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The time derivative of the internal energy per unit vol-
ume can be written as: 

auv 	(i) opo) 	asv at = 	7--t + 0 at (4) 

An analog description is adopted for the internal energy 
per unit volume corresponding to the ith-component uti): 

u1,0 	uta)(s„, (1(1), ..., p(0) 	 (5) 

The following potentials are defined: 
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Abstract,— This paper shows an application to Multicom-
ponent Solutions of a new, Bond-Graph based formalism 
for Computational Fluid Dynamics (CFD) problems. It is 
shown that, for the multivelocity model, the resulting in-
dependent variables are the densities and velocities of the 
components and the entropy per unit volume. The state 
equations are derived, showing the potentials and constitu-
tive relations needed to describe a multicomponent system. 
Based on the muitivelocity model, the diffusion approxima-
tion is presented. This model differs from the multivelocity 
model In the way the kinetic coenergy of the components is 
taken into account, reducing the number of state variables 
from multiple velocities to a mean velocity. In the diffu-
sion model, the dynamics of a multicomponent solution la 
described in terms of the average (center of mass) velocity 
of the mixture and the mass flux of each component rela-
tive to the average velocity. The relative fluxes are assumed 
to be dependent on the entropy per unit volume and the 
component densities. This functional dependence allows to 
deal with ordinary (concentration driven) diffusion, pressure 
diffusion, forced diffusion and thermal diffusion. Based on 
the contribution of the diffusion fluxes to the kinetic coen-
ergy, different potentials associated to the entropy per unit 
volume and component densities are deflned. It is shown 
that these potentials modify the generalized effort variables 
appearing at the inertial, rnass and thermal ports of the /C-
fleld representing the system total energy. Besides, these 
potentials introduce linkages between these ports. 
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I. INTRODUCTION 

In recent works [1] [2] a theoretical development of a gen-
eral Bond-Graph approach for CFI) was presented. This 
new methodology, which was called BG-CFD [3], is a re-
sult of the right combination of Bond-Graph concepts [4] 
with elements of numerical methods. In this paper, the 
methodology described above is extended to multicompo-
nent solution systems. 

A classical mbcture, or solution, is a material in which the 
components are not physically distinct, that is, the mbdng 
is at molecular level. In this case, when described using 
continuum theory, all the components of the solutions are 
able to occupy the same region of space at the same time 
[5] and can be assumed to be in thermodynamic eqUilib-
ritun. In a solution, each component has its own velocity, 
density and internal energy. The balance principles for the 
constituents resemble those for a single component, except 
that the constituents are allowed to interact with one an-
other. 

Concerning the nomenclature used in this paper, bold 

—4i) letters will be, used to define first order tensors ( v • , 
pti),etc.). Column vectors associated to nodal values will 
be denoted by single tmderscored plain or bold type (m(i),  

cp_e_(1), etc.) while multidimensional matrices will 

be identified by double underscored plain type ()UM,  SYpi), 
etc.). Second order tensors will be denoted by bold, dou-
ble underscored type (721, I, etc.). Einstein convention of 
summation over repeated in—dices is not used. 

II. INDEPENDENT VARIABLES AND 
POTENTIALS 

A. Internal Energy per Unit Volume 

For a multicomponent solution with r components, the 
internal energy per unit volume ut, can be written as a func-
tion of the entropy per unit volume st, and the component 
densities p(i): 

= 	p('), •••, P(r)) 
	

(1) 

The following potentials are defined: 
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where 0 is the temperature and p,(i) is the ith-component 
chemical potential per unit mass. The pressure P can be 
obta.ined from the Euler equation [6]: 
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where r(i) and ti(ii) can be regarded as ith-component 
contributions to the temperature and chemical potentials. 
From the Euler equation: 

uti) r(i)sv _ p(i) E A(0) pU) 	
(7) 

i=1 

where P(i) is the ith-component contribution to the pres-
sure. Since: 

Euto 

the following relations are verified: 

Er(i) ; 	 ; p 	p(i) 
i=1 	 1=1 

As an example, the potentials associated to the entropic 
representation of the ith-component internal energy are cal-
culated in Section VII for the case of a mixture of ideal 
gases. 

