ESTUDO DO COMPORTAMENTO EM OXIDAÇÃO TÉRMICA DA LIGA Ti-6Al-4V

B. P. Severino¹, A. A. Couto^{1,2}, D. A. P. Reis³, C. Moura Neto⁴

¹Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP, São Paulo (SP), Brasil

²Universidade Presbiteriana Mackenzie, São Paulo (SP), Brasil

³Universidade Federal de São Paulo, São José dos Campos (SP), Brasil

⁴Intituto Tecnológico da Aeronáutica, ITA, São José dos Campos (SP), Brasil

E-mail: bia.uuqq@gmail.com

Resumo. A liga Ti-6Al-4V é um material canditado à utilização em aplicações como biomaterial. A formação de uma camada de óxido estável e aderente pode melhorar a resistência mecânica e á corrosão deste material. O presente trabalho investigou a oxidação térmica da liga de titânio Ti-6Al-4V, utilizada para a fabricação de biomateriais. Avaliou-se a formação, aderência e protetividade da camada de óxido na liga Ti-6Al-4V com microestrutura constituida pelas fases α+β. Amostras da liga Ti-6Al-4V foram oxidadas à temperatura de 800°C por tempos de 0,5; 1; 2; 5; 10; 20 e 40 horas. Para a análise da camada oxidada foram feitos cálculos baseados na Relação de Pilling-Bedworth (RPB), complementados de análises de microscópica óptica (MO), microscópica eletrônica de varredura (MEV) e difração de raios-X. A partir dos resultados provenientes deste estudo, observou-se coerência entre os dados experimentais e os cálculos teóricos baseados na relação de Pilling-Bedworth. Neste trabalho também foi possível identificar, por meio de curvas de espessura/densidade da camada oxidada em função do tempo de oxidação em temperatura elevada (800°C), a lei de crescimento parabólica para essa camada.

Palavras-chave: Oxidação térmica, Ti-6Al-4V, Temperaturas elevadas, Biomateriais.

1. **INTRODUÇÃO**

Dentre os materiais utilizados como implantes, o titânio e suas ligas tem grande destaque, principalmente devido a algumas de suas propriedades como baixo módulo de elasticidade, alta resistência à corrosão, boa conformabilidade, usinabilidade e biocompatibilidade. A utilização mais frequente de ligas de titânio tem explicação baseada em seu módulo de elasticidade possuir valor próximo ao de tecidos ósseos. Outra grande contribuição para sua biocompatibilidade é a alta resistência à corrosão conferida por seu óxido. A oxidação de um metal em estado sólido depende da difusão do oxigênio, sendo mais efetiva a altas temperaturas, uma vez que a análise estatística de Boltzmann aplicada ao movimento atômico permite estabelecer a intensidade de difusão atômica em materiais segundo o coeficiente de difusão (D):

$$D = D_0 e^{-Q/RT}$$
 (1)

Na Eq 1 D_0 é a contante do sistema soluto/solvente, Q é a energia de ativação, R é a constante molar dos gases e T é a temperatura absoluta.

Quando exposto ao ar, o titânio e suas ligas formam expontaneamente uma película contínua e aderente cuja interação com os fluidos biológicos a tornam muito biocompatível. [CHEN 2005]. Tanto a espessura quanto a composição química da camada de óxidos do titânio exibem importante papel na adsorção de proteínas provenientes dos fluidos biológicos. Porém, a camada de óxido que se forma espontaneamente sobre a superfície de titânio não é a ideal porque é heterogênea e pouco espessa, dificultando dessa forma a adesão química do implante ao osso [FERREIRA 2004].

A oxidação metálica depende de diversos fatores: da energia dos diferentes compostos que o metal pode formar com o meio numa dada temperatura; do volume específico dos compostos formados que determinam a natureza do depositado, podendo ser poroso ou denso, afetando o mecanismo do processo; da velocidade de difusão na fase metálica e nas camadas dos produtos. Nos processos de absorção de gases por corpos metálicos, nos quais a difusão é a etapa controladora da velocidade da reação, procura-se então pelo perfil de concentração dos átomos de gás dissolvidos no metal e por sua dependência com o tempo de reação. Essas grandezas podem ser encontradas, na prática, resolvendo-se as equações de Fick para a difusão. A primeira lei de Fick trata a relação entre o gradiente de concentração, c, e o fluxo, J, de átomos transportados [MIRANDA, 1994]. No caso de uma dimensão:

$$J=-D\frac{\partial c}{\partial x} \tag{2}$$

onde D é o coeficiente de difusão. O sinal negativo indica que o fluxo de átomos é em direção contrária à do sentido positivo do gradiente de concentração.

