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Abstract Several analytical techniques are used in archaeometric studies, and in 

combination, this can result in 30 or more elements being determined. Frequently 

multivariate statistical methods are used to interpret such data set, but their applications 

can be problematic or difficult to interpret with too many variables. In this paper, the 

application of Procrustes analysis with a stopping rule for the identification of 

redundant variables is presented. One illustrative example of the procedure being done 

with a data set obtained via instrumental neutron activation analysis, INAA, on 

archaeological ceramic samples is provided.             
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Introduction 

Ceramics is one of the main categories of artefacts used by archaeologists because is a 

product of human activity and is recognizable by displacement of raw material from 

their natural settings. A scientific account of this record necessitates a description of the 

kind and amounts of raw materials that were displaced, along with the distance and 

direction of movement. Archaeologits commonly refer of this type of study as artefact 

sourcing or provenance determination. Provenance studies permit archaeologists to 

investigate such diverse topics as mobility patterns, prehistoric migrations and 

commerce, and they are essential to understanding cultural development. Then, for 

many years they have been interested in the provenance or of another kind of study of 

ceramic fragments and have utilized a number of techniques to classify these materials 

into a particular group [1]. One method used for establishing such studies has been to 



  

classify samples according to their physical characteristics, such as color, texture, 

decoration, style and so on.  An essential problem is that ceramics manufactured in 

different places can appear to be identical on the basis of visual inspection only.  

Another method has been to utilize a form of chemical “fingerprinting” of the ceramic 

fragments by determining their elemental composition [2, 3].  

 It is becoming more frequent to have the same sample analyzed by more than 

one analytical technique, such as instrumental neutron activation analysis, INAA, X-ray 

fluorescence, XRF, among others. In such a case the number of the variable determined 

is about 30 or more. In order to study the data set, it is necessary to use multivariate 

statistical methods like cluster, principal components and/or discriminant analysis. 

However, difficulties and problems can appear when the number of determined 

variables has increase without an increase to the number of samples [4]. It is known that 

when multivariate statistical methods are used, the requirement exist that the number of 

samples in a group exceeds the number of variables, preferably by a factor at least three 

[4]. When this condition is not satisfied, it is necessary for some form of variable 

reduction, which can include variable selection. 

 The purpose in this work in to reduce the number of variables (elements) used 

that may apparently to seem to be against what is accepted widely in ceramic studies, in 

that the greater the number of variables measured is better [5]. However, is not always 

recognized that there is a distinction between the number of variables measured and the 

number needed to be used in the study. Normally the analyst measures a large number 

of variables, many of which may not be very informative. In order to do that a measured 

variable has to be included in ceramic studies and have certain. This provides a good 

base for archaeological interpretation. It additionally needs to show different 

concentrations in ceramics of different types and small variations in ceramic of the same 

type. This is all while covering a wide range of chemical properties. This is in order to 

be determined with analytical precision of less than 10% [6]. 

 So, the purpose of this paper is to identify a subset of the variables that are truly 

the most relevant. Also, it is to remove the less productive information and preserving 

multivariate data structure without losing essential information. In other words, by 

selecting those variables which are in some sense adequate for discrimination purposes. 

The procedure used was the Procrustes analysis in conjunction with a stopping rule.  

This procedure seems to be adequate. Especially in archaeometric studies when the 

initial structure in the data set is unknown. It is also when the principal components 



  

analysis, PCA, is used. This study was based using the results of ceramic samples from 

one archaeological site.  

 

Experimental  

Sample preparation and description of the method 

The ceramic powder samples were obtained by cleaning the outer surface and drilling, 

using a tungsten carbide rotary file attached to the end of a variable speed drill with a 

flexible shaft. Five holes were drilled as deep into the core of the ceramic material as 

possible without drilling through the walls.  Forty ceramic samples were analyzed  After 

that, these materials were dried in an oven at 105oC for 24 h [7].    

Constituent Elements in Coal Fly Ash (NIST-SRM-1633b) were used as 

standards. Then IAEA-Soil-7, Trace Elements in Soil, was used to check samples in 

every analysis. These materials were also dried in an oven at 105oC for 4 h [7]. 

