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Abstract. This paper shows distinctive features and some results obtained with a new numerical inethodology fca. Computational 
Fluid Dynamics (CFD), which is the result of the right co-mbination of Bond Graph concepts with elements of Numencal Methods. 
This methodology was used so far to model single-phase, single-component and single-phase, multicomponent flows. The main 
*characteristics of this new methodology, called BG-CFD, are summarized. Some results of one-dimensional. sMgie-component 
problems corresponding to heat conduction, convection-diffusion and compressible flows are discussed. showing that this 
methodology is a fotmdation of a bridge between Bond Graphs and CFD. 
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1. Introduction 

1.1. Bond Graphs and CFD 

In order to solve multidimensional problems with the aid of computer programs, it is important that these models 
can be implemented numerically. This task, main concem of the area of Computational Fluid Dynamics (CFO), is 
performed by systematically discretizing the continua, that is, by replacing the continuous variables by a ccmbination of 
a finite set of nodal values and interpolating functions. The result is a (generally nonlinear) algebraic gg.proximation, 
instead of the original differential or integro-differential problem. 

The Bond-Graph formalism allows for a systematic approach for representing and analyzing dynamic systems 
(Kamopp et aL, 2000). Dynamic systems belonging to different fields of knowledge, like Electrodynamics, Solid 
Mechanics or Fluid Mechanics, can be described in terms of a finite number of variables and basic elements. 

In the field of Fluid Dynamics, the potential benefits of Bond Graphs have not been yet fully exploited. The 
applications made so far dealt with problem restrictions such as the neglect of inertia terms (which amotmts for the 
major non-linearities), very simple flow geometries or the use of the so-called "pseudo bond graphs". Besides, the 
applications to fluid dynamic systems were not oriented to a systematic spatial discretization of flow fields. typical of 
CFD problems. 

The first attempt to apply Bond Graphs to CFD problems appeared in (Fahrenthold & Venkmarp-nan 1996), 
although the formulation was restricted to prescribed shape functions and nodalization. Besides, heat conducticn (which 
leads to convection-diffusion problems) was not modeled. 

It is well known that the Bond Graph representation depicts in a very elegant way the conservation cf enerey in the 
various forms in which it may appear in a given dynamic, lumped-parameter system. The definiticr_ of suitable 
generalized effon and flow variables, based on the system total energy, allows to obtain the state equatix.s in an orderly 
fashion. 

1.2. Motivation 

In a previous work (Balifio et aL, 2001) a theoretical development of a new methodology for CFD in a sinale-phase, 
single-component flow was presented, which is a result of the right combination of Bond Graph concepts 	elements 
of numerical methods. This methodology, called BG-CFD, was successfully applied to one-dimensix—.I.: convection-
diffusion (Gandolfo et al., 2001) and compressible problems (Gandolfo et aL, 2002). In other conzi17.:-.icns 
2001b; Balifio, 2002), it was shown that BG-CFD includes Control Volumes and Finite Differences as :2-- .icular cases 
of the linearized state equations. Recently, BG-CFD was extended to single-phase, multicomponern f.c.As 

2003a; Balifio, 2003b). The motivation of this paper is to show distinctive features and some results 	so far with 
this methodoloey. The mathematical expressions shown in this paper correspond to the single-phase, sir:Le-component 
flow problem. 

2. The BG-CFD Methodology 

2.1. Definition of the Independent Variables 

Since BG-CFD is a power conserving approach, it is essential to have a representation of the total eaeray per unit 

volume e: = + t:, where /4„ is the internal energy per unit volume and t: = !eV' is the kinetic coe'ay per unit 
2 

volume. We choose the density p , the entropy per unit volume s, and the velocity V as the indepmdmt variables. 

From this representation, the power balance per unit volume can be written as: 
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where t is the time, and: 

1 , 	 au y 	 at.) 
=—kuv P 	 tc =1 	= at: 	 (2) 

ap 	 2 	ap v 	= asv 	; Pr PV = av 
Ln Eq. (1) and (2) 	is the Gibbs free energy per unit mass, 1C is the kinetic coenergy per unit mass, 0 is the 

absolute temperature and p, is the linear momentum per unit volume; in Eq. (2), P is the absolute pressure. 

