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Abstract— This paper shows contributions from a
new, Bond-Graph based, formalism for CFD prob-
lems, through which the state equations are obtained
in terms of nodal vectors of mass, velocity and en-
tropy.

The resulting state equations are presented for
a one-dimensional problem with constant piecewise
shape functions. It is shown that there exist contri-
butions coming from the discontinuities; these con-
tributions can be taken into account in the integra-
tion process by using distributional derivatives. Al-
though viscous effects cannot be modeled, heat con-
duction can be rigorously taken into account with
the proper choice of the entropy weight functions.

Based on the linearized expressions of the state
equations, a comparison is made with a control-
volume and with a finite-difference numerical
scheme, obtaining an interpretation of the density
and eniropy weight functions appearing in the Bond-
Graph formalism and showing that these popular nu-
merical methods are included as particular cases of
this methodology.

Based on the Second Principle of Thermodynam-
ics, it is also shown that the entropy weight functions
must decrease as the distance to the corresponding
node position increases.

Keywords— Bond Graphs, ‘Computational Fluid
Dynamics, CFD, Control Volume Method, Finite
Difference Method.

[. INTRODUCTION
A. The BG-CFD Approach

In recent works [1][2} a theoretical development of a
general Bond Graph approach for CFD was presented,
which is a result of the right combination of Bond-Graph
concepts with elements of numerical methods. The
main characteristics of this new methodology, which was
called BG-CFD [3}, can be suinunarized as follows:

« Based on the total emergy rate per unit volume, a
set of independent variables (namnely density, velocity
and entropy per unit volume) is defined, as well as as-
sociated potentials (namely linear mowmentum per unit
voluuie, kinetic coenergy per unit mass, Gibbs free en-
ergy per unit mass aud temperature). The potentials
are functions of the indepeudent variables through the
coustitutive relations, which have restrictions due to the
equality of the mixed partial derivatives (Maxwell rela-
tions}).

» The independent variables are discretized in terms of
nodal values and interpolation (shape) functious. Since
this is the only discretization restriction, it is possible
to work with any kind of grids. Nodal vectors are de-
fined as Bond Graph state variables, namely mass, en-
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tropy and velocity. The mass and entropy vectors are
obtained by integrating the corresponding nodal inde-
pendent variables in the support of the shape functions.
The corresponding integrated potentials also satisfy con-
stitutive, as well as Maxwell relations.

« The system state equations are obtained by systemn-
atically volumne integrating three balance equations cor-
responding to each port of the IC field representing the
total system energy. The balance equations have termns
representing the power couphing between the different
ports. In this way, the inertial and thermal couplings to
the mass conservation equation and the transformation
of mechanical energy into thermal energy, as well as the
generation of irreversibility, are represented naturally.

e The convective (upwind) nature of the fluid equations
is handled through the definition of density and entropy
weight functions, which are introduced to satisfy the
power interchanged by the system through the bound-
ary conditions, as well as to share the importance of
different power terws among neighboring nodes. This
concept was successfully applied to convection-diffusion
problems [4][5].

e All kind of boundary conditions are handled consis-
tently and can be represented either as generalized mod-
ulated effort sources at the inertial port or modulated
flow sourees at the capacitive ports.

As a consequence, this approach bridges the gap be-
tween the continuous formulation of the conservation
equations and a discretized numerical scheme framed
within the Bond-Graph theory.

B. Discontinuities

The discontinuities present in the description of the
flow fields are handled through the use of distributional
derivatives [6]. Consider a function x singular on a fixed
surface I', as shown in Fig. 1, with derivatives of all or-
ders outside T' and boundary values of the function and

its derivatives from both sides of T'. The jumip across
the surface is:

X=x;-x (1)

where x; and x; are the boundary values of x from
both sides of T. If x is a scalar field, it can be shown
that the gradient can be expressed as:

Vx = Vx+x} 6(r~rr) iy (2)

If x is a vector field, it can be shown that tle diver-
geuce can be expressed as:

7x=\7’~x+ix3 d(r—rr).ny (3)
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Fig. 1. Function discontinity in a surface I'.

where § is the impulse (Dirac’s delta) function, iy
is the normal unity vector (oriented from i to j), T is
the position and rr is the position of the discontinuity
surface. In Egs. (2) and (3), the bars indicate a dis-
tributional operation. In this way, the discontinuities
present in the discretized flow fields can be taken into
account in the integration procedure by considering all
the operators as distributional ones.