About 100 mg of samples: NIST-SRM-1633b and IAEA and Soil-7 were 

irradiated in the research reactor pool, IEA-R1, from the IPEN-CNEN/SP, at a thermal 

neutron flux of about  5 x 1012 cm-2 s-1 for 8 h.    

Two measurement series were carried out using a Ge (hyperpure) detector. It 

was a model GX 1925 from Canberra with a resolution of 1.90 keV. It had a gamma 

peak of  60Co 1332.49 keV.  It had a Canberra S-100 MCA with 8192 channels. As, La, 

Na, Sm, and U were measured after 7 days cooling time and Ce, Cr, Eu, Fe, Hf, Nd, Sc, 

and Th, after 25-30 days. The gamma ray spectra analysis and the concentrations were 

carried out using the Genie-2000 Neutron Activation Analysis Processing Procedure 

from Canberra [7].  

Procrustes analysis [3]  

The idea of the Procrustes analysis is to select a subset of variables that preserve the 

structure revealed by PCA from the full data set. To explain the procedure we consider a 

data base of 40 samples of the ceramic fragments which were determined As, Ce, Cr, 

Eu, Fe, Hf, La, Na, Nd, Sc, Sm, Th, and U via INAA. To facilitate the explanation the 

procedure will be presented by a data matrix X with n samples analyzed and p variables 

(elements) measured. Then there is a n x p data matrix or 40 x 13 matrix.  If a PCA is 

applied on the n x p data matrix X, the scores of the n samples on the first k principal 

components are retained in the matrix Z, forming a new matrix n x k.  So, the obtained 

matrix Z has the scores of the first k principal components of data matrix X. The scores 

of the matrix Z(n x k) transformed have the best approximation  to the original data 



  

configuration of X(n x p). If the first principal components are 2 or 3, i.e. k = 2 or 3, 

plots based on the samples, n, of matrix Z can be used to identify patterning in the data.   

 On the other hand, suppose that there are selected q variables from the original 

p, to that the selection does take place and it recovers the same structure that with the 

original variables, q needs to be less than p and higher than or equal to k. Therefore, q < 

p and q ≥ k. In this case, suppose that X~  is the matrix n x q which retains only q 

selected variables, and Z~  is the n x k matrix of the PC scores of these reduced data, this 

later is therefore the best k-dimensional approximation to the q-dimensional 

configuration defined by the subset data. The Procrustes idea is to measure the distance, 

M2, between the two k-dimensional configurations Z(n x k) and   Z~ (n x k), and to delete 

the p - q variables that keep this distance as small as possible. The diagram shows the 

steps of the procedure:     

    

                       X (n x p)     select      X~ (n x q)     q < p   

                      PCA                           PCA 

                       Z (n x k)   Procrustes  Z~ (n x k)     q ≥ k 

         

          

 The residual produced by the lost information through the deletion of some 

variables is the sum of squared differences between the two configurations, Z and Z~ ,  

and  is given by the expression 

 

                                   { }Z´QZ~2-Z~Z~ZZ´ trace2 ′′+=M  

 

where trace is the sum of the diagonal elements of the matrix, and ´ is the transpose 

matrix, Q is given by multiplying two of the matrices of the singular value 

decomposition of k x k square matrix Z~ ´ Z. 

 The value of M2 is determined for each variable and the value found indicate the 

effect in the configuration and identifies the variable whose elimination has the least 

affects. Then, a practical backward elimination procedure is to find the minimum M2, to 

delete the variable, and to repeat the process. The stopping rule for determining an 

appropriate value for the variable was discussed by Krzanowski [9] who showed that if 



  

the variable is important to explain the data structure, the sum of residues will be higher 

than the critical value (cv). The critical value has, approximately, (1 + c2)σ2 times a chi-

squared distribution on nk-1/2 k (k+1) degrees of freedom if the deleted variables are 

not structuring-carrying, where c = )/()( kpkip −−− . If some of the deleted variables 

are structure-carrying, then the residual sum of squares will clearly be greater. A 

suitable confidence level of the chi-squared distribution times (1 + c2)σ2 will provide a 

stopping rule for the process until that of the calculated M2 exceeds the critical value. 