The terms that multiply the time derivatives of the independent variables can be regarded as potentials, which play 
the role of constitutive relations needed to close the problem. This potentials are not independent functions, but their 
mixed partial derivatives are related through the Maxwell relations of Thermodynamics (Callen, 1960). 

An alternative formulation can be derived by talcing py insead of Vas independent variable. In this case, the 

formulation would be symmetric, in a sense that the volume inteszrals of the independent variables would result in the 
system mass, linear momentum and entropy. Nevertheless, we choose the velocity because it is more popular as 
discretized variable and because the resulting expressions are easier to calculate. 

The feasibility of presenting the total energy as a sum of product of potentials times time derivatives of independent 
variables is not a trivial issue. In the field of Turbulence (Wilcox, 2000), for instance, the dynamics is formulated in 
terms of time-averaged variables and fluctuations. In the field of Multiphase Flow (Drew & Passman, 1999), the 
average process is more sophisticated because, besides turbulent effects within each phase, the position of the interfaces 
is not lmown, resulting in variables such as the void fraction or the interfacial area per unit volume. A representation of 
the mean total energy for these problems would be very useful. 

2.2. Balance Equations 

The balance equaticns are pOWer equations (per unit volume) corresponding to each one of the terms that 
contributes to the time derivative of the total energy per unit volume, Eq. (1). The balance equations can be obtained 
starting from the conservation equations (mass, mechanical energy, thermal energy) (Whitalcer, 1977) and the 
constitutive relations, resulting: 
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where q is the heat flux, 0 is the heat source per unit mass and r is the viscous stress tensor. 

One of the key issues in modeling fluid dynamic systems with inertial, viscous, compressible and thermal effects is 
the right understanding of the transformation of the different forras of energy (mechanical, thermal) and the generation 
of irreversibility. The balance equations show one of the advantages of this methodology, that is, the representation of 
the power structure of the system. In the balance equations there can be identified three type of terms: divergence, 
source and coupling terms. The divergence terrns talce into account the power introduced in the system through the 
boundary conditions. The source terms constitute the different power sources, external to the system. Finally, the 
coupling terms represent power transfer between the velocity, mass and entropy equations; these coupling terms appear, 
with opposite signs, in pairs of balance equations. Talcing into account Eq. (1) it verifies that coupling terms cancel out 
when the balance equations are added, resulting: 
ae. 
at
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The cancellation of the coupling terms means that they influence the distribution among the power terms of Eq. (1) but 
not the total power in the system. 

2.3. Discretization of the Flow Fields 

In order to formulate the discrete model of the fluid continuum in the domain S2 , it is necessary to specify the 
description of the flow fields corresponding to the independent variables. In BG-CFD this is done, in the same fashion 
as in Finite Elements, in terms of a finite set of nodal values and interpolation functions. With this only restriction, we 

are free to choose different types of grids. Assuming np density nodes, II, entropy nodes and nv velocity nodes, we 

have: 
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where r is te 	. s, and V are time-dependent nodal vectors, while 	, (ps and cp,. are the corresponding 
P 

vectors of interpolation or shape functions. Based on this definition, we define the nodal 
vectors of 	e.--_zopy S as: 

m =Op .; 	. 	5. = 	; 	S2p = (Op )b, = Lcppk Sk„ df2 	; 	= 42s),„ = n cpsi 3i, dS2 	(8) 
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where f2,, 	D. z_--e 	 diaeonal volume matrices associated to the density and entropy per unit volume. 

The system -2_1s-s. 	mtropy S are related to these nodal vectors as follows: 

m=in pdf,:=Im, . S=5 s df2=ISI 
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2.4. System ?rower Baktace 

Since 	re--..xs of mass and entropy are proportional to the nodal vectors of discretized vaxiables, it is 
possible to :1=2 te 	total aaergy E. as: 

E. =U(Ln.2. 	n. : ; U= u,dS2 ; T. = Lt: dS2 	 (10) 

where U 	:27:espondingly the system internal energy and system kinetic coenergy. The kinetic coenergy 
can be 	 form, involving the inertia matrix M , as: 

(9) 
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:xwer per unit volume, Eq. (1), the system power can be expressed as: 
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Accor "—Li 	the nodal vector of linear momentum can be regarded as a system volume integral of the 
local values t..̀ 	'7".• te velocity interpolation function. It can be easily shown that the system linear momentum 
can be 	a.s 

P = P, 	= P. 	 (15) 

The 	 in Eq. (12) define, as in the continuous case, constitutive relations corresponding to the 
discrete or 	 problem; these potentials also satisfy the Maxwell relations. 