B. Kinetic Coenergy per Unit Volume 

The kinetic energy per unit volume t: can be written as 
a function of the component densities and velocities V(i): 

r 1 
t; = 	- p(i) V(i)2 

i=i 2 

The following potentials are defined: 

,,(i) 	at;', 
kap(%) p000,vo 2 

v(i)2 

(i) 	atz, 	 (1) v(a) Pv = 
FV-71) p(1) , V(k9id) = p 

where K(i) and pl,i) are correspondingly the kinetic co-
energy per unit mass and linear momentum per unit ma.ss 
for the ith-component. The time derivative of the kinetic 
coenergy per unit volume can be written as: 

jt'U6 = E 	E Pv .0 

_(i) 	(i) ,v(i) 	

(13) 

C. Total Energy per Unit Volurne 

The total energy per unit volume e: includes the internal 
energy and the kinetic coenergy: 

e: = + t: 	 (14) 

The time derivative of the total energy per unit volume 
can be written as:  

aez 	as = 9 _j_co + E [(0) ,(0) 	p(i) 

4.1 	 at 	v 	at 
(15) 

Since the internal energy and kinetic coenergy are contin-
uous functions of the independent variables, the potentials 
multiplying the time derivatives of the independent vari-
ables satisfy both constitutive and Maxwell relations from 
Thermodynamics [6]. 

III. BALANCE EQUATIONS 

The balance equations are power equations correspond-
ing to ea.ch one of the terms that contributes to the time 
derivative of the total energy per unit volume. For multi-
component solutions, the balance equations can be derived 
from the mass, momentum and energy conservation equa-
tion corresponding to each component [5]: 

(i) 
= –V . (p(i) V(i)) + C(i) 	(16) 

(i) 
avw 
— –0) V(4) .V V(i) + v . 

+p(i) di) 4_ f (i) C1i) V(i) 	(17) 
°UV) 

= -V. (14,i) Vi)) - f 	C(i) _1 vii)2 
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where C(i), f (i) and e(i) are correspondingly the mass, 
momentum and energy interaction terms (per unit vol-
ume), cI3(i) is the heat power source per unit mass, di) 
is the body force, q(i) is the heat flux and T(i) is the stress 
state for the ith-component. 

Since there are no distributional sources, it is postulated 
that the sum of the interactions of mass, momenttun and 
energy vanish, that is: 

t. 	= o ; Ef (i) = 0 ; Ed) = 0 
	

(19) 
i= 1 	 1=1 

and viscous components r(i) as: 
The stress state can be expressed in terms of the pressure 

= _p(i)1+7.(1) 	 (20) 

Taldrig into account the conservation equations and Eqs. 
(4) and (7), the balance equations result: 

(1.4(4) 	K(i)) aotP(i) 	_v. {p(i) (14(i) +. no)) 

+c(i) 	K(1)) + (JO V(i).Vp(i) 	v(i).vnta) 

(21) 
avo) 

140 — = V . (r(i) .V(i)) – p(i) 	.V tc(i) – 	.V PO) et 
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According to the balance equations it can be seen that 
it is necessary to know, for each component, the potentials 
coming from the entropic representation of the internal en-
ergy and from the kinetic coenergy, as well as the mass 
and momentum interaction terms, the heat flux, the heat 
power source and the viscous stress. 

The balance equations show one of the advantages of the 
BG-CFD methodology, that is, the representation of the 
power structure of the system. In the balance equations 
there can be identified three type of terms: divergence, 
source and coupling terms. The divergence terms take into 
account the power introduced in the system through the 
boundary conditions. The source terms constitute the dif-
ferent power sources, external to the system. Finally, the 
coupling terms represent power transfer between the ve-
locity, mass and entropy balance equations; these coupling 
terms appear, with opposite signs, in pairs of equations. 
"Diking into account Eq. (15) it verifies that coupling terms 
cancel out when the balance equations are added, resulting: 

— = 	{—V. [(4i) P(i) p(i) nii)) Vii)1 
aet --r 

1= 1 

+V . (7(1) .V(i)) — V .q(i) + 	di) .V(i) +p(1) (DM 
(24) 

The cancellation of the coupling terms means that they 
influence the power distribution among the different ports 
but not the total power in the system. 