A segunda lei de Fick mostra a variação temporal da concentração com a variação dessa concentração na direção x e pode ser escrita como:

$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}$$
 (3)

Para a geometria cilíndrica, na qual a concentração só dependa da direção radial, a segunda lei de Fick estabelece:

$$\frac{\partial c(\mathbf{r},t)}{\partial t} = \mathbf{D} \left[\frac{\partial^2 c(\mathbf{r},t)}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial c(\mathbf{r},t)}{\partial \mathbf{r}} \right] \tag{4}$$

Dentre os fatores citados, a densidade do óxido formado é de extrema importância e esse óxido pode ser protetor ou não. Quanto mais protetora a camada de óxido, maior a dificuldade de difusão. Assim, é possível relacionar a protetividade/densidade da camada de óxido com seu tipo de tipo de crescimento. A densidade da camada de óxido pode ser relacionada com a razão do volume de óxido formado pelo volume de metal consumido, que enuncia a questão empírica conhecida como Relação de Pilling-Bedworth (RPB).

$$RPB = \frac{V(\text{\'oxido formado})}{V(\text{metal consumido})}$$
 (5)

Se para um determinado óxido a RPB é menor que um, forma-se um volume de óxido menor que o volume de metal oxidado e o óxido tende a ser poroso e não protetor. Para valores próximos a um, o volume de óxido formado é aproximadamente o volume de metal consumido e a camada de óxido tende a ser protetora. Já para valores maiores que a unidade,

o volume de óxido formado é maior que o volume de metal consumido, ocasionando tensões na superfície com possíveis lascamentos da camada de óxido, expondo novamente o metal base, sendo assim não protetora.

Tendo em vista a impotância desse material com elevado número de investigações para aplicações como biomateriais em implantes cirúrgicos e estabelecida a relação da biocompatibilidade do mesmo com a presença da camada de óxido para a liga Ti-6Al-4V, o objetivo do presente trabalho foi investigar as características das camadas de óxidos formadas durante o processo de oxidação térmica da liga Ti-6Al-4V a 800°C, comparar essas características com a relação de Pilling-Bedworth para essa liga e observar como esta relação varia com tempo de oxidação para uma mesma temperatura. Também foi possível avaliar o tipo de crescimento da camada de difusão de óxidos em função do tempo de oxidação.

2. **MATERIAIS E MÉTODOS**

O material utilizado neste trabalho foi a liga Ti-6Al-4V na forma de barras cilíndricas de 6 mm de diâmetro, adquiridas junto a empresa Ti Brasil. A condição como recebida encontra-se conformada mecanicamente, recozida a 800°C por 2 horas e resfriada ao ar. A Tabela 1 mostra a composição química da liga. A oxidação térmica foi realizada em amostras da barra da liga Ti-6Al-4V cortadas em pedaços de 5 mm de comprimento e nos corpos-deprova de tração. A mesma foi realizada em um forno circular aberto com três zonas de controle de temperatura, a 800 °C com resfriamento ao ar. Os tempos de oxidação foram de 0,5 h, 1 h, 2 h, 5 h, 10 h, 20 h e 40 h.

Tabela 1. Composição química da liga Ti-6Al-4V.

	Elementos	Al	V	Fe	О	N	H	C	Outros	Ti
-	Teor (%	5,5 a	3,5 a	Max	Max	Max	Max	Max	Max.	Balan
	em peso)	6,75	4,5	0,4	0,2	0,05	0,125	0,1	0,4	ço

Para realização dos cálculos da Relação de Pilling-Bedworth, os diâmetros das amostras foram medidos antes e após a oxidação térmica. Posteriormente, as camadas de óxido não aderente foram retiradas das amostras utilizando-se ar comprimido e novamente os diâmetros foram medidos, como ilustrado no esquema da Fig 1.

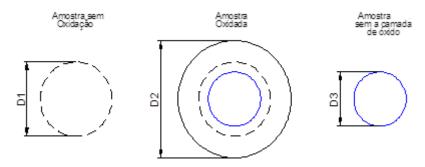


Figura 1. Esquema de medidas dos diâmetros das amostras antes e depois da oxidação térmica.

O cálculo do volume em função do diâmetro foi feito utilizando a Eq 6, que representa o volume calculado para o formato cilíndrico das amostras. As Eqs 7 e 8 representam respectivamente o volume de óxido formado durante o processo de oxidação térmica e o volume de liga metálica consumida durante o mesmo.

$$V = \pi r^2 \cdot h = \pi \frac{D^2}{4} \cdot h$$
 (6)

$$V_{\text{\'oxido formado}} = \pi \frac{\left(D_2 - D_3\right)^2}{4}.h \tag{7}$$

$$V_{\text{metal consumido}} = \pi \frac{(D1 - D3)^2}{4}.h \tag{8}$$

A Relação de Pilling-Bedworth é justamente a razão entre o volume de óxido formado e o volume de metal consumido, levando em consideração apenas mudanças na direção radial, dada pela Eq 9.

$$RPB = \frac{V(\text{\'oxido formado})}{V(\text{metal consumido})} = \frac{(D_2 - D_3)^2}{(D_1 - D_3)^2}$$

$$(9)$$

Cada amostra teve seu diâmetro medido 15 vezes para obtenção de um resultado estatisticamente confiável. Os valores obtidos para o fator RPB em cada tempo foram tabelados e comparados com o tipo de aderência da camada de óxido de cada amostra.