However, σ2 is unknown, and it is necessary to replace it by its estimator. More details 

of the procedure is possible to find elsewhere [8, 9].      

 

Results and discussion 

The study was made using a data set of 40 samples of ceramic samples which were 

determined As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, Sc, Sm, Th, and U by INAA. Table 1 

shows the values of the elemental concentrations for 40 samples.  All the elements used 

had precision less than 10% that was tested using 25 independent determinations of the 

reference material IAEA Soil-7. For that the results found were statistically compared 

with the certified values. The precision chosen it is in agreement with the criteria    

recommended for archaeometric studies [6].  

 Initially the results were transformed to log10, in order to compensate for the 

large magnitude differences between the measured elements at the trace level and the 

larger ones. Another reason for this is the belief that within manufactured raw materials, 

elements have a natural log normal distribution, and that data normalization is desirable 

[2]. So, throughout the work, it was assumed that the data sets were log-normally 

distributed. 

 After logarithmic transformation, the data set was submitted to outlying tests, 

using the Mahalanobis distance [10].  

 The Mahalanobis distance is an important measure in statistic and it is suggested 

by many authors as the method to detect outliers in multivariate data. For each one of 

the n samples and p variables, the Mahalanobis distance (Di) from the sample to the 

centroid is calculated by the expression [11] 

                                   ( ) ( )xxSxxD iii −′−= −1      (1)                                      

 
 

 



  

 

Table 1. Results for ceramic samples in μg/g, unless otherwise indicated, n = 40.   
 

 