IV. DISCRETIZATION 

The independent variables are discretized, in the domain 

volume f2, in terms of time-dependent nodal values (4) , 
VLi) and st,i) and interpolation (shape) functions (corre- 

spondingly ço(pii), , o(vi),,,, and (psi): 

n(pi) 

P(i) (r, t) = Ep(ki) (t) v(i) (r) 	(i) T (1) 
2_— •Wp 

k=1 	 Pk 

n(i) 

V(i) (r, t) = E v;ii.,)(t) (40,7, (r) = V(')T .ep(i) 	(26) 
m=1 

n. 

8t, (r, t) = 	(t) (psi (r) = suT .cp„ 	(27) 
1=1 

For any position r E ft, the shape functions have the 
following properties: 

	

Ecpp(a2 (r) -- 1 ; E 	(r) = 1 ; E (pai (r) = 1 
n(i) v 	. 	 n. 

k=1 
	

rn=1 	 1=1 

(28) 

For simplicity in the treatment of the boundary condi-
tions, we also require for the interpolation functions to have 
the value one for the reference node position, be monotoni-
cally decreasing with respect to the distance from the refer-
ence node and be zero for the rest of the nodes. Since this 
is the only discretization restriction, it is possible to work 
with any kind of grids. Notice that it is possible a priori 
to have different densification in the nodalization, this is, 
the ntunber of nodes 4) and 4) can be different for each 
component; this is important, for instance, in boundary 
layer problems. 

Nodal vectors are defined as Bond-Graph state variables, 
namely mass and 'velocity for the ith-component and en-
tropy. The mass and entropy vectors are obtained by inte-
grating the corresponding nodal independent variables in 
the support of the shape functions: 

m(i) 	p(i) 	; ,E na. sv 
P r.__ 

The diagonal matrices fl(pi) and f2. are defmed as: 

P 	p kn 	rpk kn 
o(i) if111) 	f 	da 

a n = 	t 1 = f 	dn 	(31) 

where bij is the Kronecker's delta (15ii = 1 if i = j, 6ii := 0 
otherwise). The system mass for the ith-component and 
entropy are related to the integrated variables as follows: 

n(;) 

	

M(i) = p(i) dEl = Em(i) 	 (32) 
k=1 

n. 

S = f St; = Es, 	(33) 
1.1 

The system total energy E* is defined as the surn of the 
internal energy U and the kinetic coenergy T*: 

E* = UCE, m(1)  , rt_2_1) 
+ T.(73311 723L, v(1) 	

(34) 

where: 

	

E* = e: cif/ ; U = f at, d12 ; T* = 	clil (35) 
fl 

From Eq. (35), it can be easily shown that the system 
kinetic coenergy can be expressed as the following bilinear 
form: 

(25) 

(29) 

(30) 
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Fig. 1. Modulated itli-eomponent inertial transformer. 
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According to Eqs. (38) to (40), the nodal vectors a, 22 
and EL can be regarded as system volume averages of the 
corresponding local values, weighted by the interpolation 
functions. The time derivative of the system total energy 
can be written as: 

= 9,7%1+ E [(2.(1.4_ K(0) T 	+ E(IT VW] 

i=1 

(36) 

where M(i) is the inertia matrix corresponding to the 
ith-component: 

Al(i)  = {Mal = P") (P(147)Trt 	dfl 

We define the following potentials: 

a= (211-) 	= 519-1. [f cp„ di-21 
(i) (38) 

(i) ( au do] (39) 
mu#0, 	 • 

=A-1(0-' [.1 (0 (0 I 
\anz(i) mu 0,, v,k, _p__ • 	It (22._cift 

(40) 
ffr* p(i) - 	 = 	v(i) 	p") (i) 

