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ABSTRACT

The work presented in this paper illustrates the analytical benchmark philosophy with applications to
subcritical source-driven system dynamics. Results for different complexity problems are presented in
the frame of multigroup diffusion theory. The analysis performed on systems having physical
characteristics typical of the Yalina Booster experiment are presented. The comparisons with the results
of numerical calculations enlighten the convergence trend of discretized schemes and the limits of
applicability to the analysis of experiments.
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1. INTRODUCTION

A Coordinated Research Project (CRP) under the auspices of IAEA is on-going on Analytical and
Experimental Benchmark Analyses of Accelerator Driver Systems (ADS) [1]. One of the work tasks
concerns the development of ADS kinetics analytic benchmarks suitable for the assessment of models,
numerical methods and codes for the time dependent analysis of source-driven multiplying systems.
Within this framework, a collaboration is established between Politecnico di Torino (Italy), the University
of São Paulo and the IEN (Brazil).

The project involves the study and interpretation of kinetic experiments performed on the subcritical
facility Yalina [2]. The work presented here illustrates some analytical benchmarks which are intended for
physical situations comparable to the Yalina assembly, as far as nuclear data and geometrical configuration
are concerned. The work involves both a fully analytical approach and a numerical investigation. The
analytical approach produces paradigmatic results which are used for the study of convergence trends of
numerical techniques and for their error control.



S. Dulla et al.

2. THE NEED OF BENCHMARKS FOR ADS DYNAMIC SIMULATION TOOLS

The study of time-dependent problems for neutron multiplying structures is usually carried out by high
performance computers using numerical codes which can adequately handle the large physical
complications associated to realistic full scale system configurations. The computational tools use
algorithms which reduce the model equations to algebraic problems that are then numerically solved.
When the tools are used for real simulations, the first question that needs to be answered concerns the
adequateness of the model which usually includes some simplifications with respect to the exact reference
model (e.g., diffusion in place of the full Boltzmann equation) for the physical situation at hand.
Furthermore, the numerical procedures show two inherent shortcomings:

• differential and integral operators are treated by discretization schemes;

• iterative procedures are made use of to obtain the full solution.

The following concerns need to be considered with regards to the full simulation tool:

• is the model adequate to describe the physical situation of interest?

• is the algorithm properly coded?

• is the algorithm suitable to obtain numerical results with a defined level of accuracy?

• for what physical systems a code can be retained a suitable computational tool?

To answer in a satisfactory way, various successive steps need to be taken for the evaluation of a numerical
high performance code. A verification procedure obviously has to be carried out, to guarantee that the
software has been coded in such a way that the required operations are correctly performed (software
verification). A validation process will then assure that the model adopted can capture the physical
phenomena of interest (validation of model) and that the numerical schemes and techniques can provide the
required accuracy of the numerical results (validation of numerical method). This steps may also focus on
the determination of the numerical requisites (mesh sizes, convergence criteria, number of iterations and so
on) which are needed to obtain certain levels of accuracy in the results. At last, the code will be tested to
verify its capability to describe certain specific situations, thus defining its limits of validity (qualification).

The above steps constitute a benchmarking process and can be conducted through different analytical,
numerical and experimental approaches. The need of reliable benchmarking procedures is particularly felt
by code developers for the dynamics of accelerator-driven systems, because available methods were
usually developed for reactors in the vicinity of the critical situation or departing from a critical state. For
the analysis of accelerator-driven systems different physical situations have to be dealt with; in fact high
energy neutrons play an important role and it has been shown that the source dominance may have
important consequences in the dynamic characteristics of the systems. Therefore, it is foreseeable that
numerical methods need to be properly adapted.
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3. THE PRINCIPLE OF ANALYTICAL BENCHMARKING

An analytical benchmark can be defined as a closed-form solution to some reference problems that are
significant for the physical situation of interest [3]. Hence, the solution must be obtained using purely
analytical techniques as much as possible, with a full error control at all steps. The precision of the
numerical results produced (e.g., number of significant figures) should be fully certain. Of course, being
the elective methods mainly analytical, only highly simplified and idealised configurations may be treated.
However, for this purpose it is of great importance to construct problems that can be informative with
regards to the physical situations of interest. The work by Barry Ganapol has led over the years to
important achievements in deriving and organizing analytical benchmarks. Ganapol published a library of
analytical benchmarks that includes also time-dependent problems [3].

The analytical benchmark can thus perfectly serve the following scopes:

• to verify that the equations are adequately solved by numerical schemes;

• to separate model and numerically induced effects;

• to fully comprehend and interpret physical phenomena;

• to determine the limitations of approximate models (diffusion vs. transport, anisotropy effects,
definition of kinetic parameters).

