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ABSTRACT 
 
In the nuclear industry the separation processes have been to the long of those years of great importance in what 
refers to the production of nuclear materials used as fuels, having assumed fundamental paper in the strategy of 
decontamination of decommissioned nuclear installations and potentially in the disposition of liquid radioactive 
waste. Those wastes are produced continually, varying considerably in volume, radioactivity and chemical 
composition. In the treatment of these wastes different techniques have been used as the chemical treatment, the 
adsorption, the filtration, the ion exchange and the evaporation. Those techniques are limited to remove all the 
pollutants, and in the case of the evaporation they end up generating secondary solid wastes. In the last decades 
the technology of membranes has been a lot used mainly in the nuclear area to recover metal ions of radioactive 
liquid waste. This work presents the characterization of the PTFE membranes with pore size ranging between 
0.45 and 5 μm for use in the recovery of metal ions in processes using the SLM technique. The membranes were 
characterized for: thickness and porosity, thermogravimetric analysis, infrared spectroscopy (IR), scanning 
electron microscopy (SEM) and luminescence spectroscopy with Eu(III) ions. 
 
 

1. INTRODUCTION 
 
The use of supported liquid membranes (SLMs), porous supports impregnated with an 
organic solution containing the carriers or extractor agents, they have been receiving growing 
attention in the last years, due its potential for use in the separation and removal of metal ions 
[1-3]. Instead, its industrial application is still limited, mainly, by the slow dissolution of the 
carrier impregnated in the pores of the membrane, what causes loss of the stability of SLM 
and decrease of its acting. That degradation mechanism is still being investigated by 
researchers, and among them they are mentioned the absorption of water of the polymeric 
support by the aqueous phases and the solubilization of the carrier in the interface of the 
solutions [4]. 
 
SLMs based on the principles of liquid–liquid extraction. The basic principle of SLM 
technique is that two aqueous phases, the feeding and stripping solutions, are separated by a 
hydrophobic membrane. Within the pores of this membrane an organic phase, comprised of 
an appropriate extractor agent with low solubility in water, is adsorbed. The analyte is 
transported from one aqueous phase (feeding solution) through the organic phase to the 
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stripping solution. The driving force of this transport might be pressure, pH or concentration 
gradients [5, 6]. 
 
The function of a membrane is illustrated in Figure 1, which shows the transport of a 
component X from feeding solution (4) through a SLM (1) into the stripping solution (5) due 
to a driving force. The driving force in this example is the concentration gradient. 
 
 

 
 

Figure 1. Schematic representation of the transport module containing the SLM 
(1) SLM; (2) and (3) peristaltic pumps; (4) feeding solution; (5) stripping solution;  

(6) and (7) magnetic stirrers 
 
 
The mass transfer in the SLM technique depends mainly on the concentration difference of 
the analyte in the two aqueous solutions [3, 5, 6]. 
 
The permeability of a certain component in a membrane is determined by its concentration 
and its mobility in the membrane structure. In a porous structure, the concentration of a 
component in the membrane is determined by its size and by the pore size of the structure. 
The concentration of a component in the membrane often can be increased by a selective 
carrier. 
 
The major advantage of SLM technique is that membrane and carrier can be optimized as 
well as the conditions in the feeding and stripping solutions for every application, allowing 
separations with good selectivity. In addition, the SLM process offers lower capital and 
operating costs [3]. 
 
Membranes are made of various materials, including metals, ceramics, polymers, and even 
liquids. Their structures include dense films and porous media that can have cylindrical pores 
or just a sponge-type structure. The membranes can be symmetric which are made of one 
material with an identical structure throughout the thickness of the membrane. To ensure 
sufficient mechanical strength, the membrane has to be of suitable thickness to withstand 
hydraulic pressures, or they can be asymmetric which consists of a very thin skin supported 
on a very open spongeous substructure, these membranes are capable of combining good 
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2.3 Characterization of PTFE membranes and supported liquid membranes (SLM) 
 
The thickness of the membranes was measured by using a micrometer which defines the 
mean thickness of the membranes measured in five different areas of the membrane. The 
porosity in membranes was determined by measuring the volume of dodecane that the 
membrane absorbed in their pores by methodology described by ZHANG et al. [8]. 
 
2.3.1 Thermogravimetric analysis 
 
Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves were obtained in a 
thermobalance Mettler-Toledo model 851, using crucibles under conditions of dynamic air 
atmosphere1 system. The experiments were performed in a dynamic atmosphere of oxygen 
(50 mL min−1), sample mass in the 2–13 mg range and heating rate at 10 ºC min-1 in the range 
from 30 to 700 ºC. 
 