[I. OXE-DIMENSIONAL FLOW WITH CONSTANT
PIECEWISE SHAPE FUNCTIONS

Counsider a one-dimensional discretization, as shown
in Fig. 2. The volume within the lines located mid-
way between the grid points can be regarded as control
volumes. It is interesting to consider also a uniform dis-
tribution of the independent variables, because these are
the simplest and because the state variables correspond
to the mass, entropy and velocity within the control vol-
umes.

A. State egquations

The Bond-Graph CFD formalism can be applied to a
system with the assuiiptions made above. For this case,
the inertia matrix becomes diagonal and the state equa-
tions corresponding to the different nodal state variables
can be obtained analytically. The details of the deriva-
tion are not given here, but it can be shown that viscous
effects cannot be taken into account with a coustant ve-
locity shape function, but heat conduction can be mod-
elled with nou-coustant entropy weight functions. The
final expressious are given for an inver node (1 <1i < n)
and for the first and last nodes, in which "half” cou-
trol volumes result. Iu these expressions, the following
variables are evaluated at different nodes: mass m, ve-
locity V', entropy per unit volume 8, (s» = ps, where
p 1s the deusity and s is the entropy per unit massj,
Gibbs free energy per unit mass ¥, kinetic coenergy per
unit mass & = + V2, pressure P, absolute tewmperature
f, entropy S and thennal conductivity A. The Gibbs
free energy, pressure, temperature and thermal conduc-
tivity are functions of the density and entropy per uuit
volume through the constitutive relations.

tn this case, the interpolation functions (¢, ¥\, and
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Fig. 2. Discretization for: (@) an inner node, (b) first node
and (c¢) last node.

¢,;) chosen for the independeut variables (correspond-
ingly p, V and s,) are, for an inner node (1 < i < n):

0 for z < —2ZizL

Ppi =Py = Pg; = 1 for

For the first and last nodes, we have:

1 for 0<z <82
Sopl =30V1=9931={ 0 fOr > Az, 2 (5)
2

0 for z < —
Az, _,

1 for ——2=<z<0

Az, i
‘ppn = Pvn T FPsn = 2

(6)

For the density and entropy weight functions the fol-
lowing convention is adopted: w,:, jx and ws;, jx denote
weight functious corresponding to node i, evaluated at
the face separating nodes j and k. The independent
and integrated variables {magnitudes per unit area iu
the one-dirnensional problew) are related as follows:

1
m; = p, 3 (Azi_y + Az,) (7
1 1
m=pg Az | m, =p, 5 Azp_y (8)
1
Si = s 3 (Azioy + Az) (9)
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For the mass state equations, we have:

1 1
my = ————( Wpi.i~1i § Vi-1 |5 (P — Pi-
= <wp.. 1 {V 1 [2( 1)
1 1
Ty Svisl (0i —0i-1) + r (pic1 + ps) (Ki — Ki-1)
+pi1 ("/&-1 +"i—1)]

11 1
+Vi [5 (Pz - P;_l) hd E Svi (9, —_ 95_1)
1
+Z (Pic1 +p) (i — mim1) —p; (Wi + ﬂi)]}
1

1
FWoi,iit1 {V. [2 (Pis1—P) — g Svi (fiyr — 6:)

+% (P + /’i+1) (mivr — 53) +p; (9 + "i)]

1 1
+Vin {5 (Pigq1— P} — 3 Svit1 (iv1 — i)

+% (Pi -+ Pi+1) (Ki+1 - h‘q‘)
~pip1 (Vi1 + mira)] ) (11)
(1,’;_-1f-71)‘ <wp1.12 {V1 [% (P — 1)

1
_5 Syl (9’2 _91)

my, =

o1k p2) (52 = )+, ()
+V2 I:% (P2 — P1) - ';'&:2 (62 — 01)

+% (pr+ py) (R2 — K1) — py (¢2+"2)]}> (12)

: 1 1

e = Gy (e (Yo [ =P
1 1

"5 Syn-1 (en - Hn-l) +Z (Pn_1 +pn) (K'" - K‘"—l)

1
s [a + )] + V[ (P = Pac)

1 1
_551-n (911 - on—-l) + I (/’n_1 +pn) (K'" - K‘"_l)
~Pn (uyn -+ h‘")}}) (13)

For the velocity state equations, neglecting body
forces, we get:

Vi = _m {(Piz: = Picy)
+% (P = Prst) (Big: — R0)
=Py + p) b= )]} (14)
V= e (P = P) = 2 oy 4 12) (52— 1)
py Az, | 2

{15}

1

Vo = = [(Pr = Pay)
1
+§ (/’n—l + Pn) (fn — ""n-—l)] {16)

For the entropy state equations, neglecting heat
sources, we obtain:

