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Abstraet— This paper shows contributions from a 
new, Bond-Graph based, formalism for CFD prob-
lerns, through which the state equations are obtained 
in terms of nodal vectors of mass, velocity and en-
tropy. 

The resulting state equations are presented for 
a one-dimensional problem with constant piecewise 
shape functions. It is shown that there exist contri-
butions coming from the discontinuities; these con-
tributions can be taken into account in the integra-
tion process by using distributional derivatives. Al-
though viscous effects cannot be modeled, heat con-
duction can be rigorously taken into account with 
the proper choice of the entropy weight functions. 

Based on the linearized expressions of the state 
equations, a comparison is made with a control-
volume and with a finite-difference numerical 
scheme, obtaining an interpretation of the density 
and entropy weight ftmctions appearing in the Bond-
Graph formalism and showing that these popular nu-
merical methods are included as particular cases of 
this methodology. 

Based on the Second Principle of Thermodynam-
ics, it is also shown that the entropy weight functions 
must decrease as the distance to the corresponding 
node position increases. 

Keywords— Bond Graphs, Computational Fluid 
Dynamics, CFD, Control Volume Method, Finite 
Difference Method. 

I. INTRODUCTION 

A. The BG-CFD Approach 

In recent works [1][2 a theoretical development of a 
general Bond Graph approach for CFD was presented, 
which is a result of the right combination of Bond-Graph 
concepts with elements of numerical methods. The 
main characteristics of this new methodology, which was 
called BG-CFD [31, can be summarized as follows: 

• Based 011 the total energy rate per unit volume, a 
set of independent variables (namely density-, velocity 
and entropy- per unit volume) is defined, as well as as-
sociated potentials (namely linear momentum per unit 
volume, kinetic coenergy per unit mass, Gibbs free en-
ergy- per unit mass aud temperature). The potentials 
are functions of the independent variables through the 
constitutive relations, which have restrictions due to the 
equality of the mixed partial derivatives (Maxwell rela-
tions). 
. The independent variables are discretized in terms of 
nodal values and interpolation (shape) functions. Since 
this is the only discretization restriction, it is possible 
to work vvith any kind of grids. Nodal vectors are de-
fined as Bond Graph state variables, namely mass, en- 

tropy and velocity. The mass and entropy vectors are 
obtained by integrating the corresponding nodal inde-
pendent variables in the support of the shape functions. 
The corresponding integrated potentials also satisfy con-
stitutive, as well as Maxwell relations. 
• The system state equations are obtained by system-
atically volume integrating three balance equations cor-
responding to each port of the /C field representing the 
total system enera. The balance equations have ter/us 
representing the power coupling between the different 
ports. In this way, the inertial and thermal couplings to 
the mass conservation equation and the transformation 
of mechanical energy into thermal energy, as well as the 
generation of irreversibility, are represented naturally. 
. The convective (upwind) nature of the fluid equations 
is handled through the definition of density and entropy 
weight functions, which are introduced to satisfy the 
power interchanged by the system through the bound-
ary conditions, as well as to share the importance of 
different power terms among neighboring nodes. This 
concept was successfully applied to convection-diffusion 
proble 	[41 [5]. 
. All kind of boundary conditions are handled consis-
tently and can be represented either as generalized mod-
ulated effort sources at the inertial port or modulated 
flo%v sources at the capacitive ports. 

As a consequence, this approach bridges the gap be-
tween the continuous formulation of the conservation 
equations and a discretized numerical scheme framed 
within the Bond-Graph theory. 

B. Discontinuities 

The discontinuities present in the description of the 
flow fields are handled through the use of distributional 
derivatives [6]. Consider a function x singular on a fixed 
surface r, as shown in Fig. 1, with derivatives of all or-
ders outside F and boundary values of the function and 
its derivatives from both sides of F. The jump across 
the surface is: 

;XI = X j — X i 
	 (1) 

where xi and xi are the boundary values of x front 
both sides of r. tf x is a scalar field, it can be shown 
that the gradient can be expressed as: 

= 	[x] 15 (r — rr) flu 	(2) 

If x is a vector field, it can be shown that the diver-
gence can be expressed as: 

= V.X x] 6 (r — rr) 
	

(3) 
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Fig. 1. Function discontinuity- in a surface F. 

where 6 is the impulse (Dirac's delta) function, 
is the normal unity vector (oriented from i to j), r is 
the position and rr is the position of the discontinuity 
surface. In Eqs. (2) and (3), the bars indicate a dis-
tributional operation. In this way, the discontinuities 
present in the discretized flow fields can be taken into 
account in the integration procedure by considering all 
the operators as distributional ones. 