It can 	 -.Lit the volume integrals of the left side terms of Eq. (3) to (5) can be calculated as: 
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2.5. State E -.:mtiipm 

The system- 	 are obtained by integratine in volume the balance equations, Eq. (3) to (5). The expressions 
for the sys:e_-_ 	:r.s are: 
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The different terrns in the system state equations (17) to (19) arise from integrations over the domain volume S2 or 
the domain boundary F . Their definitions are: 
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In Eq. (20) to (26) diagonal matrices are defined, whose elements are the components of the nodal vectors Vi , K 
and 0 . 

`11 =(P)k„ =11 45k. ; K = (14,, = K k 8 	; e = 	= el (51„ 	 (27) 

In Eq. (20) to (24), wp and ws are nodal vectors of weight functions corresponding to density and entropy per unit 

volume; these weight functions are introduced to satisfy the power interchanged by the system through the boundaries, 
as well as to share the importance of the power terms, appearing in the balance equations, among neighboring nodes. In 
the discretization procedure, each component of the right side terms of the mass balance equation and entropy balance 
equation were multiplied correspondinaly by wpk and ws/ before integrating in volume; although this procedure has 

the advantage that the steady-state balance equations are satisfied locally for the different nodes, other strategies are 
possible and should be investigated. It will be shown later how these weight functions can be used to handle the 
upwind nature of the fluid equations. It is interesting to notice that no weight fluictions are needed for the velocity state 
equations. 

It is clear that the resulting state equations, which are non-linear, are obtained following a different approach than in 
other numerical methods. Although they are used nodal values and interpolation and weight fluictions, which could 
resemble what is done in the Finite Element Method, the state equations are not obtained from a minimization of any 
functional. The state equations are not obtained either from any scheme like the ones use-d in Finite Differences. Filially, 
the stale variables do not correspond to the integrated variables in a control volume, except for the particular case of 
uniform (unity) interpolation functions. 

The state equations are different from the ones obtained with other popular numerical methods. The main 
characteristic of this methodology is the conservation of different power flows in the system, while the system mass, 
linear momentum and entropy can be calculated as the sum of the corresponding nodal values. 

2.6. Boundary and Initial Conditions 

All kind of boundary conditions are handled consistently through the terms representina surface integrals (MV", , 

S'(Qri.) and F içr) ). Initial conditions can be defined by readily specifying the nodal values of the states variables as: 

m (t = 0) = mo ; S (t = 0) = So ; V (t = 0) = V, 	 (28) 

Alternatively, if spatial fwictions for density, velocity and entropy per unit volume are specified for the initial time, 
the nodal values must be determined in order to conserve the system mass, linear momentum and entropy, resulting: 

p(r,t =0)V(r,1=0)9i.„, dS2 
mo = p(r, t = 0)(p p dS2 ; So = Jo s, (r,t =0)9, dS2 ; Von, - 	  
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2.7. Coupling MatTices 

(29) 

The coupling terms appearing in the balance equations shown in Section 2.2, when integrated in volume, give raise 
to power terms that can be expressed as the product of different pairs of nodal vectors. Since these power terms are 



conserved.. there must be a relationship between the nodal vector involved. The representatic..r. of these relationships is 
performed throug,h the coupling matrices. 

It can be shown that the coupling terms appearine in the velocity and mass state ez=ions set the following 
relationships: 
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where M so, is a rectangular matrix (np rows and n, columns). For the coupling terms appearine in the entropy and 

mass state equations, the relationships are: 
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where A /f sis is a rectangular matrix (np rows and ns columns). Finally, for the coupline terms appearing in the 

velocity and Entropy state equations, the relationships are: 

Fp + FD =Ms7 .0 ; 4 + 	Msv T V ; M sv 	sv Li = —eli ws, (VP 9„ r.V•pr. )d,Q1 (32) 

where Afv, is a rectangular matrix ( ny rows and ns columns). 