. 1 B'U)si
Si = BCTA (X + A1) (Biy1 — 65) ( oz )i i+l

+ (Aic1 + Ai) (6: — Biy) (3;};,)
i1

Fwei iz {0i +0i1) (Seigr Vigr —503 Vi)
FWsi,im11 (Bim1 +0;) (50 i Vi —sv i1 Vic1)]  (17)

5 1 Sws1
S = —2—9—1 {(Al +/\2) (92 — 91) <-_afl: )1 ,

Fwor12 (01 +602) (02 Va — 501 V)] + 85 (18)

: 1 Owsn
Sn = —5—9: [(/\n—l +An) (B —0n1) ( Bz )"_1 N

+Wsn,n—1n (Hn—l +9n) (311 n Vo =8y n-1 V4 —l)] + S((?P)n
(19)
In the entropy state equations, S’g )1 and § (P)n are en-
tropy rate sources needed to satisfy the boundary con-
ditions. It can be seen that the state equations are
non-linear. The power couplings between the mass and
velocity ports are given through the pressure and ki-
netic coenergy terms, while the power coupling between
the mass and thermal ports are given through the en-
tropy terms. Since viscous effects cannot be taken into
account with these shape functions, the correspounding
power coupling between the velocity and entropy state
equations doesn’t appear in the resulting expressions.

B. Linearized state equations

It is interesting to write linearized expressions of the
state equatious obtained in Section II. These will be
valid for problems with small space changes of the state
variables and can be compared to the resulting expres-
sions obtained by using other numerical schemes. Con-
sidering that:

K; =R 2V (V, = VA) (20)
and that, for a pure substance:

Sv i i
.d)__l_r'.ig__ ()._[}i)+_
7 p ( J P

t i

(P; — P:) (21)

we have, for the linearized mass state equations:

My = —wpi -1 [I’.’ (Vi-Vi_)+ Vi (pi — pi__l)]
—Wpiiig: [Pi (Vis, - Vi) =V (p,,l - PZ)J (22)



[or (V2 = Vi) + VA (o2 — )] (23)

T = —wpr, 12

Pn - Pn—l)]

(24)

titn 2 —wpn n—in [Pn (Va = Vaz1) + Va (

For the linearized velocity state equations, we get:

R 1
o~ L (P, -Pe
Vi (BT A ((Pirs 1)

+p; Vi (Vi1 — Viz1)] (29)
- 1
= - - +p Vi -V 26
Vi oA (Po—P)+pVi(Va-W1)]  (26)
Vn = —_—— [(P Pn—l) -+ Pn Vn (Vn ot Vn—l)]
Aa,n_

(27)
For the linearized entropy state equation, we obtain:

$i 2 —w,i i1 [s0i (Vi = Vier) + Vi (501 — sviz1)]

—wsi iiv1 [$vi (Vier — Vi) + Vi(8piz1 — Sui)]

Gwa,- ) 91 1
_( Oz >i—1i/\1 (] 6: )

Owsi 0is1
P (pdat iy | 28
+(r9:z )ii-j—l/\(‘)i ) (28)

Slg_u«’al,IZ[svl(%_‘/l)‘l"/l(sv‘l.’_svl)}
a'wsl 82 ) (I‘)
| === Al—=-1 +S 29
( dx )12 1(91 (29)

S‘n = ~Wsn,n—-1n [sun (Vn - V -l) +Vn (sun - 3un—1)]

ow On_ (r)
_ | S L 1- S 30
( a‘t ) n—1n /\ (1 0" ) ( )

IIT. COMPARISON WITH OTHER NUMERICAL SCHEMES

In this Section, a comparison is made between the
Bond Graph linearized state equations and the oues ob-
tained by using a coutrol-volume and a finite-difference
fortmulation. We consider as starting differential equa-
tions to be discretized by using these formulatious
the continuity, momentum {inviscid and without body
forces) and thermal euergy equation (without sources)
in terms of the entropy per uunit voluine:

dp _ /21s
= - A\ 31
¥ V.(pV) {31}
0V _ _lgp_(vyv (32)
13/
as 1 .
LS 33
ey 2 V.q—V.(3, V} (33)

where V is the velocity vector and ¢ is the heat flux.