ONE-DIME:NSIONAL FLOW WITH CONSTANT 

PIECEWISE SHAPE FUNCTIONS 

Consider a one-dimensional discretization, as shown 
in Fig. 2. The volume within the lines located mid-
way between the grid points can be regarded as control 
volumes. It is interesting to consider also a uniform dis-
tribution of the independent variables, because these are 
the simplest and because the state variables correspond 
to the mass, entropy and velocity within the control vol-
umes. 

A. State equations 

The Bond-Graph CFD formalism can be applied to a 
system with the assumptions made above. For this case, 
the inertia matrix becomes diagonal and the state equa-
tions corresponding, to the different nodal state. variables 
can be obtained analytically. The details of the deriva-
tion are not given here, but it can be shovvil that viscous 
effects cannot be taken into account with a constant ve-
locity' shape function, but heat conduction can be mod-
elled with non-constant entropy weight functions. The 
final expressions are given for an inner node (1 < i < n) 
and for the first and last nodes, in which "half" con-
trol volumes result. III these expressions, the following 
variables are evaluated at different nodes: mass 171, ve-

locity V, entropy per unit volume s„ (s,, = ps, where 

p is the. density and s is the entropy per unit mass), 
Gibbs free energy' per unit mass '0, kinetic coenergy per 

unit mass K, = 1/2, pressure P, absolute temperature 
0, entropy S ar-ni thermal conductivity' A. The Gibbs 

free energy, pressure, temperature and thermal conduc-
tivity are functions of the density and entropy per unit 

volume through the constitutive relations. 

In this case, the interpolation functions (tpo, fp,,, and 

Fig. 2. Discretization for: (a) an inner node, (b) first node. 
and (c) last node. 

c,osj chosen for the independent variables (correspond-
ingly p, V and s„) are, for au inner node (1 < i < n): 

1 (Ppi = (la Vi -= (Psi = 	1 for 	-'-'- < x < 'n.'-" 2 

(4)  

For the first and last nodes, we have: 

1 for 0 < x < I*" (Ppi = 1 = 	= 0 for x > (5)  

Ax„-- 1 

{ 0 
for x < 	2 

'Pp.= Sov.= 'Ps.= 	1 for 	°';'-'  < x < 0 

(6)  

For the density and entropy weight functions the fol-
lowing convention is adopted: wp,,jk and Ws jk denote 
weight functions corresponding to node i, evaluated at 
the face separating nodes j and k. The independent 
and integrated variables (magnitudes per unit area in 
the one-dimensional problem) are related as follows: 

1 
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0 for x >i+ 2 
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For the mass state equations, we have: 
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For the velocity state equations, neglecting body 
forces, we get: 

1 
1.4 =--  	— Pi—i) 

(Axi—i Axi) 
1 

±,7 [(Pi —Pi+1)(Ki+1 — Ki) 

(Pi_i 	Pi) (Ki 	Ki-1)}}  

, 
+ — 	+ p ) 	— 	 (16) 

2 n-1 	n 	n 

For the entropy state equations, neglecting heat 
sources, we obtain: 

	

= - 	[(A, ± A,±1) (01+1 - 0i) 

	

29i 	 fix ) 

-F (Ai_i -1- Ai) (0i — Oi—i) 

	

+w,i, 	(0i +0i+i) (sr i+1 Vi+i —s. Vi) 

	

+wsi, 	(0i—i +0i) (s. 	—s. 	Vi—i.)] 	(17) 

19Ws 1 
[(A1 + A2) (02 - 01) (7;-) 2 

	

+Ws 1, 1 2 (01 4- 02) (sv 2 V2 - Sy 1 V1)1 ± ,..4',!?11, 	(18) 

1 
Stt = - 	[(An-1 ± An) (On - On_i) ( &Wan  

	

2 O. 	 ax jr, -1 n 

+Ws n, n-1 n (0 n—i +0n) (8. n Vn -Sv n-1 Vn-1)} ...5,1211n 

(19) 

In the entropy state equations, ,S.,n and .44,Q,r)n are en-
tropy rate sources needed to satisfy the boundary C011- 
diti011S. It can be seen that the state equations are 
non-linear. The power couplings between the rnass and 
velocity ports are g-,iven through the pressure and ki-
netic coenergy terms, while the power coupling between 
the mass and thermal ports are given through the en-
tropy terms. Since viscous effects cannot be taken into 
account with these shape functions, the corresponding 
power coupling between the velocity and entropy state 
equations doesn't appear in the resulting expressions. 

