2005 International Nuclear Atlantic Conference - INAC 2005 Santos, SP, Brazil, August 28 to September 2, 2005 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN

ISBN: 85-99141-01-5

AVALIAÇÃO DO DESEMPENHO DE DOIS MODELOS DE CÂMARAS POÇO UTILIZADOS EM BRAQUITERAPIA LDR

Oscar T. B. Alvarez e Linda V. E. Caldas

Instituto de Pesquisas Energéticas e Nucleares (IPEN/ CNEN - SP)

Av. Professor Lineu Prestes 2242
05508-000 São Paulo, SP

otbalvar@ipen.br
lcaldas@ipen.br

RESUMO

Neste trabalho é avaliado e comparado o desempenho de dois modelos de câmaras de ionização do tipo poço da marca Capintec. Foram avaliados sua constância, a linearidade de resposta, o ponto ótimo de leitura e a variação da tensão aplicada ao sistema das câmaras. Os resultados obtidos foram comparados, observando-se que as duas câmaras apresentam comportamentos dentro dos limites recomendados; a vantagem que o modelo CRC-15BT tem de fornecer a leitura também em kerma no ar pode ser contornada no modelo CRC-15R, utilizando-se um fator de calibração.

1. INTRODUÇÃO

A câmara de ionização do tipo poço é um dos tipos de detectores recomendados para a medição da intensidade de kerma no ar (S_K) ou a atividade aparente (A_{ap}) das fontes utilizadas em braquiterapia [1,2]. Existem diversos modelos no mercado, inclusive modelos diferentes da mesma marca como é o caso da Capintec, que desenvolveu o modelo 15BT como atualização do modelo CRC-15R, apresentando uma câmara de poço de menor volume e com a capacidade de determinar, além da atividade aparente, a intensidade de kerma no ar do radionuclídeo. Ambas câmaras são seladas, não precisando de correções de pressão e temperatura.

Neste trabalho é avaliado e comparado o desempenho das duas câmaras. Para se avaliar a capacidade da câmara de medir de forma reprodutível em um longo intervalo de tempo, foi avaliada sua constância. Para o modelo CRC-15BT, foi utilizada uma fonte de Cs-137, e para o modelo CRC-15R uma fonte de Co-57. Para se avaliar se o aparelho é capaz de indicar a atividade correta na região de uso clínico da fonte foi determinada a linearidade de resposta por meio do método do decaimento de uma fonte de Tc-99m. A determinação da curva de resposta, importante para se determinar o ponto ótimo de leitura, foi realizada usando-se o suporte fornecido pelo fabricante e uma semente de I-125. Também foi observada a variação da tensão dos sistemas das câmaras.

2. MATERIAIS

Foram avaliadas duas câmaras de ionização do tipo poço da Capintec, modelos CRC-15BT e CRC-15R, as especificações destas câmaras podem ser observadas na Tabela 1. Para o teste de constância foi utilizada uma fonte de Cs-137 de 6,5 MBq para o modelo CRC-15BT e de Co-57 de 19,0 MBq para o modelo CRC-15R. A linearidade de resposta foi verificada por meio do método do decaimento de uma fonte de Tc-99m de atividade inicial igual a 4,7 GBq. A determinação da curva de resposta foi realizada usando-se o suporte fornecido pelo fabricante e uma semente de I-125 de 23,4 MBq da Mentor (USA).

Tabela 1. Características das câmaras de ionização do tipo poço Capintec CRC-15BT e CRC-15R.

		CRC-15BT	CRC-15R
Console	Altura	12,2 cm	12,1 cm
	Largura	25,4 cm	25,4 cm
	Profundidade	26,7 cm	26,7 cm
	Peso	1,7 kg	1,8 kg
Câmara	Altura	31,3 cm	41,8 cm
	Diâmetro	17,0 cm	16,8 cm
	Peso	12,2 kg	15,6 kg
	Diâmetro do poço	6,1 cm	6,1 cm
	Profundidade do poço	16,3 cm	25,4 cm

3. RESULTADOS

A linearidade de resposta das câmaras (Figura 1) apresentou um coeficiente de determinação R²(quadrado do coeficiente de correlação de Pearson), de 99,99% para o modelo CRC-15BT e de 99,98% para o modelo CRC-15R, dentro do limite de tolerância de 1% sugerido pelo TEC DOC 1151 (2001). Na avaliação da constância de resposta nas câmaras (Figura 2) foi observado que no modelo CRC-15BT a diferença máxima entre a atividade medida e a atividade teórica foi inferior a 1,4%; no modelo CRC-15R esta diferença foi inferior a 0,8 %. A determinação da curva resposta (Figura 3) permitiu conferir a faixa de melhor resposta de cada câmara; pode ser observado que no modelo CRC-15BT a fonte deve ficar entre 4,5 e 5,5 cm do fundo da câmara para se obter a máxima resposta. No modelo CRC-15R a fonte deve ser posicionada entre 7 e 11 cm do fundo da câmara. A variação da tensão aplicada aos sistemas (Figura 4) esteve inferior a 1% (CRC-15BT) e a 0,75 % (CRC-15R).