An important aspect is error control. Analytical formulae must be numerically calculated. This operation
unavoidably introduces some sort of error, which must be controlled and upper-limited. For instance, a
truncation of a series representation should be accompanied by an evaluation of the truncation error, which
must be supplied together with the benchmark results.

In conclusion, they have a role for both the validation of models and of algorithms. A general golden rule
may be stated at this point: a numerical technique that gives bad results for a simple system cannot be
expected to give reliable results for complicated systems.

In the field of neutron kinetics, the principle of analytical benchmarking was used successfully in the past
for the validation of numerical codes [4]. More recently, a first attempt has been made also in the field of
source-driven systems [5].

4 PHYSICAL PROBLEMS CONSIDERED IN THE WORK

The work considers problems of different and increasing complexity. The Yalina structure is a multiplying
system characterised by an inner fast core surrounded by a thermal zone. Starting from simple
homogeneous systems, problems for a multilayer reactor with an inner source are considered. Analyses are
performed for one dimensional configurations for a three-energy group structure, which is the minimum
needed to simulate the physical features of the assembly. For the generation of the few group macroscopic
constants of the facility, the ENDF-B-VI.8 nuclear data library is used by processing the basic data with the
NJOY system version 97.115 with AMPX-II.
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The system is supposed to be injected by a pulsed source. When analysing a single pulse, delayed neutron
contributions may be disregarded, while their effect must be taken into account for multiple pulse analyses.
The results of analytical evaluations are compared with results obtained by simplified kinetic models
(point, multipoint) which are widely used in practice. Furthermore, a study on the convergence pattern and
accuracy of the numerical finite difference scheme is performed. The assessment of the CINESP code [6] is
also among the objectives of the present research.

5 A THREE-GROUP DIFFUSION THEORY EXAMPLE AND SELECTED RESULTS

In the following the analytical solution of the three-group diffusion equations for a homogeneous pulsed
system is given. The general problem can be solved fully analytically since an explicit formula for the
solution of third-order algebraic equations is available. The balance equations are the following:
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complemented with initial and flux vanishing boundary conditions. The first group includes high energy
source neutrons, the second one is dominated by fission emissions, while the third one describes thermal
neutrons.

The source vector is introduced as:
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together with the balance matrix M̂φ:
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Expanding in a series of Helmholtz eigenfunctions ϕn, for each mode the following matrix is introduced:
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Defining:
iδn = −vi(DiB

2

n +Σi) (5)

one can write the third-order characteristic equation for the matrix in Eq. (4), introducing the eigenvalues
ωn, as:

(1δn − ωn) [ω
2

n − ξnωn + ζn] = 0, (6)
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Table I. Cross sections for the homogeneous 1D system treated in three-group diffusion approxima-
tion.

g = 1 g = 2 g = 3

1/vg [s cm−1] 5.35994e− 8 1.47756e− 7 1.33310e− 6

Σtot,g [cm−1] 2.83110e− 1 3.65360e− 1 6.65500e− 1

Σa,g [cm−1] 1.40280e− 2 1.63760e− 2 6.98540e− 2

νΣf,g [cm−1] 3.45310e− 2 3.28690e− 2 1.20020e− 1

χg − 0.7112 0.2886 0.0002

Σg→g [cm−1] 2.36040e− 1 3.48954e− 1 5.95640e− 1

Σg→g+1 [cm−1] 3.31803e− 2 3.45000e− 5 −

Σg→g+2 [cm−1] 1.16620e− 5 − −

where:
ξn = ( 2δn + 3δn) (7)

and:
ζn = ( 2δn 3δn − v2v3νΣf3Σ2→3). (8)

Eigenvalues as well as direct and adjoint eigenvectors can be found, in order to write the full vector
solution whose components are the group fluxes as:

|Ξ(x, t)〉 =
∞
∑

n=1

[1an(t) |1Un〉+ 2an(t) |2Un〉+ 3an(t) |3Un〉]ϕn(x). (9)

This analytical procedure can be easily extended to the general case with fast and epithermal fissions and
emissions by properly modifying the matrix appearing in Eq. (3).

