STUDY OF THE PRODUCTION OF ^{177}Lu THROUGH 176 Yb (n, $\gamma)$ ^{177}Yb \rightarrow ^{177}Lu NUCLEAR REACTION

Giovana Pasqualini da Silva¹, and João Alberto Osso Junior¹

¹ Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP) Av. Professor Lineu Prestes 2242 05508-000 São Paulo, SP gpsilva@ipen.br jaosso@ipen.br

ABSTRACT

The β^{-} emitter ¹⁷⁷ Lu is a promising therapeutic radioisotope for the curative treatment of cancer using labelled proteins. It has a half – life of $T_{1/2} = 6.71$ day and maximum and average β^{-} energies of 421 and 133 keV, resulting in a short range of radiation in tissue. The decay is accompanied by the emission of low energy γ -radiation with 208.3 keV (11%) and 113 keV (6.4%) suitable for simultaneous imaging, ¹⁷⁷Lu can be produced by two different routes, namely, by irradiation of natural Lu₂O₃ target (¹⁷⁶Lu, 2.6%) or enriched (in ¹⁷⁶Lu) Lu₂O₃ target, as also by irradiation of Yb target (Yb₂O₃) followed by radiochemical separation of ¹⁷⁷Lu from Yb isotopes. The objective of this work is to study the production of ¹⁷⁷Lu through the indirect ¹⁷⁶Yb(n, γ)¹⁷⁷Yb \longrightarrow ¹⁷⁷Lu nuclear reaction. The results of the production yield of ¹⁷⁷Lu will be shown and compared with the direct reaction. The method of choice for the chemical separation between Lu and Yb was the ion exchange, using an cation exchange resin in Cl⁻ form and α -HIBA as eluent. Preliminary results showed a good separation of ¹⁷⁷Lu from Yb₂O₃ indirect targets.

1. INTRODUCTION

Radioisotopes are essential to a variety of applications in medicine, where they are utilized in the radiodiagnosis and treatment of various diseases. The last years have witnessed a rapid growth in the demand of radioisotopes for treatment of cancer in nuclear medicine due to the advent of improved means of targeting tumors or other disease tissues with radiolabeled agents, primarily by chemical, immunochemical or mechanical means[1].

The radiolanthanides are particularly attractive and advantageous in the development of radiotherapeutic agents in that they share very similar chemistry, but have various nuclear properties. Researchers can develop the chemistry necessary to incorporate a lanthanide into a carrier which will target the diseased tissue, then choose the radiolanthanide with the appropriate half-life and/or beta energy for the specific treatment [1].

A promising radiolanthanide is the β^{-} emitter ¹⁷⁷Lu because of its favorable decay characteristics. ¹⁷⁷Lu decays with a half-life of 6.71 days by emission of β^{-} particles with E_{max} of 421 keV and 133 keV to stable ¹⁷⁷Hf. It also emits γ photons of 113 keV (6.4%) and 208 keV (11%), which are ideally suited for in vivo imaging with a gamma camera. The physical half-life of ¹⁷⁷Lu is comparable to that of ¹³¹I, one of the most commonly used radioisotopes for radionuclide therapy. The long half-life of ¹⁷⁷Lu provides logistic advantage for facilitating supply to places far away from the reactors [2].

¹⁷⁷Lu can be produced by two different routes, namely, by irradiation of natural Lu₂O₃ target (¹⁷⁶Lu, 2.6%) or enriched (in ¹⁷⁶Lu) Lu₂O₃ target, as also by irradiation of Yb target (Yb₂O₃) followed by radiochemical separation of ¹⁷⁷Lu from Yb isotopes [2], how it is shown in Fig. 1.

Figure 1: Reactor production of ¹⁷⁷Lu [3]

The usual method of preparation of ¹⁷⁷Lu is to irradiate Lu target in the nuclear reactor. However, small quantities of carrier free ¹⁷⁷Lu can be produced in a neutron irradiated Yb target, even though ¹⁶⁹Yb and ¹⁷⁵Yb are also produced by the neutron activation of ¹⁷⁶Yb present in the target. The carrier-free ¹⁷⁷Lu formed in the irradiated Yb target can be recovered either by preferential removal of the Yb target after its reduction to Yb²⁺ (since Lu^{3*} is not reduced) or by ion-exchange chromatography [4].

The separation factor for Lu/Yb pair is very small and it is difficult to separate them in good yield and in high purity when a trace amount of one is present with carrier amount of the other. An excellent eluent used, for this purpose, in ion-exchange chromatography is the α -hydroxyisobutiric acid (α -HIBA), that showed a good separation of carrier-free amounts of ¹⁷⁷Lu from carrier amounts of Yb irradiated [4].

The objective of this work was to study the production of ¹⁷⁷Lu through the alternative production route, the ¹⁷⁶Yb (half-life 1.9 h) \rightarrow ¹⁷⁷Lu process (thermal neutron cross sections [¹⁷⁶Yb] = 2.85 b). Natural targets of Yb₂O₃ were irradiated to produce no-carrier-added (nca) ¹⁷⁷Lu in the present work. An ion-exchange chromatography system with α -HIBA as eluent was used in order to separate nca ¹⁷⁷Lu from Yb targets

2. MATERIALS AND METHODS

2.1 Reagents

High purity Yb_2O_3 and α – HIBA were purchased from Aldrich chemical and used in all experiments. Dowex – 50X8 cation exchange resin in the H⁺, 200-400 mesh, was purchased from Dow chemical.

2.2 Irradiations

Samples of Yb₂O₃ were irradiated inside sealed quartz tubes that were also put inside sealed aluminum containers in selected positions of the nuclear reactor IEA-R1 at IPEN/CNEN-SP. The neutron flux was 1.0×10^{13} n .s⁻¹.cm⁻² for 1 hour. After some cooling time the samples were sent to the Radiopharmacy Center, opened and processed.