OV(1)  (i) 17"a 

(41) 

where a, tt(0,  K(') and F22. are correspondingly nodal 
vectors of temperature and ith-component chemical poten-
tial per unit mass, kinetic coenergy per unit mass and linear 
momentum. It is important to notice that Eq. (41) defines, 
in the Bond-Graph terminology, a modulated multibond 
transformer relating the nodal vectors of velocity and lin-
ear momentum, as shown in Fig. 1; in this and in the 
following figures, it is drawn the causality resulting from 
the Bond-Graph causality assignment procedure [4]. Ac-
cording to the power conservation across the transformer, 
the generalized effort is given by: 

F(i) m(i) ¡Ai) 

According to Eq. (41), the nodal vector of ith-component 
linear momentum can be regarded as a system volume in-
tegal of the local values weighted by the velocity inter-
polation function. It can be easily shown that the system 
ith-component linear momentum can be obtained as: 

P(i) f a./ = Ev 
m=1 

n(4) 

(43) 

(44) 

It can also be shown that the voltune integrals of the left 
side terms of Eqs. (21) to (23) can be calculated as: 

(ii(i) 	(i)) 	ds-1 = 	 T op(i) 	
(45) 

(46) 

(47) 

The system constitutive relations are: 

= 	mo), ..., m(0)  + K(i) (v(0)  (48) 

2(1 E,(/ (7-n(i),  v(i)) = m(i) v(i) 	(49) 

fi = a (1, M(1) 	M(r)) 	 (50) 

The Maxwell relations corresponding to the system total 
energy arise from the equality of the mixed partial deriva-
tives of the system total energy expressed as a function of 
the independent variables a, and V('). These vari-
ables are regarded as the state variables for the BG-CFD 
methodology: 

The constitutive relations (Eqs. (48) to (50)) and the 
Maxwell relations (Eqs. (51) to (53)) define, in the Bond-
Graph terminology, a multibond /C-field associated to the 
system total energy, as shown in Fig. 2. This field has 
r inertial ports (the velocity ports) and r + 1 capacitive 
ports (the entropy port and the r MRSS ports). The gener- 

alized effort variables associated to these ports are ir(i), 
and (21+ K(i)), while the generalized flow variables are 

correspondingly el, ,¡ and 621. 
For the sake of convenience, we also define the following 

diagonal matrices, whose elements are the components of 
the corresponding vectors of nodal potentials: 

(42) 

f Pta) • $914: 61S-1 = (37) 
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Fig. 2. System /C field reprmonting micro storage. 
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= {4;:,;} = AL') sk. 
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(54) f p(i) V te(i) so(vi) c/SI 	(66) 
(55) "n 

(56) (67) k2pil f (vp(i) _ f (0) (p(i) dn 

The system state equations are obtained by systemati-
cally volume integrating the balance equations correspond-
ing to each port of the /C-field representing the total sys-
tem energy. The expressions for the system state equa.tions 
are: 

Fg) _ f di) vi) 	cis/ 	(69) 

Fg) f /3(0 di) ,p(vi) (70) 

(57) 

4) ,_ ta - 1 . 1 _ f w. t. 	[q(i) + (Ir(i) s. _ 0) p(i) 

(58) 
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E 	pU))V0)]. fidr} 
(59) i=1 
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The different terms in the system state equations (57) to 
(59) arise from integrations over the domain volume SZ or 
the domain boundary F. Their definitions are: { 	

r I Via, . E [q(i) + (r(i) sv _ 0) p(i) 

i=i 
0-1 
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Fig. 4. 0-Junction representing the balance equation at the entropy 
port. 

Although the complete Bond Graph is not shown here, 
it can be said that the state equations (57) and (59) are 
represented, in the Bond-Graph terminology, by multibond 
0-junctions, in which correspondingly the ith-component 
mass rate nodal vectors and the entropy rate nodal vector 
are added (see Figs. 3 and 4). Eq. (58) is represented, in 
the Bond-Graph terminology, by a multibond I-junction, 
in which the forces are added (see Fig. 5). A multibond 
0-junction is also used to represent Eqs. (74) and (75). 

Fig. 3. 	0-junction representing the balance equation tit the ith- 
component mass port.. 