Para encontrar a função crescimento das camadas de óxido não aderente, aderente (difundida) e total em relação ao tempo de oxidação foram plotados gráficos de espessura da camada versus o tempo de oxidação para cada um dos casos. Também foi investigada a variação da razão de volume entre óxido formado e metal consumido com o tempo de oxidação por meio do gráfico de RPB versus tempo de oxidação. Os gráficos foram gerados utilizando-se o programa Microcal Origin e tentou-se investigar a função cuja curva possuia melhor ajuste para cada caso.

Foram realizadas análises de difração de raios-X das camadas de óxido não aderente e aderente (difundida) para as amostras com tempo de oxidação de 1 h e 20 h. Para está análise foi utilizado o difratômetro de raios-X de radiação Cu K α da marca Rigaku, modelo Multiflex. Os corpos-de-prova foram ensaiados em tração a 600°C com taxa de deformação nominal média de 1,0 x 10^{-3} s⁻¹. Para os ensaios de tração a 600°C foi utilizada uma máquina universal de ensaios Instron 4400R acoplada a um formo vertical tubular. O controle das temperaturas da oxidação térmica e dos ensaios de tração foi feito utilizando-se dois termopares do tipo Cromel-Alumel nas amostras.

A caracterização microestrutural foi realizada por microscopia óptica (MO) e sua preparação seguiu os padrões usuais de metalografia: embutimento a quente, seguido de lixamento com lixas à base de SiC, na sequência de 120, 240, 320, 400, 600 e 1200 mesh. O polimento foi feito com uma solução de 260 mL de silica coloidal (OP-S), 40 mL H₂O₂ (30%), 1 mL HNO₃ e 0,5 mL HF. As análises das superfícies de fratura dos corpos-de-prova ensaiados em tração a 600°C foram feitas por meio de um microscópio eletrônico de varredura Hitashi TM 3000.

3. **RESULTADOS**

As Figs 2(a-d) mostram imagens das camadas de óxido não aderente dos corpos-deprova e das amostras submetidas à oxidação térmica para os tempos de 1 h, 2 h, 5 h e 20 h, respectivamente. Na Fig 3 é mostrada a micrografia óptica da liga Ti-6Al-4V sem tratamento de oxidação, na qual observa-se a presença das duas fases α e β (bimodal). Nas Figs 4(a-g) são apresentadas as micrografias observadas por microscopia óptica das amostras submetidas a oxidação térmica a 800°C em tempos de 0,5, 1, 2, 5, 10, 20 e 40 h, respectivamente. Como

pode ser observado nas micrografias, existem duas camadas formadas em decorrência da oxidação térmica. Uma camada observada em tom de cinza, mais externa, como por exemplo, nas Figs 4(b) e 4(c), que se destaca do substrato (camada não aderente) e uma segunda camada aderente em tom mais claro, que corresponde à camada de óxidos difundidos e encontra-se em toda a extensão das amostras de maneira regular. A não presença da camada não aderente em algumas micrografias deve-se ao destacamento completo da mesma em relação ao seu substrato.

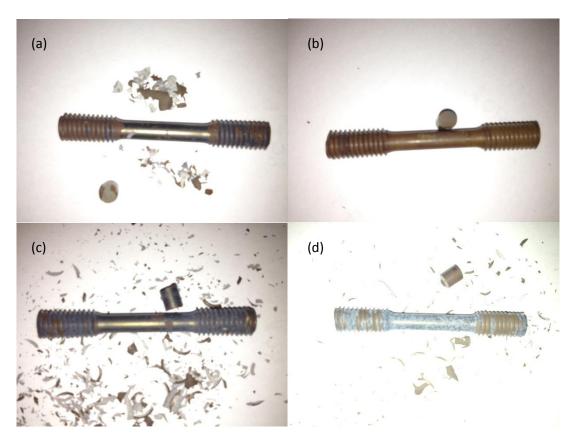


Figura 2. Imagens das camadas destacadas do óxido não aderente das amostras oxidadas a 800° C por (a) 2 h; (b) 5 h; (c) 10 h e (d) 40 h.

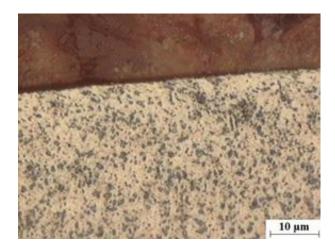


Figura 3. Micrografia da liga Ti-6Al-4V como recebida (sem oxidação térmica).

Figura 4. Micrografias da liga Ti-6Al-4V oxidadas termicamente a 800° C por (a) 0,5 h, (b) 1 h, (c) 2 h, (d) 5 h, (e) 10 h, (f) 20 h e (g) 40 h.

