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ABSTRACT 
 
The monitoring task in Nuclear Power Plants is of crucial importance with respect to safety and efficient 
operation. The operators have a wide range of variables to observe and analyze; the quantity of variables and 
their behavior determine the time they have to take correct decisions. The complexity of such aspects in a 
Nuclear Power Plant influences both, the plant operational efficiency and the general safety issues. This paper 
describes an experimental system developed by the authors which aims to assist the operators of Nuclear Power 
Plants to take quick and safe decisions. The system maps the status of plant and helps the operators to make 
quick judgments by using Artificial Intelligence Methods. The method makes use of a small set of monitored 
variables and presents a map of the Plant Status in a friendly manner. This system uses an architecture that has 
multiple Self-Organizing Maps to perform these tasks.  
 
 

1. INTRODUCTION 
 
The concern about safety is eminent in all Nuclear Power Plants projects. The International 
Atomic Energy Agency – IAEA [7] provides several regulatory guides and documents about 
the safety of Nuclear Facilities ([8] and [9]), what reflects its concern about this subject. 
 
The safety systems implemented could be preventive, like the radiation containment barrier, 
or mitigatory. The last ones could be triggered automatically, like the SCRAM (emergency 
shutdown), or manually by the plant operators. 
 
The operators uses measurements from several devices installed at the plant and at the 
nuclear reactor. The quantity of variables generated by these measurements is too big, to a 
level that can harden and delay their interpretation. 
 
The experimental system described in this paper monitors these variables in real time and 
interpret them, presenting the current state to the operators in a friendly and intuitive way, 
because it uses nomenclatures that are familiar to them, and signs easily understandable. 
The variables’ interpretation is done using the artificial intelligence technique known as Self-
Organizing Maps (SOM) [11]. 
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The architecture used with the SOMs is based on multiple specialists maps, each one 
representing a state, transient or not, of the nuclear reactor. The identification and 
classification of the current state is done by a competition between these maps. 
Some results of the first implemented version will be presented, and can be seen in more 
details in [4]. These results were satisfactory, given that is the first implementation of this 
architecture of multiple SOMs on the monitoring of Nuclear Power Plants. 
 
The authors also show that this architecture can be refined, to obtain more precise and 
detailed system responses. 
 

2. TRANSIENT STATES OF NUCLEAR POWER REACTORS 
 
The Nuclear Power Reactors are aimed to generate electrical energy to general consumption. 
There are other kinds of Nuclear Reactors, classified in relation to its ends, like Research 
Reactors. 
 
The SEICT - Sistema Experimental de Identificação e Classificação de Transitórios 
(Experimental Transients Identification and Classification System), that is how we will call 
the system in this paper, was conceived to operate in Nuclear Power Reactors like IRIS [10]. 
 
Next, the thermo hydraulic systems that are analyzed by SEICT will be presented, and so the 
transient states that it recognizes.  

2.1.  Thermo Hydraulic Systems of the Nuclear Power Reactors 
 
SEICT analysis the primary and the secondary systems of the Pressurized Water Reactors 
(PWR). In those two systems water circulates, but they have independent circulation 
channels, i.e., the primary system’s water does not have direct contact with the secondary 
system’s water. 
 
The primary system executes the water heating, which transports the heat to the heat 
exchanger, which heats up the secondary system’s water to the specific boiling point of its 
pressure, so that the steam can move the electricity generating turbines, as illustrated in 
Figure 1. 
 

  
Figure 1. Primary System (Red) and Secondary 
System (Blue), with exemplified pressure and 
temperature. 

 
The SEICT’s initial project works with temperature, flow and pressure measurements only, 



INAC 2009, Rio de Janeiro, RJ, Brazil. 
 

 
 
because they are common parameters to several systems of electricity generating power 
plants, like gas and coal, leaving behind, for now, specific measurements of Nuclear Power 
Plants, like neutrons’ flow in the reactor’s core, for instance. 
 
In previous works, like [1], [2], [3] and [5], theoretical models of the IRIS Reactor were used. 
In this paper, the data used was extracted directly from the IPEN’s experimental facility 
called Natural Circulation Facility, or in Portuguese, Bancada de Circulação Natural (BCN). 
 
The BCN, which the basic design can be seen in Figure 2, has that name because it does not 
uses pumps to circulate water on the primary system, but instead, the flow is generated from 
the pressure difference between the entrance and the exit of the heater. 
 

 
Figure 2. BCN – IPEN, Primary System in blue 
and the Secondary System in green. 