A. Control-volume formulation

In this approach [7}, the calculation domain is divided
into a number of overlapping control volumes such that
there is one control volume surrounding each grid poins.
The differential equatious are then integrated over each
control volue, assuming convenient (in general differ-
ent) profiles for evaluating the flux, source and unsteady
terrns for the control volumes. Integrating Eq. (31) over
an inuer coutrol volume, we obtain:

ri= = (pV)yy +(pV)iy (34)

The mass flux p V, evaluated at both sides of the
control volume, can be written as:

(o V)i+‘7 =p Vit Woird (Pi+1 Vitr — p; Vi)

=p Vi tw,ipd lp: (Vier = Vi) +Vi (piyy — p3)] (35)

(Pv)i_.&. =pVi— Wit (Pi Vi—pia Vi—l)

EpVi—w, s lp (Vi— Vi) +Vi (o — piy)] (36)

W .. ,
hiere Wy g and Wi

Replacing Egs. (35) and (36) in Eq. (34) and comparing
to Eq. (22), we get:

¢ are mass flux weight factors.

Wil T Woiiigl 5 Wy, 1 = Wpi il (37

This is, the density weight functions evaluated at
the discontinuity surfaces can be regarded as mass flux
weight factors in a control-volume formulation.

The counsiderations are also valid for the first and last
coutrol volumes, in which a finite volume formulation
gives:

== (pV) g+ (V) 5 a=—(pV), +(pV)
(38)

[t is interesting to notice that the mass fluxes calcu-
lated in Egs. (35) and (36) are consistent, since:

Wpi,iitl + Wpisr1,iig1 = 1 (39)

Eq. (33) can be written in a couservative form by
noticing that:

loosov (4 g

FV.q=V. (9) + 4.9 (40)
Since:

| 2 ge) .
6? | 68 (41)
<@ '

8/

it can be written, for .I.‘)J_‘)_ﬂ < 1
Pv oy g (3 +s V) (42)
g~ T\g " -

"_7



Litegrating Eq. (42) over an inuer control volutue, we
obtaiir:
S‘ig—(g+suV) +(2+SUV) , (43)
] i+d 0 i-g

where I aud s, V are correspoudingly the couduc-

tive and convective entropy fluxes. These fluxes can be
evaluated at both faces of the coutrol volume as:

q - 2, 0706 (44
(9),‘4_%— qu'% 9,'/\1 Az; * )

(%).-_,1, = Yy 792—,» "%

(Sv V)i-}-,‘r =8y V;
>5,: Vi +w“.+% {.‘3,,,' (Vi+1 —‘/1.) +Vi(Syin1 _31.'1')]

+ w“+% (Svi+1 Visr — Sui Vi)

(46)
(Su V),;_% = Syi ‘/1 - w,,‘_.& (Svi ‘/1 —8yi-1 ‘/1'.—1)
= 5,0 Vi—w, oy fsus (Vi = Vict) +Vi(svi — 8vi-1)]
) (47)
In Egs. (44) and (43), w, it} and w,;_, are factors

weighting the mean conductive entropy fluxes, while in
Eqs. (46) and (47), Wyid and w,,_1 are convective
flux weight factors. Replacing Egs. (44) to (47) in Eq.
(43) and corpariug to Eq. (28), we get:

$i—-

1 Ows i
== Ax 48
Yaits QAZ < Oz )ii+1 ()

1 Ow, i
w1 == A 49
Yai-g 2Azl—1( 9z )1 1i ()
Wyl = Weiicli § Weipl = Weiiitl (30)

This is, the gradients of the entropy weight functions
evaluated at the discontinuity surfaces are proportional
to the corresponding conductive entropy flux factors.
Besides, the entropy weight functions evaluated at the
discontinuity surfaces can be regarded as convective en-
tropy flux weight factors.

In 4], a suitable entropy weight function was deter-
mined for a one-dimensional convectiou-diffusion prob-
letn with constant velocity. It was shown that the weight
function is dependent on the Peclet grid mimber, with
the limit values of wsi i—1; = 1 and wyi si41 = 0 for
“full upwind” conditions with positive velocities, while
weia—1: = 0 and ws; ¢iv1 = 1 for full upwind condi-
tions with negative velocities.

For the first and last control volumes, a finite volume
formulation gives:

[ (%-ﬁ-su v) + 8 v G

8n %—gl — SunVa+ (%+s,,v)

n

59
L6
bl
The cousideratious are also valid for these control vol-
ues, since:

AT q (T Qy =
Gr=g i =g (53)

It is interesting to notice that the convective and con-
ductive entropy fluxes calculated in Eqs. (44) to (47) are
cousistent, since;

Wsi,iitl + Waigl,iie1 =1 (54)

awsi) <3wn’+1)
+ [ ——— =0 (55)
< Oz iitl Oz fitl

Integrating Eq. (32) over an iuner coutrol volume,
cousidering a constant velocity profile for the unsteady
term and a linear profile for the convective term, we
obtain:

-1
Vi 5 (A:x:,--l + Az;) _;}—, % {(P, + Pf+1) — (Pi—l +P,)]
1
—Vai[(Viﬁ-Viu)—(V-1+W)] (56)

which reduces to Eq. (25).