As Tabelas 2, 3 e 4 mostram respectivamente a espessura da camada oxidada não aderente, aderente e total nos diversos tempos de oxidação.

Tabela 2. Espessura média aproximada da camada não aderente em função do tempo de oxidação térmica a 800°C.

Tempo Oxidação Térmica (h)	0,5	1	2	5	10	20	40
Espessura da Camada (µm)	13	20	24	55	72	97	110
Desvio padrão (µm)	10	15	16	7	17	16	15

Tabela 3. Espessura média aproximada da camada aderente em função do tempo de oxidação térmica a 800°C.

Tempo Oxidação Térmica (h)	0,5	1	2	5	10	20	40
Espessura da Camada (µm)	4,18	6,62	15,43	22,23	43,40	51,43	80,73
Desvio padrão (μm)	0,22	0,26	0,12	2,15	1,20	1,62	3,26

Tabela 4. Espessura média aproximada da camada total de óxido em função do tempo de oxidação térmica a 800°C.

Tempo Oxidação Térmica (h)	0,5	1	2	5	10	20	40
Espessura da Camada (µm)	17	27	42	77	102	149	190
Desvio padrão (μm)	10	15	16	9	18	17	18

Os gráficos das Figs 5, 6 e 7 mostram as curvas obtidas a partir das Tabelas 2, 3 e 4, respectivamente.

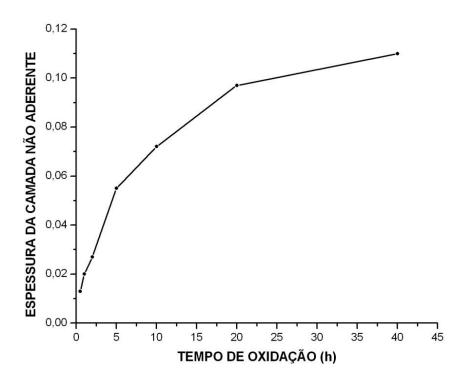


Figura 5. Gráfico da espessura média aproximada da camada não aderente em função do tempo de oxidação térmica a 800°C.

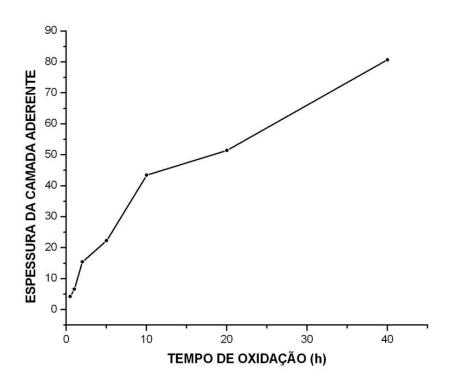


Figura 6. Gráfico da espessura média aproximada da camada aderente em função do tempo de oxidação térmica a 800° C.

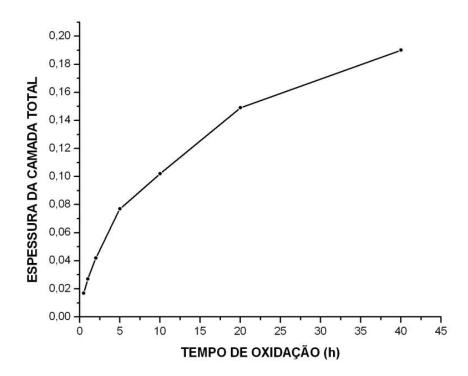


Figura 7. Gráfico da espessura média aproximada da camada total de óxido em função do tempo de oxidação térmica a 800° C.

Os valores das médias dos diâmetros e do fator RPB encontram-se listados na Tabela 5 para cada tempo de oxidação.

Tempo de	D ₁ (cm)	D ₂ (cm)	D ₃ (cm)	RPB
Oxidação (h)				
0,5	$4,131 \pm 0,003$	$4,129 \pm 0,006$	$4,116 \pm 0,004$	0,075
1	$4,103 \pm 0,005$	$4,105 \pm 0,010$	$4,085 \pm 0,05$	1.234
2	$4,113 \pm 0,005$	$4,120 \pm 0,010$	$4,065 \pm 0,06$	1,313
5	$4,131 \pm 0,005$	$4,137 \pm 0,004$	$4,110 \pm 0,003$	1,653
10	$4,118 \pm 0,004$	$4,156 \pm 0,008$	$4,084 \pm 0,09$	2,000
20	$4,072 \pm 0,003$	$4,105 \pm 0,009$	$4,008 \pm 0,007$	2,297
40	$4,111 \pm 0,06$	$4,150 \pm 0,007$	$4,040 \pm 0,08$	2,400

Tabela 5. Diâmetros e RPB das amostras oxidadas a 800°C.

O gráfico da Fig 8 mostra a relação de volume entre óxido formado e metal consumido (RPB) no processo de oxidação em função do tempo para a camada não aderente.