6 Results

The first configuration analyzed is a homogeneous slab, characterized by material parameters as in Table I.
Diffusion coefficients are evaluated adopting the standard formulation coming out from P1 approximation:

Dg =
1

3Σt,g
(10)

At first, the critical slab dimension for this system is evaluated analytically, by imposing a spatial shape
according to the fundamental boundary vanishing eigenfunction for the three-group fluxes and solving the
steady-state eigenvalue problem associated to model (1). The critical dimension obtained is
hcr = 23.53185893 cm, with an imposed relative error of 1e− 8. The criticality problem is then solved
numerically, adopting a centered finite-volume discretization scheme for the spatial variable, with
equally-spaced meshes and the same boundary condition as in the analytical case. The power iteration
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Figure 1. Convergence trend of the numerical scheme in the criticality evaluation.

method is adopted to evaluate keff corresponding to the exact critical arehave been defined as follows:
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where the indication num refers to the numerical results and ex to the exact, analytical results.
In Figs. 1(a) and 1(b) the convergence trend of the eigenvalue and of the critical flux is drawn. In such a
system the energy spectrum is independent on space; the analytical spectral indeces are compared to the
results of the numerical simulation as functions of the spatial mesh in Figs. 1(c) and 1(d).
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Table II. Source transients considered.
Source amplitude pulse duration Φg(t = 0) description

I S1 = 10, S2 = S3 = 0 τ = 10µs zero-flux response to a single source pulse

II S1 = 10, S2 = S3 = 0 τ = 10µs equilibrium with S1 = 10 system shut-down

III S1 = 10, S2 = S3 = 0 τ = 10µs equilibrium with S1 = 1 source increase + shut-down
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(b) Comparison of numerical simulations.

Figure 2. Power evolution for transient I . The gray lines indicate the duration of the source pulse.

A subcritical configuration is then considered, in order to perform time-dependent simulations of source
transients. The dimension of the slab associated to keff = 0.98 is h = 23.09695823 cm, evaluated
analytically. In order to have a numerical evaluation with a relative error below 1 pcm a minimum of 220
spatial meshes is required. This spatial discretization is adopted for the following time dependent
calculations.

Some transients involving a localized source pulse are considered. The source is symmetrically located in
the center of the system and its width is 1/10 of the total slab dimension. In Table II the characteristics of
the transients considered are summarized.

The analytical solution for the transients considered is obtained with the above-outlined procedure, by
projection of the neutron fluxes on the Helmholtz eigenfunctions. The use of 150 harmonics allows to
reduce the error introduced by the series truncation below 10−9 on the power at each time instant.

In Fig. 2 the power evolution for transient I is presented, comparing the analytical solution with the
numerical evaluations. An implicit Euler scheme is adopted for the time integration with different time
steps. The relative error on the power, εpower, is reported in Fig. 3.

The three-group flux evolution is reported in Fig. 4 for two spatial points, x1, located in the center of the
system, and x5, at a distance of 1/10 of the total dimension of the system from the boundary. The presence
of spatial effects and the error introduced by the time discretization is clearly visible.

An analogous analysis is performed for the other two transients, characterized by a source increase
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Figure 3. Relative error on power for transient I . Identification of curves as in the previous figure.
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Figure 4. Detector flux evolutions for transient I . Identification of curves as in previous figures.
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Figure 5. Power evolution (left) and relative error (right) for transient II . On the left the effect of
spatial discretization is presented, on the right the error introduced by numerical time integration is
studied; identification of curves as in previous figures.

a a+b−(a+b) −a H−H

Figure 6. Core composition of the three-group three-region case. Relative dimensions are: a = 0.20H ,
b = 0.17H .

(transient III) followed by a system shut-down (both). These two transients are characterized by smaller
spatial and spectral effects with respect to the previous one, since the source-driven initial condition for the
three-group fluxes is very close to the critical distribution. In Fig. 5 the power evolution for transient II is
reported, comparing the analytical result with the values obtained with two different numerical approaches.
The time discretization used is the same for both algorithms, with different numbers of spatial meshes,
enlightening the effect of the space discretization.

Additional calculations are performed for a one-dimensional heterogeneous system. A source
non-multiplying region is surrounded by an highly enriched fissile medium and a lower enriched material is
added in the outermost region. The relative dimension of the three regions correspond to the typical
geometry of the Yalina Booster core. Three-group cross sections are evaluated on the base of the Yalina
fuel composition. In Fig. 6 the structure of the system is sketched.

The critical dimension, critical and source driven flux distributions are evaluated analytically with the
standard reactor physics procedure, and the results are compared to a numerical evaluation obtained with
the same discretization scheme as in the homogeneous case. The exact critical dimension is
H = 21.229357145 cm, while a subcritical configuration with keff = 0.98 is obtained with
H = 20.81329856 cm. The critical flux distributions are reported in Fig. 7.

