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ABSTRACT 
 
The purpose of this paper is to develop a system to monitor the nuclear power of a reactor using Artificial Neural 
Networks. The database used in this work was developed using a theoretical model of IEA-R1 Research Reactor. 
The IEA-R1 is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium 
as reflector. To monitor the nuclear power the following variables were chosen: T3 � temperature above the  reactor 
core, T4 � outlet core temperature, FE01 � primary loop flow rate and the nuclear power. The inputs are T3, T4 and 
FE01 and the output is the nuclear power. It was used several networks using the backpropagation algorithm. The 
conclusion is that the multiplayer perceptrons networks (MLPs), training by the backpropagation algorithm, can be 
used to solve this problem. The results obtained with the MLPs networks are satisfactory and the mean square error 
was in the order of 10-4 during the network training and in the order of 10-2 during the network testing. We intend to 
monitor the other variables of this model using the same methodology, and after this we will use the real database 
from the system to compare the results obtained with the model. The monitoring of the reactor variables is part of 
the development of a fault detection and isolation system which is underway and which is, by its turn, part of a 
comprehensive ageing management program. 
 
 

1. INTRODUCTION 
 
The increasing demand on quality, reliability and safety in production processes has encouraged 
the development of studies and methods on fault detection and identification in nuclear and 
industrial plants. The term �fault� can be defined as an unexpected change of the system 
functionality that can be associated to a malfunction in a physical component or in a system 
sensor or actuator. 
 
A fault diagnosis system should perform two tasks: the first refers to the fault detection and the 
second to the fault isolation. The purpose of the first is to determine that a fault has occurred in 
the system, so it is necessary to collect and process all the available system information to detect 
any departure from nominal behaviour of the process. The second task is devoted to locate the 
fault source. In the case of a nuclear reactor, it is necessary to develop reliability and fault-
tolerant control systems to guarantee the safety and availability of the reactor [1]. 
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The solution of many problems in engineering through Artificial Neural Networks is sufficiently 
interesting, as much for the form as these problems are represented internally by the network, as 
also to the generated results. In Artificial Neural Networks, the usual procedure in the solution of 
problems passes initially by a learning phase, where a set of examples is presented to the 
network, which automatically extracts from them the necessary characteristics to represent the 
supplied information. These characteristics are used later to generate answers to the problems 
with similar characteristics to the examples. The possibility to learn through examples and to 
generalize the learned information is the main attractive in the problems' solution through 
Artificial Neural Networks.  The generalization, which is associated with the abitity of the 
network to learn through a reduced set of examples and later to give coherent answers to data not 
known, is a demonstration that the ability of Artificial Neural Networks goes very beyond of 
simply map relations of inputs and outputs.  Neural Networks are capable to extract information 
not presented in explicit form by the use of examples. The purpose of this work is to develop a 
system to monitor the nuclear power of a reactor using Artificial Neural Networks.  A theoretical 
model of the IEA-R1 research reactor, developed in the platform Matlab, generated the database 
used in this work. 
 
 

2. NEURAL NETWORKS 
 
A neural network is a massively parallel distributed processor made up of simple processing 
units, which has a natural propensity for storing experiential knowledge and making it available 
for use. The knowledge is acquired by the network from its environment through a learning 
process which is basically responsible to adapt the synaptic weights to the stimulus received by 
the enviroment [2]. The fundamental element of a neural network is a neuron, which has multiple 
inputs and a single output, as we can see in Fig. 1. It is possible to identify three basic elements 
in a neuron: a set of synapses, where a signal xj at the input of synapse j connected to the neuron 
k is multiplied by the synaptic weight wkj, an adder for summing the input signals, weighted by 
the respective synapses of the neuron; and an activation function for limiting the amplitude of the 
output of a neuron. The neuron also includes an externally applied bias, denoted by bk, which has 
the effect of increasing or lowering the net input of the activation function, depending on 
whether it is positive or negative, respectively. 
 
 

 
 

Figure 1. Neuron Model 



In this work, it was used the multilayer neural network. In this kind of architecture, all neural 
signals propagate in the forward direction through each network layer from an input layer to an 
output layer. Every neuron in a layer receives its inputs from the neurons in its adjacent lower 
layer and sends its output to the neurons in its adjacent upper layer. The training is performed 
using an error backpropagation scheme, which involves a set of connecting weights. The 
connecting weights are modified on the basis of a gradient descent method to minimize the 
difference between the desired output values and the output signals produced by the network, as 
show the equation (1). 
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E(av) = mean squared error   N = number of patterns (examples) 
C = neurons in the output layer n = number of interations 
j = neuron    dj(n) = actual output   
yj(n) = target output 

 
 

3. IEA-R1 REACTOR 
 
The IEA-R1 is a pool type reactor of 5 MW, cooled and moderated by light water that uses 
graphite and beryllium as reflector. In this work, it was used a database from a theoretical model 
of IEA-R1 reactor by the developed system; later it will be use an actual database from the IEA-
R1 DAS (Data Acquisition System). The purpose of DAS is to monitor and register the main 
operational parameters of the reactor. Processing modules and signals conditioning composes the 
DAS, and a man-machine interface installed in a microcomputer.  The Data Acquisition System 
(DAS) monitors 58 operational variables, including temperature, flow rate, level, pressure, 
nuclear radiation, nuclear power, safety and control rod position. The DAS allows storing the 
temporal history of all the process variables monitored, thus supplying the data that will be used 
in the Monitoring and Fault Diagnosis system [3,4]. 
 