B. Linearized state equations 

It is interesting to write linearized expressions of the 
state equations obtained in Section II. These will be 
valid for problems with small space changes of the state 
variables and can be compared to the resulting expres-
S1011S obtained by using other numerical schemes. Con-
sidering that: 

— 	(17.7 — 	 (20) 

and that, for a pure substance: 

1 
-03 - 	— (0i - 0i) — (p, — 

Pi 

(12) 

(10) 1;'n 	
1 

— 
p r, Axn-i 

(21) 

1./1. = 	 {(P2 — PO— —
2 

(Pi + P2) (K2 — Kid 

we have, for the linearized mass state equations: 

- Wp 	1 ■ [Pi (14 - Vi-1) 	(Pi - Pi—i)j 

(15) 	 iPi (Vi+i — 	 (p,,, — pi)] 	(22) 



	

—Wp 1, 12 [Pi (V2 VI) ± V1 (P2 — P1)] 	(23) 

—1.11p n-1 n [Pn (Vn — Vn—i) Vn (Pn Pn-1)] 

(24) 

For the linearized velocity state equations, we get: 

1 

Pi 	+ Axi) [(Pi+1 - 

(1/2-1-1 - %-1)1 

= 	[(P2 - 	+ p,Vi (V2 - VI)] 	(26) 
p, caxi 

1 
Vn = 	 [(Pr, — Pn—I) p,,Vn (V. —14,--1)] 

AXn-1 

(27) 

For the linearized entropy state equation, we obtain: 

=== -w. 	[sv 	- Vi-t) -4- % (sv - s. i-1)1 

[sv 	- Vi) 	(s.i+1 - 

( &Ws 

8:r 	 Oi 

(aWsi) 	A (0i±i. 1) 
(28) 

ax 	 Oi 

:91 — 1, 12 [sv (V2 — VI) + 	(sv 2 — s. 1) ] 

(tsi) A (t22-a - 1) +4n, 
ux 	2 1 \ 

—Ws n, n-1 n [Svn (Vn — Vn-1) ±Vn (Son — Sv n-1)] 

On-1) 	'(r) 
trs  n 	An (1 — 	 SQ n 

On 	
(30) 

n 

III. COMPARISON WITH OTHER NUMERICAL SCHEMES 

In this Section, a comparison is inade between the 

Bond Graph linearized state equations and the ones ob-
tained by using a control-volume and a finite-difference 

formulation. We consider as starting differential equa-

tions to be discretized by using these formulations 

the continuity, momentum (inviscicl and without body 

forces) and thermal energy equation (without sources) 
in terms of the entropy per unit volume: 

Op 
— = -V. (p V) 
at 

av 
Tn- = 	V P - (V .V) V 	(32) 

Os, 	1 
— = --

o 
V.q - V. (s., V) 	(3:3) 

'Of 

where V is the velocity vector and q is the heat flux. 

A. Contivl-volume formulation 

In this approach [7], the calculation domain is divided 
into a number of overlapping control volumes such that 
there is one control volume surrounding each grid point. 
The differential equations are then integrated over each 
control volume, assuming convenient (in general differ-
ent) profiles for evaluating the flux, source and unsteady 
terms for the control volumes. Integrating Eq. (31) over 
an inner control volume, we obtain: 

= - (p 	+ (p V)j_i 	(34) 

The mass flux p V , evaluated at both sides of the 
control volume, can be written as: 

(pV)i+ = piVi + wpi+,11 (Pi+i 1/2+1 — Pi Vi) 

Pi 1/2 wpi+ .4 [Pi (14+1 	Vi) +1/2 (Pi+1 	(35) 

(PV),_1 = P, 	w p,- (P,V= P,--114-1) 

P, 	w p 	[P, (V= - 14-i) +14 (P, P=-1)] (36) 

where w , and w 	are mass flux weight factors. (11-7 	1-7 
Replacing Eqs. (35) and (36) in Eq. (34) and comparing 
to Eq. (22), we get: 

w . 	= 	; 	= wpi,i-li 	(37) pi+-2 

ThiS is, the density weight functions evaluated at 
the discontinuity- surfaces can be regarded as mass flux 
weight factors in a control-volume formulation. 