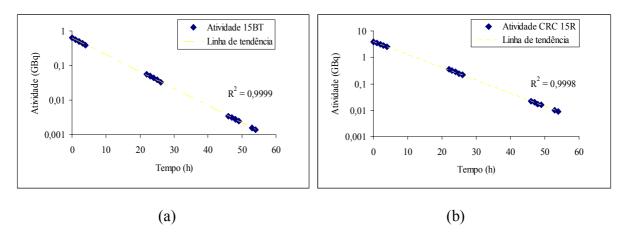


Figura 1. Teste de linearidade utilizando-se uma fonte de Tc-99m com atividade inicial de 4,7 GBq. Câmara de ionização do tipo poço Capintec CRC-15BT (a) e câmara de ionização do tipo poço Capintec CRC-15R (b).

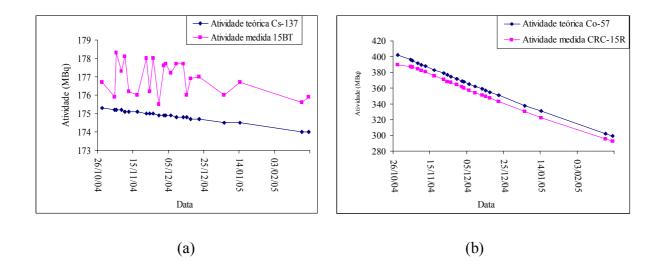


Figure 2. Avaliação da constância de resposta em câmaras de ionização do tipo poço. (a) Utilizando-se uma fonte padrão de Cs-137 (Capintec CRC-15BT); (b) utilizando-se uma fonte padrão de Co-57 (Capintec CRC-15R).

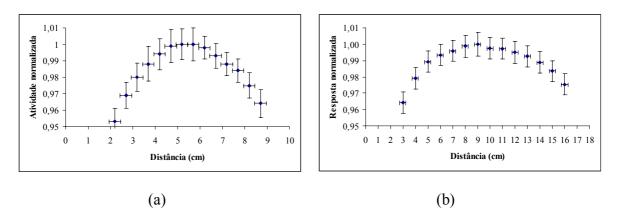


Figure 3. Variação da resposta normalizada ao maior valor de atividade de câmaras de ionização do tipo poço em função do posicionamento da fonte de I-125 dentro da câmara. Capintec CRC-15BT (a) e Capintec CRC-15R (b).

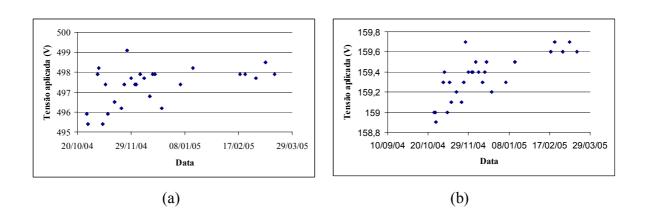


Figura 4. Variação da tensão aplicada ao sistema da câmara de ionização do tipo poço; Capintec CRC-15BT (a) e Capintec CRC-15R (b).

4. CONCLUSÕES

Em vários testes o modelo CRC-15R apresentou um melhor desempenho que o modelo CRC-15BT mas, no geral, ambas câmaras apresentaram comportamentos dentro dos limites recomendados. A grande vantagem do modelo CRC-15BT de fornecer a leitura em kerma no ar, pode ser contornada no modelo CRC-15R utilizando-se um fator de calibração. Portanto, para o objetivo de realizar medições de fontes de braquiterapia de baixas taxas de dose, as duas câmaras podem ser utilizadas de forma confiável.

AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) e à Fundação de Amparo e Pesquisa do Estado de São Paulo (FAPESP) pelo apoio financeiro parcial.

REFERÊNCIAS

- 1. IAEA-TECDOC-1151 International Atomic Energy Agency "Aspectos físicos da garantia da qualidade em radioterapia- Protocolo de controle da qualidade". Rio de Janeiro. INCA, Ministério da Saúde, (2001).
- 2. IAEA-TECDOC-1274 International Atomic Energy Agency "Calibration of Photon and Beta Ray Used in Brachytherapy Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals". Vienna, (2002).