The convective (upwind) nature of the fluid equations 
is handled through the definition of density and entropy 
weight functions, namely w(1,i) and w., which are introduced 
to satisfy the power interchanged by the system through 
the boundary conditions, as well as to share the importance 
of different power terms among neighboring nodes. In the 
discretization procedure, all the terms of the ith-component 
mass balance equation and entropy balance equation were 

multiplied correspondingly by w(i) and w.; although this 
procedure has the advantage that the steady-state balance 
equations are satisfied locally for the different nodes, other 
discretization strategies are possible and should be investi-
gated. This concept was successfully applied to convection- 

Fig. II. 	1-junction representing the balance equation at the ith- 
component velocity port. 

diffusion problems [7] [8]. It is very interesting to notice that 
no weight functions result for the velocity state equations. 

As in Ill, all kind of boundary conditions can be handled 
consistently through the terms representing surface lute- 

(„1,(r)(i) v(r)(i) 	6(r)‘ grals 	 and can be represented, in ''"(4 
the Bond-Graph terminology, either as generalized modu-
lated effort sources at the inertial ports or modulated flow 
sources at the capacitive ports, as shown in Figs. 3 to 5. 

The discretized representation of the power coupling ap-
pearing in the balance equations per unit volume is per-
formed through the coupling matrices, which relate gener-
alized variable,s whose product gives rise to power terms ap-
pearing in more than one port. Depending on the variables 
being related, these matrices define, in the Bond-Graph ter-
minology, power conserving two-port elements (modulated 
transformers or modulated gyrators), as shown in Figs. 6 
to 8. 

It can be shown that the relationships corresponding to 
Figs. 6 to 8 are: 

P' a 
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Fig. 6. Power coupling between the ith-component velocity and 
entropy ports. 
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where the rectangular matrices MV, (nv(i) rows, n. 

columns), Mrf)s (n. rows, n(pi) columns) and MiTt,  (n(vi) 

rows, 4,i) columns) are defined as: 

{m(01 	r, 
çvfmi = -6; / RvP(') 	— C(i) 

+T(i) ' V(P(Vind Wai 

e 	ACs 0+K") 

	MG Yi 	 
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u 

Fig. 7. Power coupling between the ith-coinponeut entropy and WW1 
ports. 
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Since the coupling matrices relate nodal vectors which 
may have different sizes, they are rectangular and may be 
not inversible, setting a restriction in the allowable causal-
ities. For instance, from Fig. 6 and Eqs. (81) and (82) 
it can be seen that the input variables to the ports of the 
modulated transformer must be a and V(i), while the out-
put variables result correspondingly the nodal forces and 
the nodal entropy rates for the ith-component. 

Finally, initial conditions are needed for the nodal vec-
tors of state variables. If initial conditions are given as 
continuous functions, these nodal vectors are determined 
in such a way that the ith-component total mass and mo-
mentum, as well as the total entropy, is kept constant after 
the cliscretization. 

VI. DIFFUSION APPROXIMATION 

A. Introduction and some definitions 
It is common in the literature [9] to describe the dynam-

ics of a multicomponent solution in terms of the average 
(center of mass) velocity of the mixture and the mass flux 
of each component relative to the average velocity. These 
relative mass fluxes are modeled using diffusion theory. 

The diffusive rnass fluxes consist of different contribu-
tions associated with the driving forces (mechanical or ther-
mal) existing in the system [10i. 

In ordinary diffusion, the mass flux depends in a com-
plicated way on the concentration gradients of the compo-
nents present; in most of the problems, this is the most 
important contribution. 

The pressure diffusion indicates that there may be a dif-
ferential net movement of a component in the mixture if 
there is a pressure gradient imposed to the system; this ef-
fect is important in centrifuge separation, in which tremen-
dous pressure gradients are established. 

The forced diffusion appears when the components are 
under different external forces, as in the case of ionic sys-
tems in presence of electric fields. 

Finally, the thermal diffusion describes the tendency for 
the components to separate under the influence of a tem-
perature gradient. Although this effect is small, it can be 
enhanced by producing very steep temperature gradients. 