Figure 8 reports the evolution of the group fluxes and of the power following a localized pulse. The exact
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Figure 7. Critical flux distributions for the three-group three-region case.

power is compared to multipoint calculations using one point per energy group [7] and two different
projection techniques [8]. As can be seen, the multipoint model is capable to improve the quality of power
prediction with respect to point kinetics; however, the choice of the most suitable projection technique
plays an important role in producing reliable results.

7. CONCLUSIONS

The work presented in this paper shows that analytical benchmarks can be fruitfully used as reference for
code development and for the qualification of numerical algorithms and codes for the kinetic analysis of
accelerator-driven system. Some results for different physically significant and increasing complexity
problems are presented and discussed to show some specific features in the interpretation of pulsed
experiments.

ACKNOWLEDGEMENTS

The work is performed under the auspices of IAEA. One of the Authors (P.R.) is grateful for the nice time
spent at the University of São Paulo.

REFERENCES

[1] H. Aı̈t-Abderrahim, A. Stanculescu, “IAEA Coordinated Research Project on Analytical and
Experimental Benchmark Analyses of Accelerator Driven Systems,” Proceedings of ANS Topical
Meeting on Reactor Physics, PHYSOR 2006, Vancouver, 10-14 September, Paper C074 (2006).

[2] V. Bournos, C. Routkovskaia, I. Serafimovich, H. I. Kiyavitskaya, Yu. Fokov, A. Fokov, S. Mazanik,
A. Adamovich, T. Korbut, A. Koulikovskaya, A. Khilmanovich, B. Martsinkevich, S. Chigrinov,
“Experimental Investigations on ADS at Sub-Critical Facilities of Joint Institute for Power and
Nuclear Research-Sosny of the National Academy of Sciences of Belarus,” Meeting of the CRP
Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems, Minsk, 5-9
December (2005).

[3] B. D. Ganapol, “The Analytical Benchmark Library for Nuclear Engineering: PC Version,” Idaho
National Engineering Laboratory, Idaho Falls (1992).

Joint International Topical Meeting on Mathematics & Computation and
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007

10/12



Analytical benchmarks for ADS

−20 0 20
−1

0

1

2

3
x 10

7

x [cm]

Φ
1

a

b

c

d−f

−20 0 20
−1

0

1

2

3

4

5
x 10

6

x [cm]

Φ
2

a

b

c
d

e

f

−20 0 20
−200

0

200

400

600

800

1000

x [cm]

Φ
3

a

c

d

e
f

b

0 10 20 30 40
0

500

1000

1500

2000

t/Λ

P
(t)

Figure 8. Evolution of the three-group fluxes and of the total power following a localized pulse. The
curves are identified as follows: (a) 3.5e−5 Λ; (b) 5e−5 Λ; (c) 1e−4 Λ; (d) 5e−4 Λ; (e) 2.3e−3 Λ; (f)
4.8e− 2 Λ, where Λ is the mean prompt effective generation time. In the graph for the power the bold
line is the exact solution while the thin line and the dashed line correspond to three-point calculations
with different choices for the projection weight.

Joint International Topical Meeting on Mathematics & Computation and
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007

11/12



S. Dulla et al.

[4] S.E. Corno, G. Manzo, P. Ravetto, R. Ricchena, “Analytical Methods in Local Reactor Dynamics
and Validation of the Quasi-Static Approximation,” EUR 6390 EN and European Applied Research
Reports, 1(4), pp. 831-945 (1979).

[5] E.H. Mund, B.D. Ganapol, P. Ravetto, M.M. Rostagno, “Multigroup Diffusion Kinetics Benchmark
of an ADS System in Slab Geometry,” Proceedings of Conference on the New Frontiers of Nuclear
Technology: Reactor Physics, Safety and High-Performance Computing, PHYSOR ’02, Seoul,
October, Paper 7B-03 (2002).

[6] R.S. Santos, “Dynamics of nuclear cores based on one and two dimensional multigroup diffusion
theory,” Proceedings of X ENFIR- Brazilian Meeting on Reactor Physics, Aguas de Lindoia, Brazil,
7-11 August, pp. 143-148 (1995).

[7] P. Ravetto, M.M. Rostagno, G. Bianchini, M. Carta, A. D’Angelo, “Application of the Multipoint
Method to the Kinetics of Accelerator-Driven Systems,” Nuclear Science and Engineering, 148(1),
pp. 79-88 (2004).

[8] S. Dulla, P. Picca, “Consistent multipoint kinetics for source-driven systems,” Progress in Nuclear
Energy, 48, pp. 617-628 (2006).

Joint International Topical Meeting on Mathematics & Computation and
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007

12/12