 

4. MONITORING THE NUCLEAR POWER REACTOR 
 
A system to monitor the nuclear power reactor was developed using Artificial Neural Networks. 
The variables chosen were: T3 � coolant temperature above the reactor core, T4 �outlet core 
temperature, FE01 � primary loop flow rate and the nuclear power, where the inputs are T3, T4 
and FE01 and the output is the nuclear power. A theoretical model of the IEA-R1 Research 
Reactor was used, which was developed using the MATLAB toolbox GUIDE, generating the 
database used in this work. The system process equations are based in the IEA-R1 mass and 
energy inventory balance and the physical and operational aspects such as length, pipe diameter, 
flow rate, temperature and pressure drop, are taken into consideration. Using the model, data 
were generated for different operational conditions, both under normal and faulty conditions with 
different noise levels added to the input variables. Data generated by the theoretical model were 
compared with real reactor data showing a good agreement. 



4.1. NETWORK TRAINING DATA   
 
The database was generated varying the variable nuclear power Pot from 0 through 100 %, in 5% 
steps, where 20 patterns were taken for every condition in the  power range considered, totalizing 
420 patterns. A 0,4% noise was added to the variable T3 and a 1% noise was added in the 
variable FE01, as described earlier. To prevent overfitting, the method of Early Stopping was 
used, which suggests a database division in three subsets:  training (50%), validation (25%) and 
testing (25%).  The training set is used to calculate the gradient and to bring up to date the 
weights and bias of the network; the validation set is used to monitor the error during the training 
process, and the testing set is used to compare different models. It was used a Multilayer 
Perceptron Network with three layers: one input layer, one hidden layer and one output layer, 
because this kind of network has shown the best results. The input layer is composed by three 
neurons and its activation function is linear; in the hidden layer, 10 cases was studied and tested 
with different numbers of neurons to find the ideal numbers of neurons. The activation function 
is the hyperbolic tangent; the output layer is composed by a neuron that represents the output of 
the network.  

 
 

4.2. NETWORK TRAINING 
 
The networks were trained varying the number of neurons in the hidden layer from 1 up to 10.  
Two limitors to the learning process had been established:  the maximum number of epochs 
(1000) and a tolerance for the maximum error (0,0001). These limitors have been established to 
prevent that the energy error function to have points of local minimums, and in this way not 
obtaining an adequate solution.  All the trained networks presented a good performance, as this 
can be seen in Fig. 2, which presents the networks mean squared errors. 
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Figure 2. Mean squared error versus epochs for all trained networks 
 



Table 1 shows the values of the mean squared errors for the trained networks. It can be observed 
that the values obtained to all the networks are of the same order of magnitude. 
 
 
 

Table 1. The MSE getting during the networks training 
 

Nº of Neurons Epochs MSE 
1 6 7.7653E-05 
2 19 7.4228E-05 
3 16 9.8454E-05 
4 19 6.0828E-05 
5 6 5.1414E-05 
6 21 6.6942E-05 
7 7 9.9057E-05 
8 6 2.5089E-05 
9 7 6.1705E-05 
10 25 9.8264E-05 

 
 
 

4.3. NETWORK TESTING 
 

After the training, it was initiated a network testing.  All the trained networks present satisfactory 
results, where the power value estimated by the networks trained are similar to the target power 
(t). Figure 3 shows in detail the estimated powers by the networks, in the interval of 0 to 5%. 
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Figure 3. Estimated Power (%) by the networks trained in the interval of 0 to 5% 
 



The mean squared errors obtained during the testing network were shown in Table 2. As we can 
see, the networks that showed  the smallest MSE were the networks with 4 (MSE - 0.07908), 5 
(MSE - 0.06933), 8 (MSE - 0.06772) and 9 (MSE - 0.07684) neurons in the hidden layer. To 
solve this problem, we decided to choose the simplest model with the smallest MSE and number 
of epochs, in this case the network with 5 neurons was chosen because of its simplicity. 
 
 
 

Table2. MSE obtained during the networks testing  
 

Number of Neurons Epochs MSE 
1 6 0.09312 
2 19 0.95931 
3 16 0.12111 
4 19 0.07908 
5 6 0.06933 
6 21 0.10626 
7 7 0.13284 
8 6 0.06772 
9 7 0.07684 
10 25 0.14716 

 
 

5. CONCLUSION AND FUTURE WORK 
 
It was concluded that to the Nuclear Power monitoring using data from the theoretical IEA-R1 
reactor model, a Multilayer Perceptron Network could be trained by the backpropagation 
algorithm.   The network configuration chosen to solve this problem was the network with 5 
neurons in the hidden layer because of its simplicity and the MSE, which was 0.06933.  In the 
future, it is intended to use operational data from the reactor to establish a comparative study 
with the results obtained with the theoretical model.  After this comparative study, it is intended 
to expand the system, and in this way, monitor other process variables and simulate some cases 
of faults in the sensors. 
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