2.2.  The Transient States 
 
Considering the BCN capabilities, the following transient states were simulated: 
 

• Heating 
• Cooling 
• Steady state 
• Ramps 
• Steps 
• Deviation channel opening on the primary system (DCO) 
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• Flow blocking on the primary system (PFB) 
• Flow blocking on the secondary system (SFB) 
 

The last three states are considered abnormal, i.e., accident indicators. 
 
The parameters used in the data acquisition experiments are exposed in the Tables 1 and 2. 
 

Table 1 – Experiments on abnormal transients 
 

 
Experiment Average 

heater power 
Secondary 
system flow 

Simulated 
transient 

1 500W 60 l/h - 
2 1000W 60 l/h PFB 
3 1500W 60 l/h - 
4 2000W 60 l/h DCO 
5 2500W 60 l/h SFB 
6 500W 120 l/h - 
7 1000W 120 l/h PFB 
8 1500W 120 l/h - 
9 2000W 120 l/h DCO 
10 2500W 120 l/h SFB 

 
 

Table 2 – Experiments simulating ramps and steps 
 

Experiment Time 
frame 

Simulated 
transient 

1 10 min Step 
2 10 min Ramp 
3 20 min Step 
4 20 min Ramp 

 
The amount of generated data is too big to be shown here. More details can be found in [4]. 
 
The Ramp and the SFB transient states were not analyzed by SEICT because the Ramps 
samples could be joined with the heating and cooling data. And the SFB simulations takes too 
long to generate significant data, given the BCN’s systems’ great inertia. 
 

3. SYSTEM IMPLEMENTATION 
 
In this paper we highlight the features related to the SEICT’s AI module’s construction, 
which uses multiple SOMs. But first is necessary to understand the networks (SOMs) training 
process. 

 

3.1 Training Process 
 

The training process is divided into three parts: 
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• Subdivision to apply the Cross Validation technique; 
• Vectorial normalization; 
• Networks training 
 

The SOMs training uses the Cross Validation technique [6], which in this work consists of 
dividing the training data in two subsets: 
 

• Training Set 
• Validation Set 
 

The training set is used effectively on the networks training, and the validation set is put apart 
to be presented after the training ends. It is done to evaluate how the network behaves facing 
unknown data. 
 
The use of this technique allows a better evaluation of the network’s performance, and it also 
allows us to use a measure of the network’s answer reliability, that is presented to the system 
operators. We call this measure “Semaphore” (Section 3.4). 

 

3.2 SOM Training Algorithm 
 

In the training set vectors, the data are in the buffer format, where the readings of several 
instruments, from a time frame, are stored, as shown in Figure 3. 
 

 
 

Figure 3. Data buffer of SOM’s input data used on 
SEICT. 

 

The SOMs have a topologic structure, called output layer, that has neurons related with 
another layer, called codebook, which has the network’s knowledge about the universe 
presented to it during the training. The network organizes the data in such a way that similar 
information in the codebook will relate themselves with neurons close to each other in the 
output layer. That provides a similarity analysis based on the output’s layer topology. 
 
The algorithm used in this work is the Batch Training Algorithm [11], that has 3 steps: 
 
1 – Initialization: the SOM’s codebook values are filled using values from the training set. 
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2 – Bach Similarity Matching: all codebook codes are grouped by similarity. The grouping 
criterion is the Euclidean Distance, i.e., the training patterns that are more similar to the 
neuron will be placed on its corresponding group.   
3 – Updating: Each codebook code is updated, being its new values the average of its 
corresponding similarity groups. 
4 – Continuation: Repeat the step 2 a few times. 

 

Its mathematical representation is: 
 

wi(n + 1) =     Σj qj * hji(n) * xj 

                                                                                  Σj qj * hji(n) (1) 

 
Where wi(n) is the codebook’s code with index i, in the n epoch iteration, xj is the input 
training pattern with index j, hji is a function of n called “general neighborhood function”,  
and qj is the number of patterns belonging to the similarity group of the neuron correspondent 
to the code that has the index i. The general neighborhood function, when multiplied with qj, 
influences the weight changing according to the distance of the neuron i to its best matching 
patterns. 
 
After trained, the SOM responds indicating, in its output layer, the Best Matching Unit 
(BMU), i.e., the neuron that has the lowest quantization error related with the input pattern.  
 
That quantization error is calculated by extracting the Euclidean Distance between the input 
pattern, and the codebook code of the neuron. 

 

3.3 Multiple SOM Architecture 
 

The implemented architecture on SEICT uses one SOM network to each transient state, and 
trains it using solely the data correspondent to its given transient, as it is shown in Figure 4.  