2.3.2 Infrared absorption spectroscopy 
 
Fourier transform-infrared spectra were performed between 4000 and 600 cm−1 using 
NICOLET 520 infrared spectrometer equipped with ATR of germanium. Among a sample 
and other the crystal was clean and dry with absorbent paper. The obtained signs were 
expressed as absorbance. 
 
2.3.3 Scanning Electron Microscopy 
 
For analysis of scanning electron microscopy the membranes were fixed on a metallic 
support and coated with graphite by sputtering technique. The micrographs were obtained 
with a scanning electron microscope PHILIPS XL-30 of the Materials Science and 
Technology Centre-IPEN-CNEN/SP. 
 
2.3.4 Luminescence spectroscopy 
 
The spectra of luminescence (emission and excitation) of membranes impregnated with 
calixarenes were recorded at room temperature (~ 298 K) in the spectral range from 250 to 
720 nm using a spectrofluorometer (SPEX-FLUOROLOG 2) with 0.22 nm double grating 
monochromator (SPEX 1680) and a 450 W Xenon lamp as excitation source. All spectral 
data were collected at an angle of 22.5º (front face) using a detector mode correction. 
 
 

3. RESULTS AND DISCUSSION 
 
3.1 Characterization of the PTFE membranes 
 
Before the preparation of supported liquid membranes the mean thickness of the PTFE 
membranes was measured with a micrometer and the porosity was determined measuring the 
volume of dodecane absorbed in its pores. The polymer supports were weighed and the 
porosities calculated by the differences of masses. The values of porosity obtained in this 
work agree with the values obtained by SRIRAM et al. [9] (Table 1), thus confirming that the 
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values obtained for the PTFE membranes are consistent with the literature, even using 
different techniques of characterization. 
 

Table 1: Characterization of polymeric support 

POLYMER 
SUPPORT 

THIS WORK SRIRAM et al. [9] 
THICKNESS 

(cm) POROSITY POROSITY 

PTFE 1.2 μm 0.0095±0.0001 0.740±0.003 0.74 

 
 
The curves TGA/DTG (Figure 3) show that the decomposition of the PTFE membranes show 
only one event of decomposition with mass loss of about 99.5% for the thermal 
decomposition of PTFE polymer that begins in 470 ºC and ends at approximately 600 ºC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. TGA/DTG curves of PTFE polymer 
 
 
3.2 Characterization of the supported liquid membranes 
 
The supported liquid membranes impregnated with the p-tert-butylcalix[n]arenes and 
acetatecalix[n]arenes were analyzed after impregnation in order to ensure the complete filling 
of the membrane pores by liquid membranes to verify their homogeneous distribution. 
 
All thermal analysis measurements in this work were performed under exactly the same 
experimental conditions. From the TG curves of p-tert-butylcalix[n]arenes the weight losses 
occurred from 470 ºC, because there are no substituted groups. The temperature range  
470–580 ºC corresponds the loss of methanol in the structure, and the other values are the 
decomposition stages. The decomposition which starts at 250 ºC and ends at 350ºC is the 
stage which is probably the mass of tert-butyl groups [10]. From 470 °C the decomposition 
process is rapid up to 580 °C, remaining stable up to 700 ºC. 
 
Already the membranes impregnated with the acetatecalix[n]arenes decompose in three 
stages. The first decomposition occurs between 120–150 ºC for acetatecalix[4]arene, between 
and 190–230 ºC for acetatecalix[8]arene. But the acetatecalix[6]arene stable until 320 ºC. The 
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first event could be attributed to residual moisture still present after the drying procedure in 
the acetatecalix[n]arenes (n = 4 and 8). A second event observed was attributed to weight loss 
of the acetatecalix[n]arenes and probably corresponds to the mass of t-butyl groups. The third 
decomposition from 300 ºC corresponds to decomposition of acetate groups and subsequent 
decomposition of PTFE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. TGA curves of PTFE membranes impregnated with  
p-tert-butylcalix[n]arenes (left) and acetatecalix[n]arenes (right) 

 
 