Sample As Ce Cr Eu Fe.% Hf La Na.% Nd Sc Sm Th U D 
1 1.82 104.71 141.25 1.15 2.63 9.33 26.92 0.05 25.70 28.18 6.31 16.22 3.31 8.75
2 1.58 138.04 186.21 1.29 1.74 10.96 38.90 0.06 44.67 26.92 8.13 19.50 4.68 7.43
3 1.29 109.65 138.04 1.35 2.88 8.32 30.90 0.05 33.88 29.51 6.76 17.78 1.82 16.06
4 1.82 117.49 154.88 1.41 2.95 8.71 33.11 0.06 32.36 30.20 7.41 18.62 3.47 3.65
5 1.58 112.20 162.18 1.35 3.02 9.12 29.51 0.05 25.70 31.62 6.76 17.78 4.07 9.28
6 1.82 112.20 169.82 1.26 3.02 9.55 30.20 0.06 26.92 31.62 7.08 17.38 4.27 11.21
7 1.58 120.23 151.36 1.38 2.82 8.13 33.11 0.06 33.88 28.84 7.41 18.20 5.01 10.47
8 1.51 107.15 109.65 1.48 3.24 9.55 40.74 0.08 39.81 26.30 7.76 18.20 4.27 22.41
9 1.55 109.65 114.82 1.38 2.14 7.59 28.18 0.05 28.84 30.20 6.76 16.22 3.31 11.87
10 1.55 117.49 144.54 1.41 2.82 8.32 32.36 0.07 30.90 29.51 7.24 17.38 4.17 4.97
11 1.41 112.20 141.25 1.35 2.82 8.32 31.62 0.06 36.31 28.18 7.08 16.98 2.57 5.77
12 2.20 127.06 142.89 2.39 3.44 8.00 71.45 0.21 61.94 14.79 9.29 12.39 1.20 6.80
13 2.00 141.91 165.96 3.07 4.13 8.30 86.50 0.24 71.94 16.87 11.61 13.90 1.40 4.25
14 2.40 132.43 147.91 3.06 3.78 8.09 80.91 0.30 63.97 15.28 11.72 10.50 1.70 14.59
15 2.20 110.92 154.88 2.70 4.45 7.91 75.68 0.19 69.02 14.72 10.26 10.89 1.30 12.91
16 2.40 143.55 147.23 3.79 3.22 7.66 100.23 0.18 102.09 16.41 13.49 12.62 1.40 14.83
17 2.10 123.88 141.91 2.62 3.88 8.30 72.95 0.24 66.07 14.79 9.66 12.05 1.20 8.19
18 2.50 160.32 182.81 3.79 3.88 7.60 96.83 0.26 68.08 18.03 13.09 14.19 1.20 16.04
19 2.20 141.58 159.96 3.23 4.57 8.30 95.72 0.13 79.98 16.71 12.25 13.49 1.10 14.35
20 0.99 120.78 140.93 2.84 3.26 7.00 87.10 0.14 59.02 14.86 11.19 12.19 1.50 17.08
21 2.70 123.03 186.21 2.72 3.32 8.59 71.61 0.24 59.02 17.58 8.95 13.00 1.50 21.73
22 3.00 127.35 165.96 2.63 4.10 9.91 80.91 0.22 71.94 16.98 11.17 14.00 1.20 18.05
23 1.10 116.41 130.02 2.13 2.60 7.80 66.53 0.14 43.95 12.68 8.15 11.19 1.20 22.64
24 1.60 82.04 187.07 3.20 1.87 10.79 37.24 0.03 46.99 37.15 9.79 4.80 1.20 9.71
25 1.50 90.78 302.69 3.20 3.03 10.99 39.54 0.03 52.00 41.69 10.21 5.60 1.10 10.71
26 2.40 85.11 213.80 3.30 2.14 10.79 37.58 0.02 52.97 43.85 10.74 5.20 1.20 4.77
27 1.60 82.00 187.00 3.20 1.87 10.80 37.20 0.03 47.00 37.17 9.80 4.80 1.20 9.80
28 1.80 101.39 230.14 3.40 2.30 11.69 45.50 0.01 51.05 44.98 11.43 7.69 1.30 8.33
29 1.40 95.28 244.91 3.50 2.45 12.11 43.95 0.02 57.02 42.95 11.35 5.79 1.40 3.55
30 1.90 109.65 217.77 3.29 2.18 11.69 37.76 0.02 59.98 39.36 10.30 5.20 1.10 22.16
31 1.70 87.70 240.99 3.30 2.41 10.89 40.83 0.02 70.96 45.60 11.02 7.00 1.30 12.33
32 1.60 78.89 230.14 3.20 2.30 10.89 41.11 0.02 69.02 39.99 11.32 5.11 1.10 13.97
33 1.50 90.80 303.00 3.20 3.03 11.00 39.50 0.03 52.00 41.72 10.21 5.60 1.10 10.68
34 1.40 93.11 243.22 3.44 2.43 12.79 40.93 0.02 53.95 45.81 11.40 6.10 1.20 6.06
35 1.60 109.9 260.02 3.80 2.60 12.30 48.31 0.02 59.02 44.06 13.24 5.79 0.90 13.55
36 1.70 95.28 204.17 3.42 2.04 12.50 43.45 0.02 47.97 50.12 11.04 6.75 1.20 19.3
37 1.30 89.13 248.89 3.40 2.49 12.30 39.54 0.02 61.94 48.87 11.09 5.70 1.40 5.03
38 2.40 123.31 223.87 4.31 2.24 12.79 51.52 0.02 57.94 47.75 14.03 7.40 1.60 14.53
39 1.80 97.50 238.23 3.27 2.38 11.91 38.02 0.02 52.00 42.27 10.35 6.19 1.80 13.35
40 1.80 92.68 252.93 3.60 2.53 12.79 44.16 0.01 62.95 48.31 11.69 6.40 1.20 6.83
               

    Dcritical value at significance level of 0.05         25.38
 

 

 



  

where ´ is the transpose matrix; ( ) ( )∑
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 is a variance-covariance 

sampling matrix; and, ( )xxi −  is the vector of difference between the concentrations 

measured in a group and the concentrations measured in the other group. Each one of 

these values is compared to the critical value that can be calculated through the lambda 

Wilks criteria [11], cv,  calculated by  
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where p is a number of variables;  n is a number of samples and F , is the F test called 

Fisher distribution (F = s 2
1 /s 2

2  where s 2
1  and s 2

2  are the sample variances) with p 

degrees of freedom at a significance level of α/n, α = 0.05. 

