velocity and mass state equations, Eq. (30), and between the velociry and entropy
state equations, Eq. (32), are also represented by modulated multibond transformers, in which the caresponding
coupling matrices are the transformer moduli.

Finally, the power coupling between the entropy and mass state equations, Eq. (31), is represented by a modulated
multibond gyrator. A gyrator is a power conserving element characterized by a retarion between the eont and flow
variables at both sides, in which the coupling matrix is the gyrator modulus.

A very important feature of Bond Graphs is the concept of causality. The causality is drawn at one ex of a bond as
a perpendicular stroke, which indicates the direction in which the effort is directed; this is, the effort is an i=put variable
to the port connected to the bond end with the causal stroke. By implication, the flow is an input varia’e 1o the port
connected to a bond end that does not have a causal stroke. Once the Bond Graph of a system is drawrn Zere exist a
sequential procedure for causality assignment, after which each bond has only one causal stroke and the 2 zments have
possible causalities; for instance, an effort source has only one possible causality, so the causal stroke mus: 2e always at
the opposite end of the bond connected to the source. The causality assignment allows to choose a set of siz:2 variables
and assures that the problem is mathematically well-posed. The resulting causality is shown in Fig. 1; it is =:eresting 10
see that the restrictions imposed by the coupling matrices are satisfied.

4. Some resuits
4.1. Comparison with other Numerical Methods

In (Balifto, 2001b ; Balifio, 2002) BG-CFD was applied to one-dimensional compressible, viscous Z:% with heat
transfer. It was considered a one-dimensional discretization, as shown in Fig. 2, in which the mass, entrory zad velocity
nodes are coincident (not staggered).

It is interesting to consider a uniform distribution (this is, constant piecewise shape functions) of t=z :=dependem
variables, because these are the simplest and because the state variables correspond to the mass, entrory zad velocity
within the control volumes bounded by the lines located midway between the grid points. For the first 2= last nodes,
half control volumes are defined. With the assumptions made above, the inertia matrix becomes diagonz. :=d the state
equations corresponding to the different nodal state variables can be obtained analytically.

The discontinuities present in the description of the flow fields are handled through the use ¢ Zsributional
derivatives (Kanwal, 1998), this is, derivatives involving delta functions. In calculating the &:Zerent terms
corresponding to the state equations, there must be taken into account the contnuous contributions, z: well as the
distributional contributions. The distributional contributions are located at the discontinuity surfaces of th2 zdependent
variables and weight functions. Since the profiles of the independent variables are constant piecewise. = the terms
involving spatial derivatives only have distributional contributions.

It is interesting to find out whether such simple shape functions can model viscous effects and hee: conduction.

Calcuiating the terms involving the viscous stress tensor, it can be shown that viscous effects cannot e taken into



account with a caastant velocity shape function, this is, F N =F_ =0 and §, = 0; at least a linear velocity profile is

needed to modal viscous effects. On the other hand, it can be shown that heat conduction can be modeled with constant
shape functions :f the gradient of the entropy weight functions is nonzero at the discontinuity surfaces. Consequently, it

was shown thai e choice of the shape and weight functions is related to the physical effects that can be rigorously
modeled with t=is methodology.
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Figure 2. Discrexization for: (a) an inner node, () first node and (c) last node.

Based on e Second Principle of Thermodynamics, there were investigated restrictions on the entropy weight
functions by considering heat conduction in two reservoirs of thermal energy at different temperatures, that are allowed
to communica:z through a thermal resistance but are thermally insulated from the surrcundings at the rest of the
surfaces. It was snown that it is also necessary for the entropy weight functions to decrease with respect to the distance
to the corresponding entropy nodes.

There were also written linearized expressions of the state equations obtained with this discretization, which are
valid for probles with small space changes of the state variables and can be compared to the resulting expressions
obtained from czer numerical methods, such as Control Volumes or Finite Differences.

In the Conzci Volume approach (Patankar, 1980), the calculation domain is divided into a number of overlapping
control volumes such that there is one control volume surrounding each grid point. The differential equations are then
integrated over 2zch control volume, assuming convenient (in general different) profiles for evaluating the flux, source
and unsteady -=ms. It was found that the density and entropy weight functions evaluated at the control volume
boundaries car == regarded as weight factors in the calculation of the corresponding fluxes, while the gradient of the
entropy weigh: “=ction evaluated at the control volume boundaries come out to be proportional to the weight factors in
the calculatior 7 the conductive entropy fluxes. The limit values (1 or 0) for the mass and entropy weight functions
evaluated at the ~cundaries coresponds to the full upwind conditions.