 

 

Figure 4. Diagram showing the multiple SOM architecture 

 
The input data (plant monitoring variables) are presented to all networks. Each one of them 
finds its BMUs, with its correspondent quantization error. And then, these networks compete 
with each other, by the quantization errors’ comparison of its BMUs. The network that has the 
lowest quantization error wins, and the system classifies the current state by verifying what 
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transient the winner SOM network represents. The competition process is illustrated in Figure 
5. 

 

Figure 5. Networks competition 

3.4 Semaphore 
 

The semaphore is shown to the operators like traffic lights: three colors indicating reliability 
levels. 
 
These reliability levels are evaluated using the quantization error of the winning network’s 
BMU. 
 
Its value is then compared to the quantization error averages generated when the network is 
presented to its training and validation set, and its standard deviations, as shown in Figure 6.  
 

 

Figure 6. Intervals generated by the quantization error averages, with its standard 
deviations. 

 
As the colors indicate, quantization errors that are situated in the red region are classified to 
the operator with a “red sign”, in the yellow region with a “yellow sign”, and in the green 
region with a “green sign”. 
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These measures indicate the network’s reliability level in its own inference, helping the 
operator on its interpretation of the system result. 

 

3.5 Performance Evaluation Methodology 
 

The primary objective of SEICT is to interpret correctly the monitoring variables as familiar 
terms for the operators, i.e., label them as one of the treated transients. 
 
Given that, the system performance evaluation is made counting how many correct 
interpretations are made, relatively to the total amount of interpretations. 
 
The system evaluation consists of choosing, from the several networks generated during the 
training (due to the training parameters variation), the best networks combination, 
considering that each one of them should represent a distinct transient state. 
 
In [4] two techniques were used, but in this paper will be shown the one that had the best 
result, that was to cross every possible combination (Cartesian Product) of the generated 
networks during the training, and evaluate the percentage of correct interpretations of each 
combination. 
 
Clearly, the number of possible combinations soon gets too big (for instance, 2407 
combinations in one experiment with only 7 transient states), obliging then the reduction of 
the used training parameter. 
 

4. RESULTS 
 
For using a performance evaluation that involves too many combinations, as explained in the 
last section, some variables where not used on the experiment shown here. 
 
The Step transient state kind was divided into two subsets: positive and negative steps, 
resulting then in seven transient states, and hence, in seven specialist networks to be selected 
on the trainings sections. 
 
These seven specialist networks selected by the Cartesian product evaluation used the 
parameters shown on Table 3 on its training sections. 

 
Table 3 – Training parameters 

 
 H C SS PS NS DCO PFB 

Epochs 5 3 2 2 2 2 2 

Mesh kind HE SQ HE HE HE HE HE 

 

Where: 
H – Heating 
C – Cooling 
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SS – Steady state 
PS – Positive steps 
NS – Negative steps 
DCO - Deviation channel opening on the primary system 
PFB - Flow blocking on the primary system 
HE – Hexagonal mesh 
SQ – Square mesh 
 
The average performance obtained with these networks is in Table 4. 

 

Table 4 – Performance measurements 
 

% 

Correct 

% 

Green indications 

% 

Yellow indications 

% 

Red indications 

87,30 55,32 30,35 14,33 

 

The amount of times that each semaphore indications happened can be better visualized in 
Figure 7. 
 
 

 
 

Figure 7 – Semaphore indications 

 

Finally, the system screen shows to the operator the results, like in Figure 8. 
 

 
 

Figure 8 – Presentation of Steady State, with green reliability (normal) to the operator 
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5. CONCLUSIONS  

 
SEICT indicates that a transient classification and identification system can be implemented 
satisfactorily using Artificial Intelligence techniques, and can be used in Power Plants.  
 
One advantage of using an AI based system is its performance, in terms of response 
quickness. SEICT still has the advantage of classifying data in a way similar to which the 
operators would do, but practically instantly. 
 
This offers a bigger agility to operators’ decision making, given that the system has a high 
level of reliability, i.e., when the system is not accurate on its classifications, it warns the 
operators with the semaphore. 
 
The use of multiple SOMs allows, to future implementations, that the system provides more 
details about the transient states, because the SOM organizes what is presented to it during 
the training topologically and by similarity. By the observation of that organization is 
possible to give labels to the output layers’ neurons, each one of them indicating an additional 
characteristic of the transient. 
 
The accuracy of the system can be improved drastically, using hybrid evaluation techniques, 
i.e., using not only the Cartesian product technique. It is also possible to improve Evaluation 
by Performance Function, presented in [4]. 
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