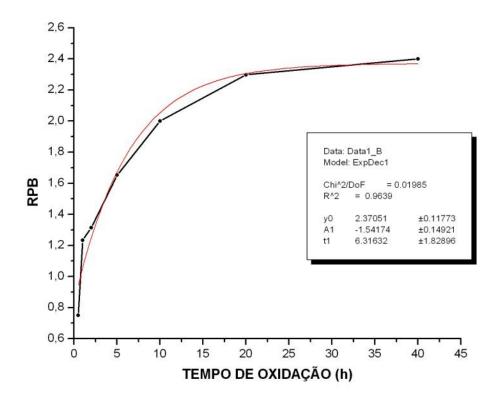


Figura 8. Gráfico de RPB versus tempo de oxidação térmica a 800°C.

O difratograma de raios-X obtido pela análise das camadas destacadas (não aderentes) evidenciou a presença de TiO₂ com pequena quantidade de Al₂O₃. O difratogramas das Figs 9 e 10 referem-se respectivamente a análise por difração de raios-X da camada aderente das amostras oxidadas a 1 h e a 20 h. Notam-se nestes difratogramas somente as raias do TiO₂ e do Tiα do substrato com estrutura cristalina hexagonal compacta.

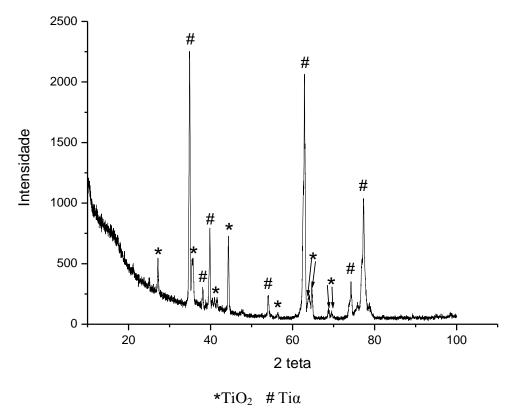


Figura 9. Difratograma de raios-X da camada de óxido aderente. Amostra oxidada por 1 h a 800°C.

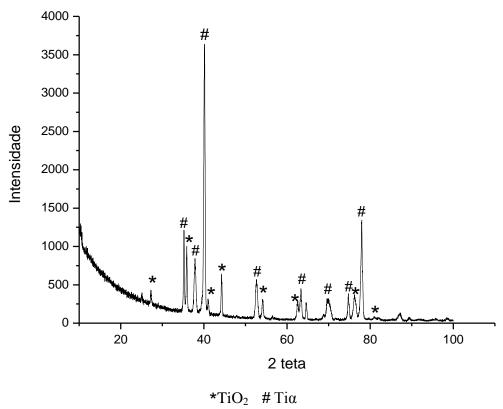


Figura 10. Difratograma de raios-X da camada de óxido aderente. Amostra oxidada por 20 h a 800°C.

Na Tabela 6 são mostrados alguns dados obtidos do ensaio de tração a 600°C para os diversos tempos de oxidação térmica a 800°C.

Tabela 6. Valores de limite de escoamento, limite de resistência, alongamento total e redução em área obtidos nos ensaios de tração a 600°C em função do tempo de oxidação térmica a 800°C.

Tempo de Oxidação	σ_e [MPa]	σ _{máx.} [MPa]	E _{total} [%]	Redução em Área [mm²]
0	378	420,34	59,31	98
0,5	360	408,18	39,25	82
1	356	407,36	73,13	90
2	371	408,16	65,59	80
5	356	380,75	33,48	69
10	365	411,18	57,96	62
20	388	426,08	44,15	60
40	359	408,89	37,40	53

Nas Figs 11 e 12 são mostradas as regiões periféricas da superfície de fratura das amostras oxidadas a 0,5 h e a 20 h. Optou-se por apresentar estas superfícies de fratura porque são representativas dos corpos-de-prova submetidos a pouco tempo de oxidação térmica (0,5 h) e muito tempo (20 h).

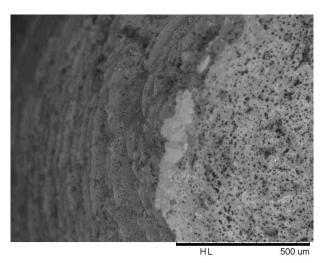


Figura 11. Região periférica da superfície de fratura observada por microscopia eletrônica de varredura do corpo-de-prova ensaiado em tração a 600°C após oxidação térmica a 800°C por 0,5 h.

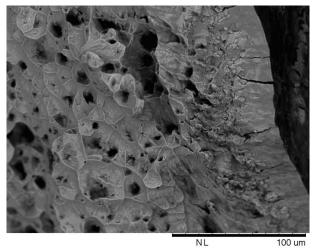


Figura 12. Região periférica da superfície de fratura observada por microscopia eletrônica de varredura do corpo-de-prova ensaiado em tração a 600°C após oxidação térmica a 800°C por 20 h.