Since the coupling matrices are not inversible, they set restrictions on the allowable input nodal vectors. It can be 
sccn in Eq. (30) to (32) that the nodal vectors of mass rate and cntropy rate arc output variables. 

3. System Bond Graph 

Although no mention was made so far in the presentation of BG-CFD, the methodoloey v.-as developed based on 
the Bond Graph theory. The power structure of the system can be depicted very elegantly in Bend Graph shown in 
Fig. 1; through this figure, various concepts and drawing conventions can be introduced. 

In the Bond Graph shown in Fig. 1, there can be identified different elements with ports cmnected by bonds, which 
are drawn as arrows. In each bond we have a pair of generalized effort and flow variabl. T.he bond orientation 
indicates the direction of power flow when the inner product of these variables is positive. In addition, the effort 
variable is represented to the side of the bond inclined 5croke. 
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Figure 1. System Bond Graph for a single-component, single-phase flow. 

The representation of the system total energy E. as an exact differential of the state varia:::es m . S and V define 
an energy-storing element known as multibond /C-field (drawn as /C); this field has a inertiz-.1 pm and tv.-o capacitive 
ports, representing the system power flows due correspondingly to velocity, mass and entropy ra:es. as seen in Eq. (12). 



The effort variables are , 	+ K and e , while the corresponding tlow variables are p ril , and S' a.=ding to the 

graph. the power flows in the field when the product of any pair of variables is positive. 
A modulated multibond transformer (drawn as MTF ) is connected to the inertial port of th.-e /C-field. A 

transformer is a power conserving element characterized by a relation between the flow variables at both sides (in this 
case p and V ) such as shown in Eq. (14), in which the inertia matrix M (dependent on the mass nodal vector) is the 

transformer modulus. Since power is conserved through a transformer, the relationship between the carespondinp 

effort variables is k = M .F . Notice that the inertia matrix is always inversible. — 	— 
A common flow, or multibond 1-junction.(drawn as 1) is used to represent the velocity state equation. E.q. (19). In a 

1-junction, the flow (in this case V) is the same for all bonds, and the corresponding effort (in this case. ±e different 

forces) are algebraically added. 
A common effort, or multibond &junction (drawn as 0), connected to the capacitive (entropy) pon cf the /C-fielci, 

is used to represent the entropy state equation, Eq. (18). In a 0-jimction, the effort (in this case e ) is the same for all 
bonds, and the corresponding flows (in this case, the different entropy rates) are algebraically added. 

Another multibond 0-junction (drawn as 0), connected to the capacitive (mass) port of the IC-fi6d. is used to 
represent the mnss state equation, Eq. (17); VI + K is the same for all bonds, and the corresponding moss rates are 
algebraically added. 

Modulated sources are used to represent the terms coming from boundary conditions (integrals 0,ar the system 
boundary /- ), as well as other source terms. There wdst effort and flow sources: in each case, either the effort or flow 
is a given function, independent of the power supplied or absorbed. In the velocity state equatim a modulated 
muhibond effort source (drawn as Se ) is used to represent the forces F 7.) + FG . In the entropy and 	 state 

equations, modulated flow sources (drawn as Si ) are used to represent correspondingly the x..zopy rates 

SI) + 	+ S' and the mass rates Thiv(r) + 0,F . 
QF 	F 

The power couplings between the velocity and mass state equations, Eq. (30), and between the velocny and entropy 
state equations, Eq. (32), are also represented by modulated multibond transformers, in which the caresponcling 
coupling matrices are the transformer moduli. 

Finally, the power coupling between the entropy and mass state equations, Eq. (31), is represented by a modulated 
multibond gyrator. A gyrator is a power conserving element characterized by a relation between the e:Thrt and flow 
variables at both sides, in which the coupling matrix is the gyrator modulus. 