The considerations are also valid for the first and last 
control volumes, in which a finite volume formulation 
gives: 

= - (p V) 1+ + (p V), ; 	= - (PV),, (P n- 

(38) 

It is interesting to notice that the mass fluxes calcu-
lated in Eqs. (35) and (36) are consistent, since: 

Wpi,ii+1 	 = 1 	(39) 

Eq. (33) can be written in a conservative form by 
noticing that: 

1 
-Õ 

Since: 

it can be written 

V.q = V 

q 	• 
'7A-70 
0 

+ 	VO 
q) 	q 

n 	, 
"J 

(40)  

(41)  

(42)  
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tor - - 
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(25) 

(29) 
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Integrating Eq. (42) over an inner control volume, we 

obtain: 

— (9- S v 	 ± + v 
i+ 

(43) 
11L-1 — S V -1- 	S V 

" 	 " 	" 	
(52) 

where — and 8,, V are correspondingly the conduc-
0 

tive and convective entiopy fluxes. These flu.xes can be 
evaluated at both faces of the control volume as: 

	

2 	9i .1 — Oi  
(1) 	— —w • 	-'- 

9 	 "+7 ei 

The considerations are also valid for these control vol-
umes, since: 

4,(r) _ 	,e,(r) = 
Oi ' "Q n 

(53) 

It is interesting to notice that the convective and con-
ductive entropy fluxes calculated in Eqs. (44) to (47) are 
consistent, since: 

(44) 

2 , Bi — 

	

= —w • 	Ai 	  
0 	 q 	Oi 

(45) 
Ws i, 	 i+1, i+1 = 1 	(54) 

V),44 = Sv i Vi Ws i++ ( Sv i+ 1 Vi+1 Sv i Vi) 

sv 	+ 

• 	

[3,, ( 	— Vi) 	(sv 	— sv 

(46)  

( s„ V),_ = s v 	— 	(sv 	— sv 	Vi— i) 

=== svi 	— • 2. [Sv (Vi 	Vi-1) 4rVi (Sv i Sv i-1)] 
2 

(47)  

In Eqs. (44) and (45), wq i+i and wqi_i are factors 

weighting the mean conductive entropy fluxes, while in 
Eqs. (46) and (47), wsi++ and are convective 

flux weight factors. Replacing Eqs. (44) to (47) in Eq. 
(43) and comparing to Eq. (28), we get: 

	

A 	aWsi) 
W = — (— 
"+ I 2 	8x 	i+i 

= — AXi_l (-81138i) 
2 

= ws 	; 	= 	 (50) 

This is, the gradients of the entropy weight functions 
evaluated at the discontinuity surfaces are proportional 
to the corresponding conductive entropy flux factors. 
Besides, the entropy- weight functions evaluated at the 
discontinuity surfaces can be regarded as convective en-
tropy flux weight factors. 

In 41, a suitable entropy' weight function was deter-
mined for a one-dimensional convection-diffusion prob-
lem with constant velocity. It was shown that the weight 
function is dependent on the Peclet grid number, with 
the limit values of Ws i 1 and ti4-1 = 0 fm 
-full upwind" conditions with positive velocities, while 

ws,.,-1, = 0 and Ws i+1 = 1 for full upwind condi-
tions with negative velocities. 

For the first and last control volumes, a finite volume 
formulation gkes: 

— 	 s v) 	+ 
	

1/1 	(51)  

aws 
= 0 	(55) 

i+ 	ax jii+, 

Integrating Eq. (32) over an inner control volume, 
considering a constant velocity profile for the unsteady 
terrn and a linear profile for the convective terni, we 
obtain: 

1 1 
— (Ax i — i + Axi) 	— [(Pi + Pi4.1) — (Pi_i +Pi)] 
2 	 pi 2 

1 
— [(Vi + Vi+i)— (Vi—i + Vi)] 	(56) 
2 

which reduces to Eq. (25). 

The considerations are also valid for the first and last 
control volumes, in which a finite volume formulation 
gives expressions that reduce to Eq. (26) and (27). It is 
very interesting to notice that, according to this Bond-
Graph formalism, no weight functions result for the ve-
locity state equations. 