4. **DISCUSSÃO**

Na Fig 3 é apresentada a micrografia típica da amostra de Ti-6Al-4V na condição como recebida, obtida por microscopia óptica. Observa-se a presença de duas fases. Estas fases correspondem a fase α (hexagonal compacta) e β (cúbica de corpo centrado), sendo a microestrutura do tipo $\alpha+\beta$, com β distribuída homogeneamente na matriz de α . Segundo Megagotto (1999), o coeficiente de difusão do oxigênio em titânio alfa (α) é cerca de três vezes maior que em titânio beta (β), devido a facilidade que um átomo intersticial tem de difundir-se em estrutura hexagonal compacta, em relação à estrutura cúbica de corpo centrado.

As amostras da liga Ti-6Al-4V oxidadas termicamente a 800°C apresentaram formação de dois tipos de camada de óxidos, como pode ser observado nas Figs 4(a) a 4(g). A mais externa de coloração cinza é a camada frágil e outra adjacente a esta, mais clara e contínua em toda extensão da periferia das amostras, representa a camada de óxidos difundidos. O diagrama de fases binário do sistema Ti-O (ASM INTERNMATIONAL, 1991), mostra que a anergia de Gibbs é muito negativa para esse sistema, indicando realmente a formação de óxidos, que são termodinamicamente muito estáveis.

A camada mais extena de coloração cinza tem sua análise por difração de raio-X representada na Fig 9, cujo espectro revela a presença principalmente de óxido de titânio (TiO₂) com presença em pouca quantidade de óxido de alumínio (Al₂O₃). Sitting et al (1990) cita para a liga Ti-6Al-4V a formação predominante de TiO₂, com aparecimento também de óxidos de alumínio e de vanádio. Ambos em concentração relativa máxima de (Al/Ti~0,17) e (V/Ti~0,07) dentro do óxido. De acordo com West (1986), a energia de formação do óxido de TiO₂ é muito baixa, cerca de -915 kJ/mol, sendo portanto exotérmica e o calor liberado, altíssimo. Lautenschlager (1993) cita que TiO₂ é bastante impenetrável pelo oxigênio a temperatura ambiente e sua camada é de apenas 5 a 20 átomos para essa temperatura. Nessas condições a camada está fortemente aderida ao substrato. Porém, condições severas de temperatura alteram as tensões desenvolvidas durante o processo e, consequentemente, influenciam na protetividade da camada de óxido. A adesão decresce com o aumento da temperatura e com o aumento da espessura da camada (Douglass, 1971).

Analizando-se os valores da Tabela 6 referentes ao fator de Pilling Bedworth (RPB) obtido experimentalmente para a liga Ti-6Al-4V oxidada termicamente a 800°C, em conjunto com os valores da Tabela 2 (espessura média aproximada da camada não aderente em função do tempo de oxidação) e as imagens das Figs 2(a-d), é possivel perceber que realmente a adesão do TiO₂ decresce a medida que a camada de óxido fica mais espessa, assim como sua protetividade. Isso pode ser explicado segundo o fator de Pilling Bedworth o qual assumiu experimentalmente valores crescentes e maiores que 1 para tempos maiores de oxidação. Como a RPB diz que para valores maiores que a unidade, o volume de óxido formado é maior que o volume de metal consumido, ocasionando tensões na superfície, com possíveis lascamentos da camada de óxido. Para tempos maiores de oxidação, a aderência da camada de TiO₂ decresce.

Como para tempos maiores de oxidação há aumento na espessura da camada, (Tabela 2 e gráfico da Fig 5), conclui-se que a adesão da camada de óxido decresce com o aumento da espessura da mesma. Também a coerência da RPB fica estabelecida para a liga Ti-6Al-4V oxidada a 800°C ao compararmos visualmente as imagens das Figs 2(a), 2(b) e 2(c) com os valores da Tabela 6. Para RPB menores ou próximos a 1, não há lascamento da camada de óxido mais externa. Para RPB maiores que 1, como é o caso das amostras oxidadas em tempos maiores que 2 horas, é possível observar o lascamento da camada e ainda verificar que a camada destacada é mais interiça para tempos maiores de oxidação. A camada mais clara

aumenta à medida que se aumenta o tempo de oxidação. Nota-se que a espessura desta camada varia de acordo com a Segunda Lei de Fick para a difusão.

Neste trabalho também foi possível identificar, por meio de curvas de espessura/densidade da camada oxidada em função do tempo de oxidação em temperatura elevada (800°C), a lei de crescimento parabólica para essa camada. Onde para valores dobrados da espessura da camada de óxido, temos tempos de oxidação quadruplicados. A Tabela 3 e o gráfico da Fig 5 mostram o comportamento da espessura da camada de óxidos difundidos em relação ao tempo de oxidação.