Through the spectra (Figure 5) can be observed that the spectrum of PTFE is very similar to 
that found in the literature. Most species CFX (CF, CF2 and CF3), the main characteristic of 
fluorinated films, show two intense bands in the region of 1000–1300 cm-1 [11]. The marked 
peak at 1751 cm-1 is assigned to the C=O stretching mode (carbonyl group inserted in the 
molecule of p-tert-butylcalix[4]arene). The spectra of other p-tert-butylcalix[n]arenes and 
acetatecalix[n]arenes (not shown) also showed the same characteristics of Figure 5 in the 
infrared region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Infrared spectra of the PTFE membranes with p-tert-butylcalix[4] arene (left) and 

the acetatecalix[4]arene (right) 
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The micrographs (Figure 6) showed that the impregnation of the membranes in the systems of 
extraction of p-tert-butylcalix[4]arene in chloroform did not alter the structure of the 
polymer. Although, dilatations are observed small pores. It was also observed that the larger 
the average size of pores, they are more rigid. The membranes impregnated with the 
acetatecalix[4]arene showed similar behavior to membrane impregnated with  
p-tert-butylcalix[n]arene. The other micrographs obtained (not shown) showed the same 
morphology of the micrographs presented in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Scanning electron micrographs of porous PTFE membrane (A) without the agent 
extractor and (B) impregnated with p-tert-butylcalix[4]arene 

 
The luminescence spectra of the membranes with the systems p-tert-butylcalix[n]arenes and 
acetatecalix[n]arenes were made with the aim of confirming the complexation of the  
rare-earth ion with the extractor agents in the interface of the membranes. 
 
The excitation spectra were monitored in the hypersensitive transition 5D0→7F2 (~ 613 nm). 
While the emission spectra were obtained with excitation in the rare-earth ion (~ 394 nm) in 
the interval from 420 to 750 nm, corresponding to the transitions intraconfiguracionais 
5D0→7F0-4. It is important to point out, that there were not significant differences among the 
spectra registered 298 K. 
 
Figure 7 shows the excitation spectra of the complexes of HTTA in alcohol with the  
p-terc-butylcalix[n]arenes and the acetatecalix[n]arenes as ligands. In the region from 250 to  
410 nm, the spectra present a wide band with maxima around 340 nm associated to the 
allowed transition S→S0 belonging to the ligand HTTA. The fine bands originating from of 
the transitions intraconfiguracionais 4f6→4f6, 7F0→5G6, 5H4 and 5L6 have a overlap with the 
large bands of the ligands. You should know that thin bands with lower intensities are 
observed around 468, 482 and 492.5 nm, which are attributed to the transitions 7F0→5D2, and 
5D1 of the Eu(III) ion. 
 
 
 
 
 

A B
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Figure 7. Excitation spectra of the PTFE membranes impregnated with  
p-tert-butylcalix[n]arenes (left) and acetatecalix[n]arenes (right) containing europium nitrate 

and revealed with an alcoholic solution of HTTA 
 
 
The emission spectra of the PTFE membranes impregnated with Eu(TTA)3(H2O)2 illustrated 
in Figure 8 were recorded in the range from 420 to 720 nm, at 298 K, with excitation in the 
europium ion (~ 394 nm). These spectra show fine bands assigned to transitions 5D0→7FJ 
(where J = 0, 1, 2, 3, 4) and hypersensitive transition 5D0→7F2 more intense. 
 
Unlike the Eu(TTA)3(H2O)2 complex (Figure 8) of the PTFE membranes (Figure 9) 
impregnated with p-tert-butylcalix[n]arenes and acetatecalix[n]arenes they didn't present the 
bands originating from of the transitions 5D1→7F0 (~ 532 nm), 5D1→7F1 (~ 539 nm) and 
5D1→7F2 (~ 558 nm), in the spectral region from 500 to 570 nm and that are observed for the 
hydrated complex. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Emission spectra of the hydrated Eu(TTA)3(H2O)2 complex 
lexc = 394 nm 
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Figure 9. Emission spectra of the PTFE membranes impregnated with  
p-tert-butylcalix[n]arenes (left) and acetatecalix[n]arenes (right)  containing europium nitrate 

and revealed with alcoholic solution of HTTA 
lexc = 394 nm 

 
 

4. CONCLUSIONS 
 
The study was made for supported liquid membranes impregnated with  
p-tert-butylcalix[n]arenes and acetatecalix[n]arenes. The analysis was made in PTFE 
membranes without and with impregnation of the extractor agents. 
 
PTFE membranes impregnated with the p-tert-butylcalix[n]arenes and the 
acetatecalix[n]arenes showed a homogeneous distribution of the extractor agents inside the 
pores. The results of characterization lead to conclusion that the impregnation of extracting 
agents in the pores of the membranes is effective as a mobile carrier for the treatment of 
radioactive waste. This can be confirmed mainly by the infrared spectra and the luminescence 
spectra of the membranes before and after impregnation. 
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