A very important feature of Bond Graphs is the concept of causality. The causality is drawn at one md of a bond as 
a perpendicular stroke, which indicates the direction in which the effort is directed; this is, the effort is an =put variable 
to the port connected to the bond end with the causal stroke. By implication, the flow is an input varia:cle to the port 
connected to a bond end that does not have a causal stroke. Once the Bond Graph of a system is drawn_ :here exist a 
sequential procedure for causality assignment, after which each bond has only one causal stroke and the e.=ents have 
possible causalities; for instance, an effort source has only one possible causality, so the causal stroke mus-...-2e always at 
the opposite end of the bond connected to the source. The causality assignmait allows to choose a set of s:?..:e variables 
and assures that the problem is mathematically well-posed. The resulting causality is shown in Fig. I; it is =.:eresting to 
see that the restrictions imposed by the coupling matrices are satisfied. 

4. Some results 

4.1. Comparison with other Numerical Methods 

In (Bolin°, 200 lb ; Balifio, 2002) BG-CFD was applied to one-dimensional compressible, viscous flc-x with heat 
transfer. It was considered a one-dimensional discretization, as shown in Fig. 2, in which the mass, entro:::: and velocity 
nodes are coincident (not staggered). 

It is interestine to consider a uniform distribution (this is, constant piecewise shape functions) of Th.:: =dependent 
variables, because these are the simplest and because the state variables correspond to the mass, entrory and velocity 
within the control volumes bounded by the lines located midway between the grid points. For the first ah.f last nodes. 
half control volumes are defined. With the assumptions made above, the inertia matrix becomes diaeona: azd the state 
equations corresponding to the different nodal state variables can be obtained analytically. 

The discontinuities present in the description of the flow fields are handled through the use of C.im-ibutional 
derivatives (Kanwal, 1998), this is, derivatives involving delta functions. In calculating the L':::Terent terms 
correspondine to the state equations, there must be talcen into account the continuous contributions. as well as the 
distributional contributions. The distributional contributions are located at the discontinuity surfaces of the =dependent 
variables and weight fin-lotions. Since the profiles of the independent variables are constant piecewise. LI the terms 
involving spatial derivatives only have distributional contributions. 

It is interestine to find out whether such simple shape functions can model viscous effects and 	conduction. 
Calculating the terms involving the viscous stress tensor, it can be shown that viscous effects cannot -ce taken into 



account with a constant velocity shape function, this is, Fg.) =FD= 0 and S D=0; at least a linear velocity profile is 

needed to moci viscous effects. On the other hand, it can be shown that heat conduction can be modeled with constant 
shape functions ff the 2radient of the entropy weight functions is nonzero at the discontinuity surfaces. Consequently, it 
was shown that :he choice of the shape and weight functions is related to the physical effects that can be ri2orousiy 
modeled with this methodoloey. 

Figure 2. Discraization for: (a) an inner node, (b) first node and (c) last node. 

Based on :he Second Principle of Thermodynamics, there wae investigated restrictions on the entropy weight 
fimctions by con..4dering heat conduction in two reservoirs of tharnal energy at different temperatures, that are allowed 
to communicate through a thermal resistance but are thermally insulated from the surroundings at the rest of the 
surfaces. It was shown that it is also necessary for the entropy weight functions to decrease with respect to the distance 
to the correspona2 entropy nodes. 

There were also written linearized expressions of the state equations obtained with this discretization, which are 
valid for probl=s with small space changes of the state variables and can be compared to the resulting expressions 
obtained from other numerical methods, such as Control Volumes or Finite Differences. 

In the Conn.ol Volume approach (Patanlcar, 1980), the calculation domain is divided into a number of overlappina 
control volumes szch that there is one control volume surrounding each grid point. The differential equations are then 
integrated over each control volume, assuming convenient (in general different) profiles for evaluating the flux, source 
and unsteady terms. It was found that the density and entropy weight functions evaluated at the control volume 
boundaries can 'r.,e regarded as weight factors in the calculation of the corresponding fluxes, while the gradient of the 
entropy wei2h: ::_inction evaluated at the control volume boundaries come out to be proportional to the weight factors in 
the calculation the conductive entropy fluxes. The limit values (1 or 0) for the mass and entropy weight functions 
evaluated at the lxundaries corresponds to the full upwind conditions. 