The considerations are also valid for the first and last
control volumes, in which a finite volumne formulation
gives expressions that reduce to Eq. (26) and (27). It is
very interesting to notice that, according to this Bond-
Graph formalisin, no weight functions result for the ve-
locity state equations.

B. Finite-difference formulation

In this approach (8], the derivatives in the differen-
tial equations are replaced by truncated Taylor-series
expausious. Expressions coincident with the ones ob-
tained by using this forimulation can be obtained with
the appropriate choice of the weight functions.

For instance, for wpi,iiq1 = Wsiiiv1 = 1 and
Wpiic1i = W i i—:1; = 0, we obtain the "forward” ap-
proximations for the first derivatives; for w,; iio1 =

wsiiirn = 0 and wpi -1 = w0 = 1 we get
the “backward™ approximations, while for wpi iiv1 =
Wsi,iisl = Wpi i—1i = Wsi, i=1i = % the "ceutral™ ap-

proximations result. The forward and backward approx-
irnatious correspoud to the "full upwind™ scheme.
Conceruing the heat conduction termr in the en-
tropy state equation, it can be easily shown that for
ow hw, ; .
- = —1and | — = 1, and consid-
or ). dr /.
il -1
eriug a uniform grid spacing, we obtain the well known
“three-poiat central " approximation to the tempera-
ture second derivative. Qthers approximations can be
obtained, of course, with suitable choices of the weight
functions and their derivatives.
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Fig. 3. One-dimeusional heat conduction in a reservoir.

IV. ENTROPY WEIGHT FUNGTIONS AND THE SECOND
PRINCIPLE OF THERMODYNAMICS

Let us consider the sirnple case of oue-dimensional
heat conduction shown in Fig. 3. Two reservoirs of
thermal energy at absolute temperatures 61 aud 67 are
allowed to communicate through a thermal resistance,
but are thermally insulated frow the surroundings at
the rest of the surfaces. The state equations for the
reservoirs are:

N 11 Ows .
Slz—a-i(/\l-*l—/\z)(og—ol) (-—1-;;1)12 (01)

A 11 Ow, 2 -
Sy = — o = -0 —— 58)
32 9, 2 (/\1 +/\2)(92 1) ( g )] , (" J

Since ws + ws2 = 1, we have:

ng 6w,1 -
s — [ Y%s1 9
( Oz )12 ( Oz >12 (9)

The systern entropy rate S can be written as:

S | , (62— 0,)° [ Bw,,
S=851+85= 3 (A1 + A2) 9, 0, —61' .
(60)

Since for the closed systein § > 0, the entropy weight
functions must be decreasing with respect to the dis-
tance to the corresponding entropy node. Although this
proof was made for this simple example, this property
can be generalized.

V. CONCLUSIONS

In this paper the resulting state equations, obtained
by using a new Bond-Graph approach for CFD, are
presented for a one-dimensional problem with constant
piecewise shape functions. This uodalization and the
choice of the shape functions allow to perforin a closed
calculation of the state equations. Since for this case
the state variables corresponds to the mass, velocity and
eutropy in control volumnes, it is possible to make a coin-
parison with other numerical schemes.

The existing contributions coming from the disconti-
nuities in the description of the flow fields can be suc-
cessfully handled in the integration process by using dis-
tributional derivatives. Although viscous effects cannot
be modeled with a constant piecewise velocity profile,
heat conduction can be rigorously taken into account,

with entropy weight functions with non-zero gradients
at the discontinuity surfaces.

The density aud entropy weight functions, which are
elements of this new approach, are capable of taking
into account the upwind nature of the fluid equations.
Based on the linearized expressions of the state equa-
tions, a comparison is made with a control-volume and
with a finite-difference mumerical scheme, obtaining an
interpretation of the density and entropy weight func-
tions appearing in the Bond-Graph formalism. Tt is
found that the density and entropy weight functions can
be regarded as weight factors in the calculation of the
corresponding fluxes within a control volume, while the
gradient of the entropy weight function come out to be
proportional to the weight factors in the calculation of
the conductive entropy fluxes.

Based on the Second Principle of Thermodynamics,
it is also shown that the entropy weight functions inust
decrease as the distance to the corresponding node po-
sition increases.

As the main conclusion of this work, it is shown that
the Boud-Graph methodology provides a powerful tool
for discretizing physical distributed-parameter systerns.
When applied to CFD, the BG-CFD approach includes
the Control-Volume and Finite-Difference methods as
particular cases.

It is hoped that the findings of this paper encourage
other researchers to use this formalism in other prob-
letns.
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