Os valores de limite de escoamento e limite de resistência obtidos em ensaios de tração a 600°C não varia significativamente com a variação do tempo de oxidação térmica a 800°C. O limite de escoamento apresenta valores na faixa aproximada de 360 a 380 MPa e o limite de resistência na faixa de 400 a 420 MPa. Estes valores parecem indicar que a oxidação térmica não teve efeito no aumento da resistência mecânica da liga Ti-6Al-4V. Contudo, notase que os valores obtidos de redução em área diminuem com o aumento do tempo de oxidação. Como com o aumento do tempo de oxidação térmica também se tem o aumento da camada clara, pode-se afirmar que está camada é responsável pela alteração do mecanismo de deformação a 600°C. Com o aumento da camada clara, a deformação ocorre mantendo-se níveis mais elevados de tensão durante este processo.

As análises das superfícies de fratura dos corpos-de-prova ensaiados em tração a 600°C mostram que, independente da oxidação térmica, a fratura é dúctil com a presença de microcavidades em toda a região central dos corpos-de-prova. Nas regiões periféricas das superfícies de fratura observa-se a camada de óxido (camada clara observada por microscopia óptica) fraturada. A camada de óxido é mais facilmente observada nos corpos-de-prova previamente oxidados termicamente em tempos maiores, como mostrado na Fig 12. Esta camada caracteriza-se por apresentar fratura frágil, com regiões planas e com a presença de trincas radiais ao longo de toda a camada. Na região mais interna da camada de óxido observam-se também indícios de fratura intergranular frágil, além de uma região de transição do mecanismo de fratura frágil para dúctil com microcavidades. Nos corpos-de-prova submetidos a pouco tempo de oxidação, como a superfície de fratura mostrada na Fig 11, observa-se somente pequenas regiões de óxidos fraturados na periferia do corpo-de-prova. Nesta condição a fratura é predominantemente dúctil com presença de microcavidades.

A fragilidade da camada de óxido em ligas de titânio causa uma limitação para aplicações em temperaturas elevadas, segundo Welsch et al. (1988). Contudo, a camada de óxido formada na oxidação térmica a 800°C também provocou mudanças no comportamento mecânico em tração a 600°C. Com isto, é possível supor que a formação desta camada em condições controladas pode conduzir a liga Ti-6Al-4V a uma melhoria das propriedades mecânicas em temperaturas elevadas. Estes resultados podem ser considerados promissores com relação a utilização de oxidação térmica para melhorar as propriedades em fluência da liga Ti-6Al-4V. Segundo Bueno (2011), uma analogia entre tração a quente e fluência pode ser estabelecida, uma vez que no ensaio de tração a temperatura e a taxa de deformação são fixadas para obter a história de tensão do material, enquanto que durante um teste de fluência, a temperatura e a tensão são fixadas para obter a história da taxa de deformação do material. Ainda segundo Bueno (2011), a capacidade de resistência mecânica no ensaio de tração é atenuada com o começo do empescoçamento e da mesma maneira durante o ensaio de fluência a resistência mecânica do material é mantida até o início do empescoçamento.

5. CONCLUSÃO

O estudo das camadas de óxidos formadas durante o processo de oxidação térmica da liga Ti-6Al-4V a 800°C permitiu concluir que:

- A liga Ti-6Al-4V oxidada termicamente a 800°C apresentaram a formação de dois tipos de camada de óxidos: uma mais externa, frágil, de coloração cinza que se destaca do substrato e uma outra adjacente a esta, mais clara, contínua em toda extensão da periferia das amostras e aderida ao substrato, composta principalmente de óxido de titânio (TiO₂) e pouca quantidade de óxido de alumínio (Al₂O₃).
- A adesão do TiO₂ decresce a medida que a camada de óxido fica mais espessa, com o aumento do tempo de oxidação térmica, confirmado pelo fator de Pilling Bedworth maior que um. Para fator de Pilling Bedworth menores ou próximos a um, em oxidações em tempos menores, não há lascamento da camada de óxido mais externa, permanecendo aderida ao substrato.
- As curvas de espessura/densidade da camada oxidada em função do tempo de oxidação em temperatura elevada (800°C) permitiram verificar uma lei de crescimento parabólica para essa camada.
- Os valores de limite de escoamento e limite de resistência obtidos em ensaios de tração a 600°C não varia significativamente com a variação do tempo de oxidação térmica a 800°C. Contudo, nota-se que os valores obtidos de redução em área diminuem com o aumento do tempo de oxidação.
- As análises das superfícies de fratura dos corpos-de-prova ensaiados em tração a 600°C mostram que, independente da oxidação térmica, a fratura é dúctil com a presença de microcavidades em toda a região central dos corpos-de-prova. A camada de óxido aderida caracteriza-se por apresentar fratura frágil, com regiões planas e com a presença de trincas radiais ao longo de toda a camada, com indícios de fratura intergranular.

AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) por bolsa de Iniciação Científica concedida à aluna Beatriz de Pádua Severino.