2.2 Resin and column preparation

The Dowex – 50X8 cation exchange resin was first activated with successive washing with hydrochloric acid, water and sodium hydroxide. The resin was then poured inside a glass column (35 cm resin height and 1 cm diameter), the flow in this condition was 5 drops for minutes. This resin was percolated with 50ml of the proper eluent before the chemical processing. The eluents used for this separation were 0.1M HCl and 0.25 M α – HIBA, with the pH adjusted to 3.2 with ammonium hydroxide.

2.3 Ion exchange process

The irradiated target was dissolved with 0.1 M HCl and loaded in the column. After the loading, the solvent 0.25 M α -HIBA was percolated through the column. Aliquots were taken from the loading samples and the elution samples, after passing through the resin. These samples were then analysed by gamma ray spectroscopy using a HP Ge detector, from Canberra, using the energies of 208 keV for ¹⁷⁷Lu and 396 keV for ¹⁷⁵Yb.

3. RESULTS AND DISCUSSION

Table 1 and Figure 1 show the results of the first experiment using 0.25 M α -HIBA. In this experiment the column was percolated with 0.1 M HCl.

Sample	% (¹⁷⁷ Lu)	% (¹⁷⁵ Yb)		
(mL)	(sum)	(sum)		
Load	0	0		
1	1.24	0.02		
2	4.26	0.22		
3	5.76	0.48		
4	7.04	0.62		
5	7.60	0.75		

Table 1. Results of the first experiment of the chemical separation of ¹⁷⁷Lu from ¹⁷⁵Yb.

6	7.75	0.72
7	8.02	0.81
8	8.03	1.02
9	8.18	1.18
10	8.18	1.41
11	8.35	1.57
12	8.78	1.83
13	8.85	1.90
14	9.06	1.57

Fig. 2. Elution curve for the separation of Lu and Yb - HCl

From these results it can be seen some separation between Lu and Yb, but not with a good separation factor. Then the eluent solvent was changed to 0.25 M α -HIBA and the results can be seen in Table 2 and Figure 3.

Sample Volume	% (¹⁷⁷ Lu)	% (¹⁷⁵ Yb)	Sample	% (¹⁷⁷ Lu)	% (¹⁷⁵ Yb)	Sample	% (¹⁷⁷ Lu)	% (¹⁷⁵ Yb)
(mL)	Sum	Sum		Sum	Sum		Sum	Sum
Load	0	0	19	43.12	3.35	38	67.44	8.95
1	1.97	0.03	20	46.68	3.64	39	67.44	9.09
2	5.17	0.11	21	48.69	3.81	40	67.44	9.27
3	7.84	0.22	22	51.26	4.05	41	67.44	9.57
4	10.51	0.55	23	53.17	4.30	42	67.44	10.09
5	13.12	0.70	24	55.06	4.61	43	67.44	10.70
6	15.42	0.87	25	56.76	4.88	38	67.44	8.95
7	17.55	1.02	26	58.23	5.21	39	67.44	9.09

Table 2. Results of separations of 177 Lu for 175 Yb using 0.25 M α -HIBA

8	20.52	1.24	27	59.70	5.55	40	67.44	9.27
9	23.03	1.42	28	60.51	5.87	41	67.44	9.57
10	26.12	1.70	29	61.34	6.19	42	67.44	10.09
11	27.03	1.78	30	62.54	6.55	43	67.44	10.70
12	27.71	1.86	31	63.12	6.89			
13	27.84	1.87	32	63.88	7.20			
14	28.52	2.03	33	64.98	7.51			
15	30.35	2.26	34	65.67	7.85			
16	32.79	2.47	35	66.42	8.18			
17	35.80	2.72	36	67.08	8.52			
18	39.25	3.02	37	67.44	8.76			

Fig. 3 Elution curve for the separation of Lu and Yb - HIBA

The results show a big improvement in the separation between Lu and Yb when 0.25 M α -HIBA is used as the solvent. A higher amount of ¹⁷⁷Lu is eluted in smaller volumes and lesser impurities of ¹⁷⁵Yb when 0.25 M HIBA is used as eluent.

3. CONCLUSIONS

The α -HIBA was more efficient as eluent for the separation between ¹⁷⁷Lu and ¹⁷⁵Yb, and is more promising for establishing a process of indirect production of ¹⁷⁷Lu than HCl. Further work must be done to improve the separation, giving a minimum level of ¹⁷⁵Yb impurity.

ACKNOWLEDGMENTS

The authors wish to acknowledge the Comissão Nacional de Energia Nuclear CNEN, for grating a fellowship for this project.

REFERENCES

- 1. D. Ma, A. R. Ketring, G. J. Ehrhardt, W. Jia, "Production of Radiolanthanides and Radiotherapy Research at MURR", *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 206 n 1, pp.119-126 (1995).
- M. R. A. Pillai, S. Chakraborty, T. Das, M. Venkatesh, N. Ramamoorthy, "Production logistics of ¹⁷⁷Lu for radionuclide therapy", *Applied Radiation and Isotopes*, Vol.59, pp.109-118 (2003).
- 3. F. F, (Russ) Knapp Jr., S. Mirzadeh, A. L. Beets, M. Du, "Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for application in nuclear medicine, oncology and interventional cardiology", *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 263 n. 2, pp. 503-509 (2005).
- P. S. Balasubramanian, "Separation of Carrier-Free Lutetium 177 from Neutron Irradiated Natural Ytterbium Target", *Journal of Radioanalytical an Nuclear Chemistry*, Vol. 185 n. 2, pp. 305-310 (1994).