Before presenting the diffusion approximation, some def-
initions of parameters associated to the multicomponent 
solutions are introduced. The density of the mixture p is 
defined as: 

m(i) .0 

m(i) T v(i) 

(81) 

(82) 

(8.3) 

(84) 
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Fig. 8. Power coupling between the WI-component velocity and illaRA 
ports. 
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Other quantities associated with the mixture can be de-
fined, in order to regard the motion of the solution as a 
single body. For the case of additive functions, the follow-
ing definitions are adopted: 

PG = EP(i)di) ; P4'=EP(i) 
i=i 

r = 	 (92) ; q = 	q(i) 
i= 1 	 1=1 

where G is the body force, tD is the heat power source 
per unit mass, T is the stress and g is the heat flux corre-
sponding to the mixture. 

The average (center of mass) velocity of the mixture V 
is defined as: 

v — E p(i) 
P i=i 
	 (93) 

The velocity of the ith-component can be expressed as: 

	

V(i) = V + v(i) 	 (94) 

where v(i) is the ith-component velocity deviation with 
respect to the mean velocity. The relative mass flux corre-
sponding to the ith-component J(i) is defmed as: 

j(0 )9(0 v(0 

From the definition, it is verified that:  

e2 
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(101) 

j(i) _D(i) V ° 
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In these equations, R is the gas constant, /1)(i) and v(i) 
are respectively the pa.rtial molal Gibbs free energy and 
volume, /1/(i) is the molecular weight and x(i) is the mole 
fraction for the ith-component. The mole fraction is calcu-
lated as: 

C (0 
X" — — 

c 
	 (103) 

where c(i) is the molar concentration for the ith- 
compone,nt and c is the total molar concentration, defined 
as: 

(104) (95) 	 (0 	P(i) c 	m(i) ; c = E co) 
i=i 

EJ( ' ) = o 
i= 1 

The D(q) are multicomponent diffusion coefficients and 
the D(i) are thermal diffusion coefficients, with the follow- (96) 
ing properties: 

In the diffusion approximation, it is assumed that the rel-
ative fluxes can be expressed as a function of the thermo-
dynamic state of the system, this is: 

( i) = ( i ) (s v p (1) 	p(r) 	 (97)  

V") = 0 	 (105) 

E op) mu) Doi) _ mo) 11/1(k) D(ik)) = 0 (106) 

(107) E Do) = o T 

B. Kinetic Coenergy per Unit Volume 

The main difference between the multivelocity and the 
diffusion model is the way the kinetic coenergy of the 
components is taken into account. Since the velocity devi- 

(98) ations are functions of the thermodynamic state, the set of 
state variables corresponding to the inertial ports reduces 
to the mean velocity. Taking into account Eqs. (94) to 
(96), the kinetic energy per unit volume can be written as: 

= (V , 8 t, p(1), 	p(r)) = p v2 4. It j(i)2 
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(99)
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(108) 

The following potentials are defined: 

• 

J(4) = 	+4,) + 	+4) 

The formulas for these flux contributions are [14 
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This functional dependence allows to deal with ordinary 
(concentration driven) diffusion, pressure diffusion, forced 
diffusion (with forces dependent on the thermodynamic 
state) and thermal diffusion; the corresponding mass films 
are J(ci.) , J (19 , J g) and J , resulting: 
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1 tc= v- 	 (112) 
ei) 	j(i)2 	JU) op) 

2 (02 2-• U 	• P 	P ) 	a P(s) 

From the definition, the potential e(i) is the contribution 
of the diffusion fluxes to the ith-component kinetic coen-
ergy per unit mass, while C can be regarded as a linkage 
between the mechanical an thermal ports. Notice that pu 
results the linear momentum of the mixture. The time 
derivative of the kinetic coenergy per unit volume can be 
written as: 

et; 	ay 	as„ 	r 
at C -Ft + E (it + 0)) aP(i) 

at = 	 - 
• 	at i=i 

c. Total Energy per Unit Volume 

The total energy per unit volume e* includes the internal 
energy and the kinetic coenergy: 

e* = ut, + 	 (115) 

The representation of the internal energy is the same as 
in Section II-A. The time derivative of the total energy per 
unit volume can be written as: 

av 	es 	r 
= Pv.-0-F + (0 + ()--a-tt z (,u(i) 	6(1 8P(i) at t=i 

(116) 

The potentials defined for the diffusion approximation 
also satisfy both constitutive and Maxwell relations. 