B. Finite-difference formulation 

In this approach [8], the derivatives in the differen-
tial equations are replaced by truncated Taylor-series 
expansions. Expressions coincident with the ones ob-
tained by- using this formulation can be obtained with 
the appropriate choice of the weight functions. 

For instance, for wp 	= 	 = 1 and 
top = w = 0, we obtain the "forward" ap-
proximations for the first derivatives; for wp i±i = 
tosi, i-f-i = 0 and wpi,i—i w = 1 we get 
the "backward" approximations, while for Wpi,i i+1 = 

i+1 = Wpi, L-1 = Ws i-1 i = the "central" ap-
proximations result. The forward and backward approx-
imations correspond to the "full upwind" scheme. 

Concerning the heat conduction term in the en-
tropy state equation, it can be easily shown that for 
(Dios ) = —1 and (13'nujs = 1 and consicl- 

Ox '-"r 
ering a uniform grid spacing, we obtain the well known 
"three-point central approximation to the tempera-
ture second derivative. Others approximations can be 
obtained, of course, with suitable choices of the weight 
functions and their derivatives. 

(48)  

(49)  
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IV. ENTROPY WEIGHT FUNCTIONS AND THE SECOND 

PRINCIPLE OF THERMODYNANIICS 

Let us consider the simple case of one-dimensional 
heat conduction shown in Fig. 3. Two reservoirs of 
thermal energy at absolute temperatures 01 and 02 are 
allowed to communicate through a thermal resistance, 
but are thermally insulated from the surroundings at 
the rest of the surfaces. The state equations for the 
reservoirs are: 

= - 

= — 

Since w, 

aw. - (A, + A2) (02 - 01) (-57) 
01 2 

1 	1 

2 

2 

(37)  

(38)  

(39)  

A2)(02 — (Ai + 	—190 
T9-2- 2 

± Ws 2 :1'. 1, we have: 

aWs 2 	 aW, ) 
-) = (- 

0X 	1 2 	 1 2 

The system entropy rate can be written as: 

= 	+ 	= 	(.1 + A2) (°2 191)2  C)iv' 
2 1 	 Oi 	aX )1 2 

(60) 

Since for the closed system > 0, the entropy weight 
functions must be decreasing with respect to the dis-
tance to the corresponding entropy node. Although this 

proof was made for this simple example, this property-
can be generalized. 

V. CONCLUSIONS 

In this paper the resulting state equations, obtained 
by: using a new Bond-Graph approach for CFD, are 
presented for a one-dimensional problem with constant 

piecewise shape functions. This nodalization and the 

choice of the shape functions allow to perform a closed 
calculation of the state equations. Since for this case 
the state variables corresponds to the mass, velocity and 
entropy in control volumes, it is possible to make a com-
parison with other numerical schemes. 

The existin,g contributions coming from the disconti-

nuities in the description of the flow fields can be suc-
cessfully handled in the integration process by using dis-
tributional derivatives. Although viscous effects cannot 
be modeled with a constant piecewise velocity profile, 
heat conduction can be rigorously taken into account.  

with entropy weight functions with non-zero gradients 
at the discontinuity surfaces. 

The density and entropy veeight ftuictions, which are 
elements of this new approach, are capable of taking 
into account the upwind nature of the fluid equations. 
Based ou the linearized expressions of the state equa-
tions, a comparison is made with a control-volume and 
with a. finite-difference numerical scheme, obtaining an 
interpretation of the density and entropy weight func-
tions appearing in the Bond-Graph formalism. It is 
found that the density and entropy' weight functions can 
be regarded as weight factors in the calculation of the 
corresponding fluxes within a control volume, while the 
gradient of the entropy' weight function come out to be 
proportional to the weight factors in the calculation of 
the conductive entropy fluxes. 

Based on the Second Principle of Thermodynamics, 
it is also shown that the entropy weight functions must 
decrease as the distance to the corresponding node po-
sition increases. 

As the main conclusion of this work, it is shown that 
the Bond-Graph methodology provides a powerful tool 
for discretizing physical distributed-parameter systems. 
When applied to CFD, the BG-CFD approach includes 
the Control-Volume and Finite-Difference methods as 
particular cases. 

It is hoped that the findings of this paper encourage 
other researchers to use this formalism in other prob-
lems. 
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