In the Finite Difference approach (Tannehill et al., 1997), the derivatives in the differential equations are replaced 
by truncated Taytor-series expansions. Expressions coincident with the ones obtained by using this formulation can be 
obtained with appropriate choice of the weight functions evaluated at the discontinuities. In this case, the limit 
values (1 or 0; ilt-r the mass and entropy weight finictions evaluated at the boundaries corresponds to the forward or 
backward approximation for the derivatives. 

As a consea.uence, BG-CFD includes the Control Volume and Finite Difference methods as particular cases, 
obtaining an interpretation of the density and entropy weight functions appearing in the methodology. In Sections 4.2 
and 4.3 there are ,nown simple schemes to determine these functions. 

4.2. ConvectiNe-Diffusive Flows 

An interesazz, type of CFD problems are those in which heat transpon is due to heat conduction and fluid flow. 
These situations define what are lmown as convection-diffiision problems (PatanIcar, 1980). The main characteristic of 
such problems ts ..nat the velocity field and the density are given. 

In (Gando:ft et aL, 2001) BG-CFD was applied to convection-diffusion problems, In the resulting Bond Graph, 
which is a simp:ia..ation of the one shown in Fig. 1, there is power flow only at the entropy port and, since the velocity 
field is known. a:: the temis in the entropy state equation are represented by generalized flow sources. 

One-cihnensimal examples of heat conduction and convection-diffiision problems were presented, and the results 
were compared. trJ the analytical ones. For simplicity, it was assumed incompressible flow with constant velocity and 
thermophysical properties, as well as a uniform grid spacing. Piecewise constant shape fimctions and piecewise linear 
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Figure 3. Shape and wei2ht functions for an inner node (the weight function is shown in a continuous line). 

weieht functions were assumed for the entropy, as shown in Fie. 3. Ln these figure, x is a local coordinate with oriein at 
the entropy node / and /3 is a parameter independent of position, which must be optimized in order to satisfy a 

specified condition, regardine the accuracy of the numerical solution; the analysis for this optimization is deferred to 
Section 4.2.2. 

4.2.1. Heat Conduction 

For heat conduction, the refermice velocity is zero and the resulting state equations are independent of p. In Fig. 4 
there are presented numerical results for heat conduction, without heat sources (0 = 0 ), in the slab 0 5x L , with 
boundary and initial conditions: 

ao —(o,t).o 	; 	— A—
a e

(L,t)= H [0(L,t)— 0.1 	(x,0)= 00 	 (33) 
x 	 x 

In Eq. (33), A is the thermal conductivity and H is the heat transfer coefficient , while O. and 0, are reference 

temperatures. The numerical and exact solutions (Carslaw & Jaeger, 1959) for the ncadirnensional temperature as a 

fiinction of x* —x , are compared in terms of the following nondirnensional parameters: 

_ — ,„ 
Bi = 

H L 
Fo=

ccot 
ao = 	 (34) 

0, — 	 pc, 
where Bi and Fo are correspondingly the Biot and Fourier numbers, while ao , p and cv are correspondingly the 

thermal diffusivity, the density and the constant volume specific heat. 
The numerical results shown in Fig. 4 correspond to a fairly laree number of nodes ( n = 201); this has been done 

on purpose to show that the formulation is indeed spatially consistent. Although good accuracy was also obtained with 
much coarser erids, this panicular problem is very tough for uniform grids, due to the steep temperature profiles that 
appear for Fo <<I. 

4.2.2. Convection-Diffusion 

Results are presented for the convection-diffusion problem in the region 0 < x L, with boundary and initial 
conditions: 

0 (0, t) = 00 	; 	(L,t)=0, 	; 	0 (x,0)=00 	 (35) 

0 — 0 	 p c„U L 
The analytical solution for 6? 	L  are also dependent on the Peclet number PeL — 	 , while the 

A eo OL 

p c,,U h 
behavior of the numerical solution is dependent on the grid Peclet number Pe h — 	 • 

A 

For 0, 0 the propenies are evenly weighted, resulting the centered scheme. The solution show a lcnown behavior: 
for grid Peclet numbers greater than a critical value (Pe h, = 2 ), the numerical results present oscillations and are no 

longer a good approximation of the analytical solution. These oscillations can be observed in Fig. 5, for the steady state 
solution. 
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Figure 4. Heat conduction in a slab. Analytical solutions are shown in continuous lines_ =."*"..dle calculated values are 

shown for selected nodes. 