D. Diffusion Balance Equations 
Starting from the conservation equations for each compo-

nent, the mass, momentum and energy conservation equa-
tions corresponding to the mixture can be expressed as: 

8 p 
= 	(P 

e V = t. V. (p( V(i) V(i) 	V (p V V) at 
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It can be seen that the non-linear terms appearing in 
Eqs. (118) and (119) give raise to additional terms in the 
conservation equations, when compared to the ones corre-
sponding to a single component. As a consequence, the 
conservation equations for the mixture are not the same 
as the equations for a single continuum. This conclusion 
disagrees with many textbooks 15] [10j. 

Taking into account the conservation equations pre-
sented in Section III, the mixture conservations equations, 
the constitutive relations and the diffusion approximation, 
the balance equations result: 

ap(i) 
(11(i) K 6(i)) 	= -V. KAM 	(p(i) V + J(4))] 

+ (p(i) V + J(i)) .V + (p(i) V + J(i)) .V p.(i) 

+C(i) (ti(i) + K 0)) - 6(i) V. (p(i) V + J(i)) (120) 
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As in the multivelocity model, the balance equations 
for the diffusion model represent the power structure of 
the system. Concerning the constitutive and closure laws 
needed to model a multicomponent solution, it can be ob-
served that in the diffusion model it is not necessary to 
know the momentum interaction terms between compo-
nents. It is aliso interesting to notice the way ale diver-
gence and source terms split among the different ports. 
For instance, the power term corresponding to the stress 
state splits in two: a term considering the total stress and 
the mean velocity (influencing the velocity port) and power 
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where the total pressure results: 

P = (Ê p(0) RO 
i=3 

From Eqs. (125) and (127), it can be seen that the con-
tributions to the total temperature and pressure from the 
ith-component are weighted by the product of the density 
and the specific heat. 

p(k) elk)) Po 	00 

k.1 

(127) 

terms considering the stress state and the velocity devia-
Lions for the different components (influencing the entropy 
port). A similar behavior can be found for the power term 
corresponding to the body force and the kinetic coenergy. 

The discretization of the balance equations a,nd the re-
sulting Bond Graph for the diffusion model is not shown 
here, but it is performed in a similar way as in the multi-
velocity model. 

VII. MIXTURE OF IDEAL GASES 
As an application example, the potentials defined in 

Section II-A are calculated for a multicomponent solution 
(mbcture) of ideal gases. The entropic representation of the 
internal energy for an ideal gas is [61: 

where R is a universal constant, po and 00 are cor-
respondingly the density and temperature at a reference 
state, tcy(i( and sy(it.; are the internal energy per unit vol-
ume and entropy per unit volume for the ith-component 
at the reference state and cli) is the ith-component specific 
heat at constant volume (function of temperature only). 
Eqs. (123) and (124) are a representation of Eq. (5) in 
parametric form, being the parameter the temperature O. 
From this representation, the potentials result: 

ir(i) 	0 	p(i) cti) 

(t PU) eV)) .1=1 

VIII. CONCLUSIONS 
In this paper, the BG-CFD methodology was extended 

to Multicomponent Solutions. A multivelocity and a diffu-
sion model were presented. Based on the total energy per 
unit volume, the BG-CFD methodology allowed to define a 
set of independent variables, potentials and constitutive re-
lations needed to de,scribe a multicomponent system. The 
state equations were obtained by systematically integrat-
ing a set of power balance equations. The resulting Bond 
Graph represents the power structure of the system, show-
ing energy storage, power interchange through the bound-
ary conditions, power source:3 and power couplings between 
the different ports. The author believes that the BG-CFD 
methodology is the foundation of a bridge between Bond 
Graphs and Computational Fluid Dynamics, two fields that 
have been following almost separate paths until now. It is 
hoped that the fmdings of this paper encourage other re-
searchers to use this formalism in other problems. 
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