 When the value found by the expression (1) is larger than the critical value by 

the expression (2), the sample is considered an outlier [11]. So, the Mahalanobis 

distance for each sample was calculated and the critical value. In the last column of 

Table 1 are the Mahalanobis distance values of each sample, and the end for the critical 

value, calculated using the lambda Wilks criteria [11]. The stopping rule is when the 

Mahalanobis distance calculated in the samples does not exceed the critical value. In 

accordance with the Mahalanobis distance, in the Table 1 any one sample is outlier.        

  With the purpose of verifying the possibility of the reduction of data 

dimensionality in the compositional analysis or, in other words, to eliminate variables 

without altering data structure, the data was studied through the Procrustes analysis. 

 Applying PCA in the log normalized data sets showed that the variance 

explained in the first fourth PCs was 47.0, 36.7, 6.5 and 3.3%, respectively, being 

93,5% the total variance. Then using k = 2 seems to be adequate because the first two 

PC explain 83.7% of the total variance.  Table 2 shows the results of the selection 

procedure, including the sequence of elimination.  

 

Table 2. Results of the deletion procedure for data set, n = 40. 

Variable Na Eu La Th Hf Nd, Ce, Cr, U, As, Fe,  Sc, Sm  
       
M2 2.2 4.5 11.2 18.4 30.2  
cv 35.5 33.4 31.3 29.2 27.1  



  

  

 In the Table 2, the variable Na is the first element for elimination because the 

value of M2 is 2.2 which measures the distance of the scores of the PC of the two 

matrices, while using all variables, and represents the loss of information caused by the 

elimination of the variable. To know if the scores of the two configurations are 

significantly different, it was calculated the critical value (cv) as obtained using 

Krzanowski  stopping rule at 5% of the significance level [9]. As can be seen in Table 2 

the critical value for Na was 35.5, which is higher than 2.2 (M2). This shows that the 

elimination of Na does not affect significantly the scores in the configuration of the 

PCs. When the variables are eliminated, the distance of the PC scores, M2, increases and 

the critical value that depends on the number of variables, decreases, until a point in 

which the elimination of the variable will affect the associated configuration. This point 

is reached when M2 is greater than the critical value, and this point is reached when Hf 

is deleted. This procedure suggests the application of the stopping rule at the point in 

which M2 ≥ cv. This suggests that Hf, Nd, Ce, Cr, U, As, Fe, Sc and Sm must be 

retained without loss information in the configuration. To confirm this assumption, the 

same data set were submitted to PCA. The plot is useful for visually displaying group 

separation. A bivariate plot of two first principal components using all the elements is 

presented in Figure 1. As can be seen, the results show that the samples form three  
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Figure 1. Plot of the first two principal components for all variables, As, Ce, Cr, Eu, Fe, 

Hf, La, Na, Nd, Sc, Sm, Th, and U, n=40.  

 

 



  

clusters with chemically homogeneous groups, showing a high degree of chemical 

similarity among them.  Figure 2 shows the plot for the two first principal components 

using the selected variables.  
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Figure 2. Plot of the first two principal components for selected variables, Hf, Nd, Ce, 

Cr, U, As, Fe, Sc and Sm for dataset.     

 

 The variance explained for the first two principal component was 79.3% and for 

the fourth PC was 92.6%. In both plots the ellipses represent a confidence level of 95%. 

When comparing the Figures 1 and 2, it is possible to see that when PCA was applied 

based only on the 9 variables, there were similar results to a PCA using all variables. In 

other words, it proves that for this data set only nine variables are sufficient to do the 

interpretation without loss information because the plots for both configurations are 

similar. In addition, it is important to have account that to use Procrustes analysis and to 

obtain good results in the configurations, it is necessary that the variance explained by 

the first two components need to be high.        

 

Conclusion 

In this paper, it was shown, with one illustrative example, that in a data matrix it is 

possible to determine a subset of variables using the Procrustes analysis without loss  

 

information in the data set. The study was confirmed by using a principal component 

analysis based on the best nine variables. This produces similar results to a PCA using 

all the variables. This paper have provided important contribution to archaeometric 



  

studies using compositional data set because was demonstrated that it is possible to use 

a subset of variable obtained via Procrustes analysis without loss information. 
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