Figure 5. Convection-diffusion in a slab, steady state. Linear weight function, upwiLL Tile analytical solution is 
shown in a continuous line. 

A remedy for these unrealistic oscillations in the solution obtained with the linear 	:unction in convection- 
diffusion problems is the introduction of upwind schemes. Upwind schemes basically 	=evenly the convected 
properties corresponding to the points located upstream, compared to the points located c1:77-_-, --zm. 

For advection-diffusion problems, upwind schemes can be introduced naturally by 111 	f the weight functions. It 
was proposed to perform an optimization of the parameter 0 by setting the condition ti-12: 	aumeTical scheme has to 

give the exact steady state value for the entropy at the node 1 for given values of the 	at the nodes / -1 and 
/ + 1. This approach is loosely related to others used in Finite Element Methods (Huahes. 	The calculation gives: 

1 	1 exp(Pe,)+1  
0= 	 (36) 

Pe„ 2 exp (Pe,)- 1 

It can be verified that 0 is an antisyrnmetric furiction, with the asymptotic values 1- 	 -> -too. For 0 -
1 

, 
2 

the properties located downstream have no influence in the integration, and viceversa. 

- 

-z.t optimal value of 0 it 
was observed that the solutions obtained are all consistent, even for very high Peclet numte:-_ 	shown in Fig. 5. 



4.3 Compressible Flows 

In (Gandolfo et aL, 2002) BG-CFD was used to solve the so called "shock tube" problem (Emanuel, 1986). The 
problem is depicted in Fig. 6. The tube, of leneth L = 1 m and a cross section of 0.01 m2, has been discretized into 100 

equal sections (np ns =n, =101). Conceming the shape functions, piecewise constant tve adopted for density and 

entropy, while continuous linear were adopted for velocity, in order to be able to model N:scous effects. As weight 
ftuictions, linear piecewise were adopted for the entropy, similar to the ones shown in Fie. while linear continuous 
were adopted for the density. No-flow and adiabatic boundary conditions were specified at ..70th ends. The following 

-fluid properties for air -talcen from (Fahrenthold & Venkataraman, 1996)- were used: reference temperature' 

00 = 273 K , reference density po =1.2955 kg nt-3 , viscosity g = 1.7153 10-5 Pa s , consta.,-t volume specific heat 

cv =718J kg-1 
dividing wall 

      

0.0 0 5 

 

Fig. 6. The shock tube. 

The domain is initially separated in two sections by a solid wall located at x = 0.5m . :le gas is at rest in both 

sections, and the initial density and total entropy conditices at the left section are p = po and S = 0 , while for the right 

section are p=-
1 

po and S = 4.4247J 	. At t = 0 the solid wall is ruptured, generatine a shock wave travelling to 
2 

the right and a rarefaction wave travelling to the left. 
The resulting state equations were solved with a time step dt =1.3 10-5 s . As it is usual (Fahrenthold & 

Venkataraman, 1996; Sod, 1978; Monaghan & Gingold, 1983) an artificial viscosity was inu.aiuced, in order to damp 
the numerical oscillations at the wave fronts. The numerical and analytical results for the dens::::. entropy per unit mass, 
velocity and pressure at t = 0.001s are shol;vn in Fig. 7 to 10. 

Comparing the numerical and analytical solutions, it can be seen that there is a reason-Z:1e agreement, beine the 
numerical results a bit diffusive because of the artificial viscosity. Although more work would be needed in the 
selection of weight and shape functions, the simple ones chosen in this work have shown be adequate for dealing 
with a complex nonlinear problem involving all physical effects. 
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Fig. 7. Non-dimensional density at t = 0.001s, shock-tube problem. 
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Fig. 7. Non-dimensional pressure at t = 0.001s , shock-tube problem. 



5. Conclusions 

Distinctive features of a new methodolo2y for CFD based on the Bond Graph theory were presented, as well as 
results obtained so far in convection-diffusion and compressible flow problems. This methodology is focused on the 
power structure of the system, offering a new perspective to solve CFD problems. It is hoped that these findings 
encourage other researchers to use this formalism in mcre complex problems. 
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