In the Finiz Difference approach (Tannehill et al., 1997), the derivatives in the differential equations are replaced
by truncated Te;ior-series expansions. Expressions coincident with the ones obtained by using this formulation can be
obtained with =2 appropriate choice of the weight functions evaluated at the discontinuities. In this case, the limit
values (1 or 0, “x the mass and entropy weight functions evaluated at the boundaries corresponds to the forward or
backward apprcximation for the derivatives, ’

As a consecuence, BG-CrD includes the Control Volume and Finite Difference methods as particular cases,
obtaining an in:zrpretation of the density and entropy weight functions appearing in the methodology. In Sections 4.2
and 4.3 there a2 snown simple schemes to determine these functions.

4.2. Convective-Diffusive Flows

An interes:nz type of CFD problems are those in which hear transport is due to heat conduction and fluid flow.
These situations Zzfine what are known as convection-diffusion problems (Patankar, 1980). The main characteristic of
such problems s -zat the velocity field and the density are given.

In (Gandoii: er al, 2001 BG-CFD was applied to convection-diffusion problems. In the resulting Bond Graph,
which is a simp.:Zcation of the one shown in Fig. 1, there is power flow only at the entropy port and, since the velocity
field is known. z: the terms in the entropy state equation are represented by generalized flow sources.

One-dimens::nal examples of heat conduction and convection-diffusion problems were presented, and the results
were compared 3 the analytical ones. For simplicity, it was assumed incompressible flow with constant velocity and
thermophysical croperties, as well as a uniform grid spacing. Piecewise constant shape functions and piecewise linear



weight functions were assumed for the entropy, as shown in Fig. 3. In these figure, x isa local coordinate with origin at
the enropy node / and f is a parameter independent of position, which must be optimized in order to satisfy a

specified condition, regarding the accuracy of the numerical solution; the analysis for this optimization is deferred to
Section 4.2.2.
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Figure 3. Shape and weight functions for an inner node (the weight function is shown in a continucus line).

4.2.1. Heat Conduction

For heat conduction, the reference velocity is zero and the resulting state equations are independent of 8. In Fig. 4
there are presented numerical results for heat conduction, without heat sources (@ =0), in the slab 0<x < L, with
boundary and inital conditicns:

20 200
—0.0)=0 ; -i—=(n=H[6(Lr)-6.] ; 6(,0)=6, (33)
dx ax

In Eq. (33), A is the thermal conductivity and H is the heat transfer coefficient , while 8, and @, are reference
temperatures. The numerical and exact solutions (Carslaw & Jaeger, 1959) for the nondimensional temperature as a

function of x* = % are compared in terms of the following nondimensional parameters:

§=2-6. ; Bi=5—L ; Fo=%! ;0= A
6, -6. A L pe,
where Bi and Fo are correspondingly the Biot and Fourier numbers, while ¢r,, p and ¢, are correspondingly the
thermal diffusivity, the density and the constant volume specific heat.
The numerical results shown in Fig. 4 correspond to a fairly large number of nodes ( n, = 201); this has been done

on purpose to show that the formulation is indeed spatially consistent. Although good accuracy was also obtained with

much coarser grids, this particular problem is very tough for uniform grids, due to the steep temperature profiles that
appear for Fo<<l.

(34)

4.2.2. Convection-Diffusion

Results are presented for the convection-diffusion problem in the region 0 <x < L, with boundary and initial
conditions;

60,1)=6, ; 6(L:)=6, ; 6(x,0)=86, (35)
pc, UL

The analytical solution for § = 9-6; e also dependent on the Peclet number Pe, =

, while the
90 GL

pc,Uh

behavior of the numerical solution is dependent on the grid Peclet number Pe, =

For =0 the properties are evenly weighted, resulting the centered scheme. The solution show a known behavior:
for grid Peclet numbers greater than a critical value (Pe,, =2), the numerical resulits present oscillations and are no

longer a good approximation of the analytical solution. These oscillations can be observed in Fig. 5, for the steady state
solution.
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00 ol 02 03 04 05 06 07 08 09
2'0 b 1 A L A 1 A 1 A 5 i 1 I [} i [\ i |- ;_
4 -
1,8-4 -++O--- Centered D -.3
1 o Upwind s -
1,6 , PLo=ls
144 [=] . -4
1,2 a -2
- .u -
],Ol ..... a... oo S-S SN S S S
é\ ] o N L -
0,8 - 'y :.’ -3
06 -
p & - )
0,4 tuz
024 -2
0.0 ——T— T T T v | B | M| A : -
00 01 062 063 04 05 06 07 08 05
x*
Figure 5. Convection-diffusion in a slab, steady state. Linear weight function, upwi=- ~-e analytical solution is

shown in a continuous line.