REFERÊNCIAS

ASM INTERNATIONAL; Binary Alloy Phase Diagrams; ASM HandBook; vol.1; 1991.

BUENO, L. O. and DIAS, C. R. F.; Equivalência entre dados de tração a quente e fluência para o cobre comercial puro. Parte 2: análise por diferentes metodologias de parametrização. Tecnol. Metal. Mater. Miner., v. 8, n. 2, p. 80-85, abr.-jun. 2011.

CHEM[15] MIRANDA, P.E.V.; RODRIGUES, J.A.R.; Gases em metais e ligas: Fundamentos e aplicações na engenharia, EDC, Rio de Janeiro, 1994.

DIAS, C. R. F. and BUENO, L. O.; Correlação tração a quente e fluência para o cobre comercial puro. Parte 1: correlações entre tensão, taxa de deformação, tempo de ruptura e temperatura. In: Anais do 65º Congresso Internacional da ABM. Rio de Janeiro, 2010, p. 1246-1255 (CD ROM).

DOUGLASS, D.L.; Oxidation of metals and alloys; Columbus, OH, American Society for Metals, 1971, pp.142-143.

FERREIRA, A. Produção de implantes via moldagem por injeção de pós de hidreto de titânio; Dissertação de Doutorado; Universidade Federal do rio Grande do Sul; Porto Alegre; 2004.

GÜÇLÜ, F.M.; ÇIMENOGLU, H.; KAYALI, E.S.; The recrystallization and thermal oxidation behavior of CP-titanium; Department of Metallurgy and Materials Engeneering, Istanbul Technical University; Maslak, Istanbul, Turkey, 2005.

LAUTENSCHLAGER, E.P., MONAGHAM, P.; Titanium and titanium alloys as dental materials; Int Dent J., 1993, pp.43,245-253.

MAGEGOTTO, J.C.; Estudo da processabilidade de titânio e ligas pela técnica de metalurgia do pó; Dissertação de mestrado, PPGEM-UFRGS, Porto Alegre, 1999.

MIRANDA, P.E.V.; RODRIGUES, J.A.R.; Gases em metais e ligas: Fundamentos e aplicações na engenharia, EDC, Rio de Janeiro, 1994.

MORETO, J. A.; CASTRO, D.; BUENO, L. O. and PONTE, H. A.; Correlação de dados de tração a quente e fluência para a liga Kanthal A1. R. Esc. Minas, Ouro Preto, 64(2), 181-186, abr-jun. 2011.

PHILIBERT, J.; SAABIONI, A.C.S.; DYMENT, F.; Difusão em materiais; Editora REM - Revista Escola de Minas, Ouro Preto, Minas Gerais, 1996.

SAKAI, T.; OHASHI, M. and CHIBA, K.; Acta Metall., v. 36, p.1781, 1988.

STIING, C.; TEXTOR, M.; SPENCER, N.D.; WELAND, M.; VALLOTTON, P. H.; Surface characterization pretreatments; J Mater Sci; Mater Med, 1990, 10, pp.35-46.

WELSCH, G. and KAHVECI, A. I.; In T., GROBSTEIN and J.DOYCHAK, 1988, Oxidation of High Temperature Intermetallics TMS, Warrendale, pp.207.

WEST, J.M.; Basic corrosion and oxidation, 2nd ed., London, Wiley, 1986, pp.27-30.

STUDY OF THERMAL OXIDATION BEHAVIOR OF THE Ti-6Al-4V ALLOY

B. P. Severino¹, A. A. Couto^{1,2}, D. A. P. Reis³, C. Moura Neto⁴

¹Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP, São Paulo (SP), Brazil

²Universidade Presbiteriana Mackenzie, São Paulo (SP), Brazil

³Universidade Federal de São Paulo, São José dos Campos (SP), Brazil

⁴Intituto Tecnológico da Aeronáutica, ITA, São José dos Campos (SP), Brazil

E-mail: bia.uuqq@gmail.com

Abstract. Ti-6Al-4V is a candidate material for use in applications as a biomaterial. The formation of a stable and adherent oxide layer can improve the mechanical strength and corrosion of the material. The present study investigated the thermal oxidation of the Ti-6Al-4V alloy used as biomaterial. The formation, adhesion and protection of the oxide layer were evaluated on the Ti-6Al-4 alloy with $\alpha + \beta$ phases. Samples of the Ti-6Al-4V alloy were oxidized in temperature at 800 °C for 0.5, 1, 2, 5, 10, 20 and 40 hours. Analysis of the oxidized layer calculations were made based on the Pilling-Bedworth Ratio (PBR). PRB analysis was complemented with Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (X-RD). The results from this study, there was consistency between experimental data and theoretical calculations based on the Pilling-Bedworth ratio. In this work it was possible to identify, by means of curves thickness density of the oxidized layer versus oxidation time at high temperature (800 °C), the parabolic growth law for this layer.

Keywords: Thermal Oxidation, Ti-6Al-4V, High Temperatures, Biomaterials.