A remedy for these unrealistic oscillations in the solution obtained with the linear -

—: function in convection-

diffusion problems is the inwoduction of upwind schemes. Upwind schemes basically w= = umevenly the convected
properties corresponding to the points located upstream, compared to the points located dow=szzam.

For advection-diffusion problems, upwind schemes can be introduced naturally bv m2z-: :7the weight functions. It
was proposed to perform an optimization of the parameter 3 by setting the condition tr.z: =z zumerical scheme has to
give the exact steady state value for the entropy at the node / for given values of the ===+ at the nodes /-1 and

[ +1. This approach is loosely related to others used in Finite Element Methods (Hughes. . ,-g The calculation gives:
go_L 1 lexp(Pe,,)+1

(36)
Pe, 2 exp(Pe, )-1
[t can be verified that 8 is an antisymmetric function, with the asymptotic values Z? ‘Tre, > teo. For g = %
the properties located downstream have no influence in the integration, and viceversa. W= =2 optimal value of f it

was observed that the solutions obtained are all consistent, even for very high Peclet number:. :s shown in Fig. 5.



4.3 Compressible Flows

In (Gandolfo et al., 2002) BG-CFD was used to solve the so called "shock tube" probiem (Emanuel, 1986). The
problem is depicted in Fig. 6. The tube, of length L =1 m and a cross section of 0.01 m*, has teen discretized into 100
equal sections (n p =N, =Ny = 101). Concerning the shape functions, piecewise constant were adopted for density and

entropy, while continuous linear were adopted for velocity, in order to be able to model viscous effects. As weight
functions, linear piecewise were adopted for the entropy, similar to the ones shown in Fig. 3. while linear continuous
were adopted for the density. No-flow and adiabatic boundary conditions were specified at ~cth ends. The following

..fluid. properties for air -taken from (Fahrenthold & Venkataraman, 1996)- were used: reference temperature”

8, =273 K , reference density p, =1.2955kg m™, viscosity y =1.7153 10™* Pa s, constzmt volume specific heat
,=T18J kg™ K.

dividing wall
% // 7
¢ %
l7/ [/Z4 x
00 0.5 1.0

Fig. 6. The shock tube.

The domain is initially separated in two sections by a solid wall located at x=0.5m. T2e gas is at rest in both
sections, and the initial density and total entropy conditions at the left section are p = p, and S =0, while for the right

section are p = % p, and §=44247J K "', At t =0 the solid wall is ruptured, generating z shock wave travelling to

the right and a rarefaction wave travelling to the left.
The resulting state equations were solved with a time step Ar=1.310"s. As it is usual (Fahrenthold &

Venkataraman, 1996; Sod, 1978; Monaghan & Gingold, 1983) an artificial viscosity was inwoduced, in order to damp
the numerical oscillations at the wave fronts. The numerical and analytical results for the dens:zy, entropy per unit mass,
velocity and pressure at ¢ =0.001s are shown in Fig. 7to 10.

Comparing the numerical and analytical solutions, it can be seen that there is a reasonz-ie agreement, being the
numerical results a bit diffusive because of the artificial viscosity. Although more work would be needed in the
selection of weight and shape functions, the simple ones chosen in this work have shown t: be adequate for dealing
with a complex nonlinear problem involving all physical effects.
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Fig. 7. Non-dimensional density at £ = 0.001s, shock-tube problem.
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Fig. 7. Non-dimensional pressure at ¢ = 0.001s, shock-tube problem.
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dw I



5. Conclusions

Distinctive features of a new methodology for CFD based on the Bond Graph theory were presented, as well as
results obtained so far in convection-diffusion and compressible flow problems. This methodology is focused on the
power structure of the system, offering a new perspective to solve CFD problems. It is hoped that these findings
encourage other researchers to use this formalism in more complex problems.
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